331

E1, E2, M1, and M2 transitions in
the nickel isoelectronic sequence

S.M. Hamasha, A.S. Shlyaptseva, and U.l. Safronova

Abstract: A relativistic many-body method is developed to calculate energy and transition
rates for multipole transitions in many-electron ions. This method is based on relativistic
many-body perturbation theory (RMBPT), agrees with MCDF calculations in lowest

order, includes all second-order correlation corrections, and includes corrections from
negative-energy states. Reduced matrix elements, oscillator strengths, and transition rates are
calculated for electric-dipole (E1) and electric-quadrupole (E2) transitions, and magnetic-
dipole (M1) and magnetic-quadrupole (M2) transitions in Ni-like ions with nuclear charges
ranging fromZ = 30 to 100. The calculations start from &22522p%3523p5341° Dirac—Fock
potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients,
and second-order RMBPT is used to determine the matrix elements. The contributions from
negative-energy states are included in the second-order E1, M1, E2, and M2 matrix elements.
The resulting transition energies and transition rates are compared with experimental values
and with results from other recent calculations.

PACS Nos.: 32.30.Rj, 32.70.Cs, 32.80.Rm, 34.70.+e

Résumé: Nous développons une méthode relativist®y &orps pour calculer I'énergie et

les taux de transitions multiples dans les atomes multi-électroniques. Cette méthode, qui

est basée sur la théorie perturbative relativiste (RMBPT), est en accord avec les calculs
MCDF a l'ordre le plus bas, inclut toutes les corrections de corrélation du second ordre et les
corrections pour les états d'énergie négative. Nous calculons les éléments de matrice réduits,
les forces d'oscillateur et les taux de transition pour les transitions dipolaires électriques (E1),
dipolaires magnétiques (M1), quadripolaires électriques (E2) et quadripolaires magnétiques
(M2) dans les ions de type Ni avec charges nucléaires dans le domiain®0-100. Le

calcul démarre avec un potentiel Dirac—Foek25?2p53523p834°. Nous utilisons les

perturbation au premier ordre pour obtenir les coefficients de couplage intermédiaire et

au deuxieme ordre RMBPT pour obtenir les éléments de matrice. Les contributions des

états d’énergie négative sont inclues dans les éléments de matrice E1, M1, E2 et M2. Nous
comparons nos énergies et taux de transition avec les résultats expérimentaux et avec les
résultats calculés par d’autre sauteurs.

[Traduit par la Rédaction]

1. Introduction

Relativistic many-body perturbation theory (RMBPT) was used recently to study atomic character-
istics of particle—hole excitations of closed-shell ions [1-6]. In the first of these studies, energies [1-3]

Received 25 November 2003. Accepted 4 February 2004. Published on the NRC Research Press Web site at
http://cjp.nrc.ca/ on 14 May 2004.

S.M. Hamasha and A.S. Shlyaptseva.r Physics Department, University of Nevada, Reno, NV 89557, U.S.A.
U.l. Safronova. Department of Physics, University of Notre Dame, Notre Dame, IN 46566, U.S.A.

LCorresponding author (e-mail: alla@physics.unr.edu).

Can. J. Phys82: 331-356 (2004) doi: 10.1139/P04-007 © 2004 NRC Canada



332 Can. J. Phys. Vol. 82, 2004

and oscillator strengths [4] in Ne-like ions were considered by Avgoustoglou et al. Reduced matrix
elements, oscillator strengths, and transition rates into the ground state for all allowed and forbidden
electric- and magnetic-dipole and electric- and magnetic-quadrupole transitions (E1, M1, E2, M2) in
Ne-like ions were presented by Safronova in ref. 5. The second-order RMBPT calculations for Ni-like
ions was used in ref. 6 to determine excitation energies and oscillator strengths.

The Ni-isoelectronic sequence has been studied extensively in connection with X-ray lasers. The
lasing action occurs because th& 344 levels are metastable to radiative decay to the Ni-like ground
state; the transitions to the ground state from the lowler*3p levels are of course radiatively allowed.
Ni-like X-ray lasers were first demonstrated in 1987 in a laser-produced plasma of Eu and later in laser-
produced plasmas of Ta, W, and Au (see refs. 7 and 8 and references therein). Accurate knowledge of the
lasing wavelengths is essential for applications to laboratory X-ray lasers. Wavelengtifgéf 8o—
3d%p 1Py X-ray lines in several lowZ Ni-like ions ranging from Y g = 39) to Cd ¢ = 48) were
measured recently by Li et al. [9]. Measurements for two lasing linég»&d3,2(0)—3ds5/24p3/2(1)
and 3/3/24d3/2(0)-3ds/24p1/2(1) in ions ranging from NdZ = 60) to Ta € = 73) were reported by
Daido et al. in ref. 10. It should be noted that neithérnor jj coupling schemes described these states
properly; this is why different designations are used for these states in refs. 9 and 10. Lasing on the
Ni-like 3d%4 f 1 P1—3d%4d 1 Py X-ray line in Zr (Z = 40), Nb (Z = 41), and Mo ¢ = 42) are reported
by Nilsen et al. in ref. 11. Measured wavelengths are presented for these ions as well as predicted
values for ions fromZ = 36 to 54. The predictions in ref. 11 were made by fitting the differences
between energies calculated with the multiconfiguration Dirac—Fock (MCDF) code and experimentally
determined energies fat = 37 to 42 to a straight line. A similar method was used for predicting lasing
linesinrefs. 7 and 9. Accurate theoretical values for two lasing lingg»8d3,>(0)—3ds/24p3/2(1) and
3d3;24d3/2(0)-3ds/24p1/2(1) in selected Ni-like ions wittZ from 60 to 73 were presented in ref. 10,
where it was shown that good agreement between theoretical and experimental wavelengths could be
obtained by taking into account tlhlecorrelation.

A detailed analysis of 3—4 transitions in the X-ray spectrum by laser-produced plasmas of Ni-like Ba
(Z =56),LaZ =57),and PrZ = 59) is reported by Doron et al. [12] and Zigler et al. [13]. Ab-initio
calculations are reported in ref. 12 using the RELAC relativistic computer code to idedtify3
(n = 410 8), I — 4s, and P — 4d transitions of Ni-like Ba. The same computer code was used by
Busquet et al. [14] to identify X-ray spectral lines emitted by a target ofAe:(79). Inref. 14, a detailed
description of the RELAC code, which is based on a relativistic model potential, is given. The HULLAC
package is also based on a relativistic model potential [15]sT8€3—4 transitions observed in X-ray
spectra of Ni-like ions (A§+—P*t) were investigated theoretically by Quinet and Biémont [16],
where the MCDF approach (Grant's code) was used to calculate wavelengths and oscillator strengths
for the 31 — 4p, 3d — 4f, 3p — 4s, and P — 4d electric-dipole transitions. The theoretical results
in ref. 16 were compared with all previous published experimental data obtained from X-ray spectra
emitted by strongly ionized atoms and generated by vacuum sparks, Tokamaks, or high-power lasers
and the differences between theoretical and experimental values for the 3—4 transition were found to be
about 0.5%. The relative magnitudes of the electric-multipole (E1, E2, E3) and magnetic-multipole (M1,
M2, M3) radiative decay rates calculated by the MCDF approach, are presented by Biémont [17] for the
lowest 17 levels of highly ionized nickel-like ions. Observation of electric-quadrupole and magnetic-
octupole decay in the X-ray spectum of highly charged Ni-like ion$#Ttand LP4t) are reported by
Beiersdorfer et al. in ref. 18.

There are fewer papers concerned with the analysis of the 4p and 4p — 4d transitions in
Ni-like ions. Spectra of 4—4 transitions in a laser-produced plasma of Ni-like ion${R8r7") are
observed and analyzed by Churilov et al. in ref. 19. The analysis of these spectra was based on the
theoretical prediction by Wyart [20]. The prediction of 4 4p and 4 — 4d transitions in Ni-like
ions (Ma*t—Srf2t) in ref. 20 was based on Slater—Condon type calculations/®4s3 34°4p, and
34%4d configurations. The radial parameters involved in the three configurations were determined by
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generalized least-squares fits using all known levels in the sequence.

In the present paper, relativistic many-body perturbation theory (RMBPT) is used to determine
energies of the $3p®34%41(J), 3s23p°3410%41(J), and 33p8341°4i(J) states of Ni-like ions with
nuclear chargeZ = 30-100. The calculations are carried out to second order in perturbation theory.
The second-order RMBPT calculations for Ni-like ions start froms&2422p%3523p%3410 Dirac—

Fock potential. Corrections for the frequency-dependent Breit interaction are included in first order
only. Lamb-shift corrections to energies are also estimated and included. We consider all pdssible 3
holes and &particles leading to the 56 odd-parity 3t4p(J), 3d~Y4f(J), 3p~t4s(J), 3p~14d(J),
3s14p(J), and 314 £ (J) excited states and the 50 even-parity 34s(J), 3d=14d(J), 3p~t4p(J),
3p~Y4r(J), 357 14s(J), and 3714d(J) excited states in Ni-like ions wit = 30 to 100.

Relativistic MBPT is used to determine reduced matrix elements, oscillator strengths, and tran-
sition rates for all allowed and forbidden electric-dipole and magnetic-dipole (E1, M1) and electric-
quadrupole and magnetic-quadrupole transitions (E2, M2) fret8;#34%4i(J), 3s23p°341%41(J),
and 33p%341041(J) excited states into the ground state in Ni-like ions. Retarded E1 and E2 matrix
elements are evaluated in both length and velocity forms. The present RMBPT calculations start from
a nonlocal 122522p%3523p63410 Dirac—Fock potential and consequently give gauge-dependent tran-
sition matrix elements. Second-order correlation corrections compensate almost exactly for the gauge
dependence of the first-order matrix elements, leading to corrected matrix elements that differ by less
than 1% in length and velocity forms throughout the Ni isoelectronic sequence.

2. Theoretical technique

Details of the RMBPT method are presented in refs. 1 and 6 for the calculation of energies of
hole—particle states, in ref. 21 for the calculation of energies of particle—particle states, in ref. 22 for
the calculation of radiative electric-dipole rates in two-particle states, and in ref. 5 for calculation of
multipole radiative rates in Ne-like system. We will present, here, only the model space for Ni-like ions
and the first- and second-order diagram contributions for hole—particle systems without repeating the
detailed discussions given in refs. 1,6,21,22, and 5.

For atoms with one hole in closed shells and one electron above the closed shells, the model space is
formed from hole—particle states of the tygea,|0), where|0) is the closed-shell and the ground state
is 152,252 ,2p3 ,2p3 5 353 23p% 533, 3d3,,3d3 . The single-particle indicesrange over states in
the valence shell and the single-hole indieemnge over the closed core. For our study of low-lying
states B-141’ states of Ni-like ions, values afare 31,2, 3p1/2, 3ps/2, 3d3/2, and 352, while values
of v are 41,2, 4p1/2, 4p3/2, 4dzj2, 4ds)2, 4fs/2, and 4f7,,. To obtain orthonormal model states, we
consider the coupled statés ;s (av) defined by

Saian) = V@D 3 v (B Yol a0 @

—my
Mgy

Combining then = 3 hole orbitals and the = 4 particle orbitals in nickel, we obtain 56 odd-parity
states consisting of fivé = O states, thirteed = 1 states, fifteed = 2 states, twelvg = 3 states,
seven/ = 4 states, thre¢ = 5 states, and ong = 6 state. Additionally, there are 50 even-parity states
consisting of fiveJ/ = 0 states, twelvg = 1 states, fourteed = 2 states, eleverdl = 3 states, six

J = 4 states, and twd = 5 states. The distribution of the 106 states in the model space is summarized
in Table 1. In Table 1, we give botly andL S designations for hole—particle states and instead of using
the 3].‘1413., or 314/’ designations, we use simpler designatiohg/3, or 34/". The same (4!’ or

314!’) designations are used for simplicity in all the following tables and the text below.

Analytical expressions for energy matrixes and multipole matrix elements in the second-order
RMBPT are given by (2.2)—(2.11) and (2.12)—(2.17), respectively, in ref. 6. Electric- and magnetic-
dipole and electric- and magnetic-quadrupole first-order matrix elements together with derivative terms
are presented in the Appendix.
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Table 1. Possible hole—particle states in thg4’;’(J) and 34!’ LS complexes;jj and LS coupling
schemes.

Odd-parity states

Jjj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl.

3ds/24p32(0) 3dAp3P  3dsp4pip(1) 3dAp3P 3ds;p4p1p(2) 3d4p3F  3dsp4pip(3) 3d4pdF
3ds24f52(0)  3dAf3P  3dspdpsp(l) 3d4p3D  3dsjpdps(2) 3dAp3P  3dspdps(3) 3d4plF
3p124s12(0)  3pasiP  3ds;p4psp(1) 3dAp'P 3ds;p4p12(2) 3dAp'D  3ds;4pse(3) 3d4p3D
3P3/24d3/2(0) 3P4d ’p 3d5/24f5/2(1) 3d4f ’p 36!'3/24173/2 @) 3d4p D 3d5/24f5/2 (©) 3d4f D
35124p12(0)  3s4p3P  3dspAfr2(1) 3dAf3D  3dspdfs2(2) 3dAf3P 3dspdfr2(3) 3dAf3G
3ds24ps2(4) 3d4p3F  3dspdfsp(1) 3dAfP 3dspdfr2(2) 3dAf3D  3d3pdfsp(3) 3dAf3F
3d5/24f5/2(4) 3d4f °H 3173/24\?1/2(1) 31745 tp 3d3/24f5/2(2) 3d4f 'D 3d3/24f7/2(3) 3d4f F
3ds oA f72(4)  3dAf3G  3pipdsip(l) 3pdsPP 3dypdfr2(2) 3dAf3F  3papddsn(3) 3pddcF
3ds)phfs2(4)  3dAf3F  3psphdsn(1) 3pAd3P 3pspdsie(2) 3pAs P 3psAds(3) 3pad'F
3d3 o8 f72(4) 3dAf1G  3pspdds (1) 3pAd P 3pspddan(2) 3pAd3F  3pi4dsp(3) 3pad 3D
3p328ds2(4) 3pad3F  3piphds;p(l) 3pAd3D 3psjpAds;p(2) 3pAdP 3s1p4fs2(3)  3s4f3F
35124 f72(4)  354f3F  3s14p12(1)  354p3 P 3p1pAdsp(2) 3pAd D 3s154f72(3)  3s4fF
3ds /o4 f52(5)  3dAf3H  3s14psp(1) 3s4p P 3pi4dsp(2) 3p4diD

3ds 24 f72(5)  3d4Af3G 3s1/24p32(2)  3s4p 3P

3d324f72(5) 3d4f'H 35124 f52(2)  3s4f3F

3ds )24 f7/2(6)  3dAf3H

Even-parity states

JjJj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl.

3d5/24d5/2(0) 3d4d 3P 3d3/2451/2(1) 3d4s 3D 3d5/24s1/2(2) 3d4s 3D 3d5/24S1/2(3) 3d4s 3D
3d3/24d3/2(0) 3d4d 1S 3d5/24d3/2(1) 3d4d SS 3d3/24sl/2(2) 3d4s 1D 3d5/24d3/2(3) 3d4d 3G
3p324ps2(0) 3pdp3P  3dspddsp(1) 3d4d P 3ds;p4ds(2)  3d4d3P 3ds;p4ds;»(3)  3d4d3D
3p124p12(0) 3paplS  3dsp4dsp(1)  3d4d3D  3dsjpAdsp(2) 3d4dPD 3d34dsp(3)  3d4dPF
3.91/24S]_/2(O) 3s4s 1S 3d3/24d5/2(1) 3d4d 3P 3d3/24d3/2(2) 3d4d 3F 3d3/24d5/2(3) 3d4d 1F
3ds/24ds/2(4)  3d4d 3G 3ps;pApp(1) 3pApcD 3ds;pAds;p(2)  3d4d D 3ps;pdps;p(3) 3papcD
3ds/24ds/2(4)  3d4d G 3ps;Apse(1) 3pAp3S  3ps;pdpye(2) 3pAp3D 3pspAfsp(3) 3pAfiD
3ds04ds2(4)  3d4d3F  3p1p4pi2(1) 3pAp'P 3psdpse(2) 3pAp'D  3pip4fsp(3) 3paf3G
3p3hfs2(4) 3pAf3G  3pi24ps(l) 3pAp3P  3p124psp(2) 3pAp3P  3pspAfr2(3) 3pAflF
3p32Af12(4) 3pAfiG  3paAfsp(l) 3pAf3D  3psAfsp(2) 3pAf3D  3piAfi2(3) 3pAf3F
3p12Afr2(4) 3BpAf3F  Bsipdsio(1)  354s3S 3paAfr2(2) 3pAfiD  3s124ds2(3)  3s4d®D
3ds24ds2(5)  3pAf3G  3sypldsp(l) 3s4d3D 3pupdfsp(2) 3pAf3F
3p3Afi2(5) 3paAf3G 3s1/24d32(2)  3s54d°D

3s1/24ds,2(2)  3s4d ip

3. Excitation energies
3.1. Example: energy matrix for W46*

In Table 2, we give various contributions to the second-order energies for the special case of Ni-like
tungstenZ = 74. In Table 2, we show the one-body and two-body second-order Coulomb contributions
to the energy matrix Iabeleﬂf) and E§2>, respectively. The corresponding Breit—Coulomb contribu-
tions are given in columns head@éz) and Béz). The one-body second-order energy is obtained as a
sum of the valencéff,z) and hoIeE[(,Z) energies with the latter being the dominant contribution. The
values ofEiZ) andBf) are nonzero only for diagonal matrix elements. Although there are 106 diagonal
and 1042 nondiagonal matrix elements (6t,-4l},) (J) hole—particle states, we list only part of the
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Table 2. Second-order contributions to the energy matrices (a.u.) for odd-parity
states with/ = 2 in the case of Ni-like tungstery, = 74. One-body and two-body
second-order Coulomb and Breit—-Coulomb contributions are given in columns
labeled £\, ES?, B{?, and BY?, respectively.

Coulomb interaction Breit—Coulomb correction
3l1j1 822, 3l3j3 84 ja EP EY By By

3ds24p12  3dsp4p12  —0.165064 0.061571 0.054106 0.004770
361'5/24[)3/2 3d5/24p3/2 —0154592 0051703 0055966 0003453
3dz04p12  3dzp4pi,  —0.176234 0.063549 0.056644 0.004810
3dz24p3;2  3dzp4ps;  —0.165763 0.052947 0.058504 0.003570
3ds24 s, 3dsp4fs,  —0.157878 0.043947 0.060093 0.002957
3ds24f72  3dspp4f7,  —0.154863 0.039527 0.060825 0.001999
3dz 24 52 3dz4fs,  —0.169049 0.043242 0.062631 0.002739
3dsobfr,  3dspAfr,  —0.166034  0.043219 0.063364  0.002031
3p3lsis  3papdsy, —0.239748 0.045008 0.048713 0.003117
3p3j28da;n  3p3plds, —0.243322 0.046631 0.046497 0.003430
3p3/24d5/2 3p3/24d5/2 —0.239194 0.044062 0.046897 0.002790
3p124da;n  3p1o4ds,; —0.293196 0.059744  0.053373 0.004037
3p124ds;;  3p124ds;; —0.289068 0.067060 0.053773 0.003396
3S1/24p3/2 351/24[73/2 —0.301835 0.037263 0.047780 0.003076
3510452 3s124fs2 —0.305121 —-0.004315 0.051907 0.003058

3ds24p12  3ds24p32 —0.003176 —0.000175

3ds;24pz2  3dsj24py2 —0.002828 —0.000194

3ds24p12  3dz4pa 0.000346 —0.000045

3dz24p12  3ds24pa)2 0.000365 0.000051
3d5/24p1/2 3d3/24[73/2 0.001105 0.000103
3dz24p3;2  3ds24pa2 0.000745 0.000181
3ds24p12  3dsp24fs)2 0.002992 0.000161
3d5/24f5/2 3d5/24[71/2 0.003058 0.000218
3ds24p12  3dsp4 12 0.000901 0.000135
3ds;24 72 3ds;24pa 0.000851 0.000199

odd-parity subset witlh = 2 in Table 2. It can be seen from Table 2 that second-order Breit—Coulomb
corrections are relatively large and, therefore, must be included for accurate calculations. The values of

the nondiagonal matrix elements given in columns heai‘g@dandBéz) are comparable with the values

of diagonal two-body matrix elements. However, the values of the one-body contribuﬂﬁﬁand
B{Z), are larger than the values of the two-body contributim’lié), and Béz), respectively. As a result,
total second-order diagonal matrix elements are much larger than the nondiagonal matrix elements that

are shown in Table 3.

In Table 3, we present results for the zeroth-, first-, and second-order Coulomb contribat®ns,
EW, andE®@), and the first- and second-order Breit-Coulomb correctiBfjs,and B@. It should be
noted that corrections for the frequency-dependent Breit interaction [23] are included in the first order
only. The difference between the first-order Breit-Coulomb corrections calculated with and without
frequency dependence is less than 1%. As one can see from Table 3, the ratio of nondiagonal and diag-
onal matrix elements is larger for the first-order contributions than for the second-order contributions.
Another difference in the first- and second-order contributions is the symmetry properties: the first-order
nondiagonal matrix elements are symmetric and the second-order nondiagonal matrix elements are not
symmetric. The values &@[a'v'(J), av(J)] andE@[av(J), a’v'(J)] matrix elements differ in some
cases by a factor 2—3 and occasionally have opposite signs.
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Table 3. Contributions to the energy matrik[3ly jy 415 j2(J), 3l3j3 Maja(J)] = EQ + ED® +
E® 4+ B\Y + B®@ before diagonalization. These contributions are given for a hole—particle ion
with a 1522522p®3523p®34'° core, in the case of odd-parity states with= 2, andZ = 74.

3l1j1 42 jo, 3l3jzHaja E© E® By E® B®

3ds24p12  3ds4pa2 63.946959 —-2.897065 —0.044328 —0.103493 0.058876
3ds;24p3;2  3ds;24p3 67.700562 —2.766233 —0.086067 —0.102890 0.059419
3ds4p1s  3dspApi, 66454528 —2.910600 —0.101760 —0.112686  0.061454
3dz24p3;2  3dz24p3 70.208131 —-2.701466 —0.137045 -0.112816 0.062074
3ds;24 f5;2  3ds;24fs)2 80.001175 —-3.040893 —-0.131847 —-0.113931 0.063050
3ds 2412 3ds4f1)2 80.210728 —3.102061 —0.147633 —0.115336 0.062824
3dz08 52 3dz04fs) 82.508744 —-3.027474 —-0.189739 -0.125807 0.065370
3ds;24 f172 3dz8f1)2 82.718297 -—-3.185489 -0.197412 -0.122815 0.065395
3p3lsiz  3papdsyye 76.989075 —2.802900 -—0.185291 —0.194740 0.051830
3p32lds;n  3p3ldssn 89.908848 —2.712244 —0.199086 —0.196691 0.049927
3p3/24d5/2 3p3/24d5/2 90.715573 —2.770880 —-0.216900 —-0.195132 0.049688
3pijohdss  3pipAds,  101.409027 —2.862060 —0.326498 —0.233452  0.057411
3p124ds;;  3p124ds;, 102.215752 —2.831900 —-0.339351 —0.222007 0.057169
3s124p32 3s124p32 104.600025 —2.736867 —0.175038 —0.264572 0.050856
35128152 3s124f52  116.900638 —3.011717 —0.223007 —0.309436 0.054964
3ds;24p12  3ds24p32 0.000000 —0.141135 0.000847 —0.003176 —0.000175
3ds24p32  3ds24p12 0.000000 —-0.141135 0.000847 —0.002828 —0.000194
3ds24p12  3dzp4pa 0.000000 0.000000 0.000422 0.000346-0.000045
3dz24p12  3ds24pa2 0.000000 0.000000 0.000422 0.000365 0.000051
3ds24p12  3dz04p3 0.000000 —-0.079629 —0.000306 0.001105 0.000103
3dz24p3;2  3ds4pa2 0.000000 —0.079629 —0.000306 0.000745 0.000181
3ds;24p12  3ds4fs) 0.000000 —0.040667 0.000165 0.002992 0.000161
3ds 2452 3ds24pa2 0.000000 —0.040667 0.000165 0.003058 0.000218
3ds24p12  3dsp4f1)2 0.000000 0.008608 0.000737 0.000901 0.000135
3ds 24 72 3ds24pa2 0.000000 0.008608 0.000737 0.000851 0.000199

We now discuss how the final energy levels are obtained from the above contributions. To deter-
mine the first-order energies of the states under consideration, we diagonalize the symmetric first-order
effective Hamiltonian, including both the Coulomb and Breit interactions. The first-order expansion
coefficientCN[av(J)] is the Nth eigenvector of the first-order effective Hamiltonian aBtP[N]
is the corresponding eigenvalue. The resulting eigenvectors are used to determine the second-order
Coulomb correctiorE @[N], the second-order Breit-Coulomb correctiBff’[N] and the QED cor-
rectionE amp[V].

In Table 4, we list the following contributions to the energies of 15 excited state4%h:wWhe sum
of the zeroth- and first-order energie€+? = E© 4 E® 1 B the second-order Coulomb energy
E®@ | the second-order Breit—Coulomb correctiBff, the QED correctiorE amb, and the sum of the
above contribution&}yt. The QED correction is approximated as the sum of the one-electron self energy
and the first-order vacuum-polarization energy. The screened self-energy and vacuum polarization data
given by Kim et al. [24], which are in close agreement with screened self-energy calculations by
Blundell [25], are used to determine the QED correcti®amp.

When starting calculations from relativistic DHF wave functions, it is natural tg jiskesignations
for uncoupled transition and energy matrix elements; however, neifheor LS coupling describes
the physical states properly, except for the single-configuration sigtgd37,2(6) = 3d4 f 3Hg. Both
designations are used in Table 4.
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Table 4. Energies of Ni-like tungsten for odd-parity states with= 2 relative to the ground
state. EOV = E© + E® 4 BP.

jjcoupl. LScoupl. E©D E® B®@ ElLamb Eiot

3ds;24p1;  3d4pSF 60.984569 —0.105568 0.058819 —0.000536 60.937284
3ds;24p3,  3d4p3P 63.431374 —0.110837 0.061363 0.007112 63.389012
3d34p1,  3d4ptD 64.835220 —0.100670 0.059479 0.003707 64.797735
3da;4p32  3d4pED 67.361256 —0.112172 0.061944 0.011364 67.322393
3ds 4 52 3dAf3P 74.038405 —0.193298 0.051893 0.027450 73.924449
3ds ;24 72 3dAf3D 76.790414 —-0.114212 0.063027 —0.004421 76.734808
3dzphfse  3dAfID 76.973652 —0.112346 0.062906 —0.003648 76.920563
3d3p4fr2  3dAf3F 79.249794 —0.123899 0.065239 0.003390 79.194524
3padsy,  3phsdP 79.376078 —0.123261 0.065484 0.003877 79.322178
3papdds,  3padSF 87.017623 —-0.198179 0.049910 —0.027362 86.841992
3p3pAds;,  3pad 3P 87.747648 —0.194982 0.049711 —0.025308 87.577069
3p124ds,  3pad:D 98.221187 —0.236010 0.057493 —0.013794 98.028875
3p124ds;;  3p4dD 98.996485 —0.235425 0.056976 —0.014971 98.803064
3s1/24p32  3s4p3P 101.761043 —0.256048 0.051078 —0.159746 101.396327
3s124fs2  3s4f3F 113.672635 —0.308896 0.054984 —0.171642 113.247081

3.2. Z dependence of eigenvectors and eigenvalues in Ni-like ions

InFigs. 1and 2, we illustrate thedependence of the eigenvectors and eigenvalues of tHé, 3(])
hole—particle states. Strong mixing between states within odd-parity complex with was dlscussed
in many papers (see, for example, ref. 6). We refer to a set of states of the same parity and thasame
a complex of states. Additionally, we found strong mixing within the odd-parity complexJvith2
and even-parity complex withh = 1, and 2. In Fig. 1, we show the dependence of the eigenvectors for
the example of even-parity states with= 2. This particular/ = 2 even-parity complex includes 14
states that are listed in Table 1. Using the first-order expansion coefficiétita (/)] defined in the
previous section, we can present the resulting eigenvectors as

O(N) = CV[3ds/2451/2(2)1D[3ds/2451/2(2)] + CV [3d3/2451/2(2)1P[3d3/2451/2(2)] +

CN [3ds/24d3/2(2)19[3ds24d3/2(2)] + CV [3ds/24ds52(2)10[3ds,24d5/2(2)] +

CN [3d3/24d3/2(2)1P[3d3/24d3/2(2)] + CV [3d3/24ds5)2(2) 1 0[3d3/24d5/2(2)] +
[3p3/24p1/2(2)1®[3p3/24p1/2(2)] + CV [3p3/24p3/2(2)19[3p3/24p3/2(2)] +
[3p1/24p3/2(2)1®[3p1/24p3/2(2)] + CN[3p3/24 f5/2(2)10[3p3/24 f5/2(2)] +
[3p3/24 f1/2(2)19[3p3/24 f1/2(2)] + CN [3p1/24 f5/2(2)19[3p1/24 f5/2(2)] +

CN [351/24d3/2(2)|P[3s1/24d3/2(2)] + C" [351/24ds5/2(2) | D[351/24d5/2(2)] ()

cV
cV
cN

As a result, 196V [av(J)] coefficients are needed to describe the 14 eigenvalues. These coefficients
are often called mixing coefficients. For simplicity, we plot only three of the 14 mixing coefficients for
the levelN = 3p4f 3D, in Fig. 1. These coefficients are chosen to illustrate the mixing of the states;
the remaining mixing coefficients give very small contributions to this level. We observe strong mixing
betweer[3pz/24 f5/2(2)] + [3p1/24 f7/2(2)]1 + [3p1/24p3/2(2)] states folZ = 41-42 andZ = 75-76.
Energies, relative to the ground state, of even-parity statesivithl and 2, divided byZ — 21)?,
are shown in Fig. 2. It should be noted tl¥atvas decreased by 21 to provide better presentation of the
energy diagrams. We plot the limited number of energy levels to illusgatependence choosing one
representative from a configuration. As a result, we show 6 levels instead of 12 irmFand®5 levels
instead of 14 in Fig. & It should be noted that thieS designations are chosen by comparing our results
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Fig. 1. Mixing coefficients for the p4f 3D, level as functions ofZ.
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Fig. 2. Energies £/(Z — 21)?) in cm™ for even-parity states witll = 1 and 2 in Ni-like ions as function
of Z.
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with available experimental data for lo&-ons. To confirm thosé. S designations we obtain the fine
structure splitting for the s, 3d4d, 3p4p, 3p4f, 3sds, and 34d triplets.

Energy differences between levels of even-parity triplet terms, dividgdby 21)2, are shown in
Fig. 3. In Fig. 3, we show how the energy intervals vary strongly with nuclear charge fébtiberm
of 3d4s configuration2P, 3D, 3F, and3G terms of 34d configuration, and P, 3D terms of 34p
configuration. Our calculations show that the fine structures ofdde, 3d4d, and 34p levels do not
follow the Landé rules even for smail As can be seen from Figa3the 374s 3D levels are completely
inverted, the 34s (3D3 —2 D») interval changes very slowly witl, while the 3/4s 3D, —2 D»)
interval increases by factor 25 in the rangezf= 30-100. The 34d 3D levels (Fig. 8) are also
completely inverted, while®d 3P, 3F, 3G levels are partially inverted and only the&p 3P, 3D
levels (Fig. ®) show regular ordering of the fine-structure splittings for low and tgfihe unusual
splittings are principally due to changes fran§ to j;j coupling, with mixing from other triplet and
singlet states. The differedtstates are mixed differently. Further experimental confirmation would be
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Fig. 3. Energy splitting AE/(Z — 21)?) in cm™ for terms of even-parity states in Ni-like ions as function
of Z.
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very helpful in verifying the correctness of these sometimes sensitive mixing parameters. We can see
the sharp feature in curves shown in Fig. 1 arodng 41-42 andZ = 75-76. These singularities are
similar to singularities in the energy diagram discussed in refs. 5 and 6. It is mentioned [6] that these
sharp features disappear whdbl3and 36!’ states are included in a model space.

4. Electric-dipole and electric-quadrupole matrix elements

We calculate electric-dipole (E1) matrix elements for the transitions between the 13 odd-parity
3d;j4pj(1),3d;4f; (1), 3p;4s1/2(1), 3p;4d; (1), and 31,24p (1) excited states and the ground state,
and electric-quadrupole (E2) matrix elements between the 14 even-pdyiy:13(2), 3d;4d; (2),
3p;j4p;(2), 3p;j4fi(2), and 31/24d;(2) excited states and the ground state for Ni-like ions with
nuclear chargegZ = 30-100. Analytical expressions for multipole matrix elements in the second-order
RMBPT are given by (2.12)—(2.17) of ref. 6. First-order electric-dipole and electric-qudrupole matrix
elements together with derivative terms are presented in the Appendix.

The first- and second-order Coulomb corrections and second-order Breit—Coulomb corrections to
reduced E1 and E2 matrix elements will be referred td@% 7@, andB@, respectively, throughout
the text. These contributions are calculated in both length and velocity gauges. In this section, we show
the importance of the different contributions and discuss the gauge dependence of the E1 and E2 matrix
elements.
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Table 5. E1 and E2 uncoupled reduced matrix elements in ledg#nd velocityV forms for transitions fromuv(J) states with
J =1 into the ground state in .

ore

epeue)d DN 00 @

av(J) Zzl) Zi,” Z<LZ> Z§/2> B 22) B ‘(/2> P L(deriv) P ‘(/deriv)
E1 uncoupled reduced matrix elements

3ds24p12(1) —0.058467 —0.054955 —0.002220 —0.002167 0.000051 0.000185-0.058082 0.000151
3ds24p32(1) —0.064023 —0.060061 —0.003656 —0.003010 0.000035 0.000157-0.063601 —0.000013
3ds324p32(1) —0.019017 -0.017913 -0.001320 -0.001060 —0.000028 0.000028 —0.018784 0.000180
3ds24f52(1)  —0.065946 —0.062474 0.002540 0.000584—0.000138 0.000058 —0.065944 —0.000430
3ds 24 f72(1)  —0.293391 —0.278016 0.011451 0.002497—0.000496 0.000220 —0.291188 0.002462
3d3/24 f5,2(1) 0.238430 0.226128 —0.009886 —0.002767 0.000558 —0.000186 0.237106 —0.001017
3p3/24s1/2(1) 0.078769 0.074300 0.002654 0.002831 0.0002530.000005 0.078222 —0.000046
3p124s12(1) —0.037928 —0.035887 —0.003080 —0.002773 —0.000292 —-0.000125 —0.037380 0.000346
3ps34ds (1) —0.049494  —0.046976 0.000266 —0.000310 —0.000152 0.000006 —0.049208 —0.000108
3ps24ds;2(1) 0.140049 0.133133 —0.000341 0.001179 0.000546 0.000102 0.1383270.001408
3p124ds (1) —0.082946 —0.078829 —0.000325 —0.000970 —0.000713 —0.000365 —0.081919 0.000538
3s1/24p12(1) —0.054338 —-0.051506 —0.003111 -0.003271 —0.000084 0.000038 —0.053715 0.000141
3s1/24p3/2(1) 0.053584 0.050877 0.021778 0.020437 0.000947 0.000774 0.0524-61000709

E2 uncoupled reduced matrix elements

3ds/2451/2(2) 0.028181 0.026386 0.000341 0.000375 0.000053 0.000009 0.056303 0.026423
3d3/2451/2(2) 0.021351 0.020057 0.000318 0.000358 0.000064 0.000015 0.042592 0.019965
3ds24d32(2)  —0.017197 —0.016278 —0.000217 —0.000297 —0.000026 —0.000000 —0.034360 —0.016333
3ds/24ds/2(2) 0.033205 0.031479 0.000500 0.000677 0.000066 0.000014 0.066227 0.031364
3d3/24d3/2(2) 0.024533 0.023270 0.000354 0.000485 0.000061 0.000011 0.048929 0.023184
3ds24ds/2(2) 0.015476 0.014702 0.000273 0.000352 0.000047 0.000013 0.030809 0.014540
3p324p12(2)  —0.031164 —0.029514 —0.000356 —0.000477 —0.000055 0.000003 —0.062199 —0.029525
3p324p3/2(2) 0.026883 0.025535 0.000491 0.000553 0.000073 0.000015 0.053561 0.025406
3p124p32(2) —0.020004 —0.019030 0.001058 0.000933-0.000096 —0.000033 —0.039756 —0.018802
3p324 f5,2(2) 0.031555 0.030092 0.000261 0.000696 0.000099 0.000018 0.062982 0.030103
3p324 f72(2) 0.077018 0.073465 0.001189 0.002237 0.000215 0.000025 0.153256 0.072565
3p1/24f5/2(2) 0.050777 0.048476 0.012232 0.012550 0.0001550.000015 0.101160 0.048194
3s51/24d3/2(2) 0.029103 0.027766 —0.001621 —0.001355 0.000040 —0.000011 0.057942 0.027658
3s1/24ds2(2)  —0.034254 —0.032712 0.000100 —0.000171 —-0.000081 —0.000017 —0.068015 —0.032239

002 ‘28 "IOA 'SAUd ' "UeD



Hamasha et al. 341

Table 6. E1 and E2 coupled reduced matrix elements in lerigtand velocity V
forms for transitions fromuzv(J) states into the ground state in*#.

First order RMBPT
av(J) av(LSJ) L \% L \%

E1 coupled reduced matrix elements

3d38p12(1)  3d4p3P; —0.058310 —0.054843 -—0.060387 —0.060268
3ds;24p3(1)  3d4psD 0.077184 0.072498 0.080784 0.080607
3ds24p3p(l)  3d4plP; —0.024089 —0.022704 —0.025563 —0.025497
3ds;24fs2(1)  3d4f3P;  —0.084916 —0.080155 -0.087317 —0.087167
3ds24f72(1)  3d4f3D; —0.008862 —0.008402 -0.008672 -—0.008674
3ds A fs2(1)  3d4fiP;  —0.195115 -—0.184837 —0.187815 —0.187809
3paads12(l)  3pdstP; —0.331733 —0.314553 —0.318319 -0.318362
3p1j2ds12(1)  3p4s3P; —0.031758 —0.030059 -0.035852 —0.035692
3ps2Ads (1) 3padEP; 0.033520 0.031780 0.033500 0.033480
3pa24ds (1) 3pad Py 0.139072 0.132217 0.139603 0.139504
3p1/24d3 (1) 3pad®D; 0.083642 0.079391 0.086667 0.086502
3s124p12(1)  3s4p3P; —0.042780 —0.040726 —0.042137 —0.042160
351/04p32(1)  3sdplip 0.043847 0.041632 0.066358 0.065302

E2 coupled reduced matrix elements

3dsj24s12(2)  3d4s®D,  —0.028768 —0.026948 -0.027295 -0.027378
3dsp4s12(2)  3d4s'D, —0.022467 -—0.021110 -0.021455 -0.021512
3dsp4d32(2)  3dAd3P, 0.015192 0.014377 0.014621 0.014647
3ds)24ds2(2)  3d4d 3D, 0.034461 0.032672 0.033378 0.033425
3ds24d32(2)  3d4d3F, —0.026663 —0.025291 -0.025869 —0.025904
3d34ds;(2)  3d4d'D, —0.016388 —0.015569 —0.015898 -0.015920
3p324p12(2)  3p4p3D, —0.030345 -0.028747 -0.029200 —0.029253
3ps24p3p(2)  3pdpiD, —0.026678 —0.025350 —0.025907 —0.025945
3p128ps2(2)  3pdp3P, —0.027505 —0.026190 —0.025353 —0.025499
3p32dfs2(2)  3pdfiD, 0.002730 0.002614 0.002928 0.002908
3ps24fi2(2)  3pdfiD, —0.080639 —0.076922 -0.079163 —0.079185
3p128fs2(2)  3pafiF, 0.054854 0.052369 0.065466 0.065092
3s1/24d3/2(2)  3s4d®D,  —0.020633 —0.019685 -0.016700 —0.016834
3s1/24ds/2(2)  3s4d'D,  —0.032341 —0.030888 —0.030740 —0.030800

4.1. Example: E1 and E2 matrix elements for W46+

In Table 5, we list values afncoupled first- and second-order E1 and E2 matrix elemétits, 22,
and B@ together with derivative termg (€™ for Ni-like tungsten,Z = 74. We list values for the
thirteen E1 transitions between odd-parity states wits 1 and the ground state and the fourteen E2
transitions between even-parity states with= 2 and the ground state, respectively. Matrix elements
in both length L) and velocity /) forms are given. We can see that the first-order matrix elements,
Zgl) and Zg,l), differ by 5-10%; however, the—V differences between second-order matrix elements
are much larger for some transitions. It can be also seen from Table 5 that for the E1 transitions the

derivative term in length formp %™ is almost equal t&'" but the derivative term in velocity form,

P‘(,de”"), is smaller tharz{ by three to four orders of magnitude. For the E2 transition, the value of
P @) i yvelocity form almost equalg? in velocity form and the? (9™ in length form is larger by
factor of two thanz® in length form.

The values of the E1 and E®upled reduced matrix elements in length and velocity forms are

given in Table 6 for the transitions considered in Table 5. Although we use an intermediate-coupling
scheme, it is nevertheless convenient to label the physical states usijgl#elling for highZ and
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Fig. 4. The first- and second-order Coulomb correctiod§’( Z®), and second-order Breit-Coulomb
corrections @) for (a) E1 and b) E2 uncoupled matrix elements for transition between excited and
ground states calculated in length)(and velocity ¢) forms in Ni-like ions.
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the LS labelling for low Z; both designations are used in Table 6. The first two columns in Table 6
show theL andV values ofcoupled reduced matrix elements calculated in first order. The V
difference is about 5-10%. Including the second-order contributions (columns headed RMBPT in Table
6) decreases the — V difference to 0.002-0.2%. This nonzerdth- V difference arises because we

start our RMBPT calculations using a nonlocal Dirac—Fock (DF) potential. If we were to replace the DF
potential by a local potential, the differences would disappear completely. It should be emphasized that
we include the negative-energy-state (NES) contributions to sum over intermediate states (see ref. 22
for details). Neglecting the NES contributions leads to small changes ih-foem matrix elements

but to substantial changes in some of fidorm matrix elements with a consequent loss of gauge
independence.

4.2. Z dependencies of E1 and E2 matrix elements in Ni-like ions

In Fig. 4a, differences between length and velocity forms are illustrated for the various contributions
to uncoupled 8-3d3/24p3/2(1) matrix element, where 0 is the ground state. In the case of E1 transitions,
the first-order matrix eleme®™® is proportional to 1Z, the second-order Coulomb matrix elemaf®
is proportional to 1Z2, and the second-order Breit-Coulomb matrix elenBftis almost independent
of Z (see ref. 22) for higlz. Therefore, we plog® x (Z —21), Z@ x (Z — 21)2, andB@ x 10*in
Fig. 4a. As one can see from Figadall these contributions are positive, except for the second-order
Breit-Coulomb matrix elemen8® in velocity form.

The difference between length and velocity forms for the E2 uncouple®d,24ds,2(2) matrix
element is illustrated in Fig.b} In the case of E2 transitions, the first-order matrix eleni#&t is
proportional to ¥Z?2, the second-order Coulomb matrix elem&# is proportional to 173, and the
second-order Breit—-Coulomb matrix elema@® is proportional to 1Z for high Z. Taking into account
these dependencies, we pii) x (Z —21)2, Z@ x (Z — 21)3, andB@ x (Z — 21) x 10%in Fig. 4b.

The second-order Breit—-Coulomb correction to the E2 matrix ele®&nis much smaller in velocity
form than in length form, as seen in Fidh.4

The differences between results in length- and velocity-forms shown in Figsdi4 are compen-
sated by additional second-order terms called “derivative te@f&"™): they are defined by (A.2) (see,
also Tables 5 and 6). The derivative terms arise because transition amplitudes depend on the energy,
and the transition energy changes order-by-order in RMBPT calculations.
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Fig. 5. The first- and second-order correctiois™, Z?) for (a) M1 and ) M2 uncoupled matrix
elements for transition between excited and ground states in Ni-like ions. The first-@fég¢rngatrix
elements calculated in nonrelativistiZ,(\ﬁ), relativistic frequency-independeﬁéf)), and relativistic
frequency-dependentZﬁF)) approximations are presented. The second-order Coul(ﬂﬁb @nd Breit—

Coulomb corrections43)) are compared.
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Magnetic-dipole and magnetic-quadrupole matrix elements

We calculate magnetic-dipole (M1) matrix elements for the transitions between the 12 even-parity
3dj461/2(1), 3dj4dj/(l), 3pj4pj/(l), 3pj4fj/(l), 3S1/24S1/2(1), and 31/24dj/(1) excited states and
the ground state and magnetic-quadrupole (M2) matrix elements between the 15 oddepayity(2),
3d;j4f(2),3pj4s1/2(2), 3p;4d; (2), 3s1/24p;(2), and 31,24 f/(2) excited states and the ground state

for Ni-like ions with nuclear chargeg = 30-100.

We calculate first- and second-order Coulomb, second-order Breit—-Coulomb corrections, and second-
order derivative term to reduced M1 and M2 matrix elemetits, Z@, B andP (@™ respectively,
using the method described in egs. (2.13)—(2.18) of ref. 6 and (A.1), (A.2), (A.8)—(A.14), and (A.23)—
(A.25) of the Appendix. In this section, we illustrate the importance of the relativistic and frequency-
dependent contributions to the first-order M1 and M2 matrix elements. We also show the importance
of the taking into account the second-order RMBPT contributions to M1 and M2 matrix elements
and we subsequently discuss the necessity of including the negative-energy contributions to sums over

intermediate states.

5.1. Z dependencies of M1 and M2 matrix elementsin Ni-like ions

The differences between first-order M1 uncoupled matrix elements, calculated in nonrelativistic,
relativistic frequency-independent, and relativistic frequency-dependent approximations are illustrated
for the 0— 3ds/24ds,>(1) matrix element in Fig. & The corresponding matrix elements are labeled

[€Y)
ZRFs

ZS), andZ,(\,l,)?. Formulas for relativistic frequency-dependent and nonrelativistic first-order M1

matrix elements are given by (A.8), (A.10), and (A.12) in the Appendix, respectively. We also plot the
second-order Coulomb contributio (22, and the second-order Breit-Coulomb contributi@éﬁ,

in the same figure. As we observe from Fig. 5a, the valuﬁ,(jﬁg are twice as small as the values of
73 andz§. Therefore, relativistic effects are very large for M1 transitions. The frequency-dependent

relativistic matrix elementgg,l

@
ZR

differ from the relativistic frequency-independent matrix elements
by 10-40%. The differences between other first-order matrix elements calculated with and without

frequency dependence are also the order of a few percent. Uncoupled second-order M1 matrix elements

@
Zel

are comparable to first-order matrix elemeﬁgﬁ_ for small Z but the relative size of the second-
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Fig. 6. The total M1 line strengthsSE->) between the @44 1P, and ground state in Ni-like ions as
functions of Z. The first-order §®) line strengths calculated in nonrelativistl&,(\,]({), relativistic frequency-
independent&éﬁ)), and relativistic frequency-dependent approximatio?‘f;%)( are presented.

2

107 4

M1 line strengths

T 1
20 30 40 50 60 70 80 90 100 110
Nuclear charge Z

order contribution decreases for high This is expected since second-order Coulomb matrix elements

Zg,f are proportional t&Z for high Z while first-order matrix eIementZéel,l grow asZ?. The second-

order Breit—-Coulomb matrix elemen (ZF)Q are proportional taz3 and become larger thaZigL) for
high Z.

The differences between first-order M2 uncoupled matrix elements, calculated in relativistic fre-
guency-dependent and relativistic frequency-independent approximations are illustrated for the O
3ds;24 f7/2(2) matrix element in Fig. b. The corresponding matrix elements are Iabe‘{’éj;l and

Zézl). Formulas for relativistic frequency-dependent and frequency-independent first-order M2 matrix
elements are given by (A.23), and (A.25) in the Appendix, respectively. We also plot the second-order
Coulomb contributionszgﬁ, and the second-order Breit—-Coulomb contributiong), in the same
figure.

In Fig. 6, we illustrate theZ dependence of the line strengths of M1 transition from 73 Py
excited state to the ground state. In Fig. 6, we plot the values of the first-order line str&ﬁéﬂsg),

andSé{l,l calculated in the same approximations as the M1 uncoupled matrix elements: nonrelativistic,
relativistic frequency-independent, and relativistic frequency-dependent approximations, respectively.
The total line strength§ 2 which include second-order corrections, are also plotted. Strong mixing
inside of the even-parity complex with = 1 between 3s,24d3,> and 3/s,,4ds,, states occurring for
small Z leads to the sharp features in the line strengths seen in the graphs. The deep minimum in Fig. 6
shifts when different approximations are used for the calculation of line strengths. This shift in the
placement of the minimum leads to difficulties in comparison of data for M1 transitions obtained in
nonrelativistic and relativistic approximations. We discuss this question further in the next section.

5.2. Example: M1 and M2 matrix elements for W46+

Ab initio relativistic calculations require careful treatment of negative-energy states (NES) (virtual
electron—positron pairs). In second-order matrix elements, such contributions arise explicitly from those
terms in the sum over states for whish< —mc?. The effect of the NES contributions to M1 amplitudes
has been studied recently in ref. 26. The NES contributions drastically change the second-order Breit—
Coulomb matrix element8® . However, the second-order Breit—-Coulomb correction contributes only
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Table 7. M1 uncoupled reduced matrix for transitions from even-parity states with 1 into the
ground state in WP,

1 1 1) 2 2) i
av(J) Z\R ZR Zt z® B3 B2, pder

3d324s1)2 0.000000 —0.000174  0.000408—-0.000004 0.000006  0.000095 0.001568
3ds24ds3»  —0.032954 —0.035971 —0.033363 —0.001009  0.000483—-0.000530 —0.028162
3ds24ds»  —0.020691 —0.039891 —0.030614 —0.001467  0.000071—0.003165 —0.012102
3d324d3, —0.007499 —0.016060 —0.015197 —0.000584 —0.000006 —0.001331 —0.013466
3d3/24ds, —0.024780 —0.021826 —0.024389 —0.000371  0.000404  0.0005470.029501
3p324p12 —0.097709 —0.101061 —0.098271 —0.001655  0.000779—0.000356 —0.092707
3p324ps32 —0.015809 —0.030442 —0.022188 —0.001136  0.000075-0.001771 —0.005733
3p124p12 0.002664 0.006233  0.007228  0.000235 0.000032  0.000414  0.009202
3p124ps, 0.077145  0.074047  0.076584  0.0008370.000512 —0.000402  0.081633
3p324fs2  0.000000 —0.007711 —0.003544 —0.000355  0.000008—-0.000797  0.004756
3s1/2481/2 0.008716  0.016561  0.010950 0.0012120.000017  0.000748-0.000223
3s1/24d3)2 0.000000 —0.003255 —0.000813  0.000298 0.00000740.000124  0.004039

2-5% to uncoupled M1 matrix elements and, as a result, negative-energy states change the total values
of M1 matrix elements by a few percent only.

In Table 7, we list values ofincoupled first- and second-order M1 matrix elemers?, zZ@,
B@ | together with derivative termg@€™ | for Ni-like tungsten,Z = 74. We list values for the 12
M1 transitions between even-parity states with= 1 and the ground state. The difference between
M1 uncoupled matrix elements, calculated in different approximations, is illustrated by the three first
columns of Table 7. The importance of NES is illustrated for the second-order Breit—Coulomb matrix

elementsB®. In Table 7, we compare the values stgs and B(f;g) calculated with positive and

negative parts of the spectra, respectively. The value(ﬁfq is sometimes even larger than the value
of B((gf)s), and including NES changes the Breit—-Coulomb matrix elements by a factor of 10.

In Table 8, we list values afncoupled first- and second-order M2 matrix eleme@d’, Z?, and
B®@ | together with derivative termg (@™ for Ni-like tungsten,Z = 74. We list values for the 15
M2 transitions between odd-parity states with= 2 and the ground state. We note that the first-order
M2 matrix elements 8- 3d3;24p3/2(2), 0 — 3ds/24 f5,2(2), and 0— 3p3/24d3/2(2) vanish because the
corresponding factai, + k), wherex; is a relativistic angular momentum quantum number of a state
i,in (A.23) for ZD equals zero for this transition. Differences between first-order uncoupled M2 matrix
elements calculated with and without frequency dependence are shown in first two columns of Table 8
Iabeledzg) andZél,l. As one can see from Table 8, the difference betwéghandzg,l is about 1%.
The importance of the NES is illustrated for the second-order Breit-Coulomb matrix eleR{énts

Table 8, we compare the values B@S and B((r?é@ calculated with positive and negative part of the

spectra, respectively. The ratio Bfﬁég, to B((,ff)s) is about 10%.
5.3. Example: E1, E2, M1, and M2 transition rates for W46*

The E1, E2, M1, and M2 transition probabilitidgs—1) for the transitions between the ground state
and 34!’ j'(J) states are obtained in terms of line strengfi{a.u.) and wavelength(A) as

(gD = 2:02613x 0% ¢ ED,  aE2) = L11995x 0% o
) = (2J + 1)A3 (ED), (E2) = (2J + 1)A5 (E2)
2.69735x 10'3 1.49097x 1013
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Table 8. M2 uncoupled reduced matrix for transitions from odd-parity states With 2 into the
ground state in WP+,

av()  Zg) Zg? z® Bighs Bk pLerm
3ds24p12  —0.163836 —0.163043 —0.002595 0.000418 —0.000049 —0.324499
3ds24ps,  —0.285213 —0.283560 —0.002356 0.000285 —0.000119 —-0.563816
3dz4p12,  —0.045303 —0.045467 0.000251 0.000079—-0.000020 —0.091263
3d3/24p3/2 0.000000 0.000000 0.000645—-0.000007 —0.000003 0.000000
3ds 24 f5/2 0.000000 0.000000 0.002448—-0.000014 —0.000056 0.000000
3ds24f7,  —1.590367 —1.585966 —0.037939 —0.002489 0.000082 —3.163131
3d324 52 0.448687 0.448339 0.007853 0.001035-0.000089 0.895981
3dz24 f1/2 0.585334 0.583257 0.019392 0.001235-0.000089 1.162362
3p324s1/2 0.308057 0.306121 0.005528 0.000728 0.000079 0.608371
3p324dsn 0.000000 0.000000 0.001616—0.000026 —0.000026 0.000000
3p324ds» 0.621628 0.617660 0.009966 0.001636 0.000107 1.227386
3p124ds;, —0.063771 —0.064179 0.002136 —0.000283 —0.000002 —0.129175
3p1/24ds,> 0.196819 0.194852 0.002998 0.000990 0.000025 0.385771
3s1/24p3/2 0.211407 0.208579 —0.027184 —0.001118 0.000087 0.411504
35124 f5/2 0.001902 0.000711 0.005294-0.000184 0.000108 —0.000958

Table 9. E1 and M2 transition ratesA( in s™1) and wavelengthsi(in A) for transitions from

odd-parity states withy = 1 and 2 into the ground state in“®.

av(J) av(LS)  AF AEL av(J) av(LS) AM2 M2
3d3;4p12(1)  3d4pSD  6.684[12] T7.174  3s24p12(2)  3d4pSF  4.051[06] 7.477
3ds;24p3p()  3d4p'P  1.272[13] 7.027  3s24p3p(2)  3d4pcP 1.281[05] 7.188
3d3/24p3/2(1) 3d4p 3P 1420[12] 6.778 33/24[71/2(2) 3d4p 1D 1408[07] 7.032
3dsjphfs(1)  3dAf3P  2.414[11] 5.953  Bs04psp(2) 3d4p3D  4.509[03] 6.768
3ds ;24 f72(1)  3d4f3D  1.181[14] 5.870 3sp4f52(2) 3d4f3P  3.173[07] 6.164
3dyphfsp(l)  3dAfiP  3.733[14] 5.689 3sp4fr2(2) 3d4f:D  1.666[08] 5.938
3psahsip(l)  3pdsiP 2.218[13] 6.154 Bsp4fs0(2) 3d4fD  8.733[08] 5.923
3puadsi2(l)  3pasdP  5.714[12] 5.345 3s04f,2(2) 3d4f3F  7.053[06] 5.753
3p3/24d3/2(1) 3p4d 3P 5252[12] 5.255 33/2451/2(2) 3[)46‘ 3P 2101[08] 5.744
3psahdsp(1)  3pAd*P  9.402[13] 5.201 Psp4dsp(2) 3p4d3F  1.134[06] 5.247
3p124dsp(1)  3p4d3D  5.007[13] 4.679  B34ds(2)  3p4d3P 2.336[08] 5.203
3S1/24p1/2(1) 3S4p 3P 1213[13] 4.635 31/24d3/2(2) 3p4~d 3D 4088[06] 4.648
351/24p32(1)  3s4plP  3.320[13] 4.492  B154ds2(2)  3p4dD  4.947[07] 4.612
35124p32(2)  3s4p3P  2.292[07] 4.494

In Tables 9 and 10, we present our RMBPT calculations for E1, M2, E2, and M1 transition rates
and wavelengths in the case of Ni-like tungsténs 74.

6. Comparison of results with other theory and experiment

We calculate energies of the 50 even-parityyB1,2(J), 3d;4d; (J), 3p;j4p;(J), 3p;afi(J),
3s1/24s1/2 (J), and 31/24d j/ (J) excited states and 56 odd-parit);dp; (J), 3d;j4f(J),3pj4s1/2(J),
3pjadj(J),3s124p (J), and 31,24 f;(J) excited states for Ni-like ions with nuclear charges ranging
from Z = 30-100. Reduced matrix elements, oscillator strengths, and transition rates are determined for
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Table 10. E2 and M1 transition ratesd¢ in s) and wavelengthsi(in A) for transitions from
even-parity states witll = 2 and 1 into the ground state in“\.

av(J) av(LS) AE? AE2 av(J) av(LS) AML M

3ds;24s12(2)  3d4s3D  5.320[09] 7.929 &spdsip(1)  3d4s®D  1.633[04] 7.614
3d3p4512(2)  3d4sD  4.042[09] 7.608 3sp4dsp(1)  3d4dSS  6.929[07] 6.508
3dsp4ds(2)  3d4d3P  4.181[09] 6.487 3s;pAdsp(1)  3d4dP 3.141[07] 6.428
3ds24ds2(2)  3d4d®D  2.321[10] 6.405 @g24dsp(1)  3d4d®D  1.427[07] 6.276
3d324d32(2)  3d4d3F  1.568[10] 6.258 3304ds(1)  3d4d3P  2.150[07] 6.212
3d3/24d5/2(2) 3d4d 1D 6210[09] 6.198 33/24]71/2(1) 3p4p 3D 4271[08] 5.881
3pa2hp1a(2)  3pApdD  2.749[10] 5.878  Psadpsp(l)  3pap3S  1.908[07] 5.607
3psahpsp(2)  3pApiD  2.768[10] 5595 Pidpia(l)  3paplP  3.682[06] 5.134
3}71/24[73/2(2) 3p4p 3P 5045[10] 4.921 31/24]73/2(1) 3p4p 3P 3975[08] 4.928
3pahfs2(2)  3pAf3D  6.945[08] 4.888  Psdfsa(l)  3pafiD  2.022[05] 4.898
3psabfi2(2)  3pAfiD  5.234[11] 4.858 B dsip(l) 354535 6.645[07] 4.842
35124d32(2)  3s4d3D  4.507[10] 4.265

3s51/24d52(2)  3s4d'D  1.586[11] 4.233

E1l, M1, E2, and M2 allowed and forbidden transitions into the ground state for each ions. Comparisons
are also given with other theoretical results and with experimental data. Our results are presented in two
parts: E1, M1, E2, and M2 wavelengths and transition probabilities.

6.1. Transition wavelengths

In Table 11, we compare our RMBPT results for wavelengths with theoretical results presented by
Biémont in ref. 17 and experimental results given in ref. 16.

In particular, we list results for transitions betweefi8, 3d4p excited states and the ground state
for ions (Z = 92, 90, 83, 80, 70, 60, and 50) presented by Biémont in ref. 17. We did not repeat
comparison with experimental data given in our previous paper [6]. It should be noted that we improved
our results [6] including nondiagonal energy-matrix elements. A new computer code was developed
that allows us to consider not only the highions (Z > 47) as was done previously [6] but also the
low-Z ions (30< Z < 46). Itis well-known that there is almost no deviation from the pijreoupling
scheme for highz Ni-like ions and we found only very small difference (0.003-0.01%Ac£ 50) in
wavelengths between our present results and results given in ref. 6. The difference between our present
RMBPT results and MCDF results given by Biémont in ref. 17 is much larger (0.5-1% fer50).
As can be seen from Table 11, our results are in better agreement with experiment [16] than the MCDF
results from ref. 17.

Our results are in excellent agreement with experimental results for the energy of the E2 and M3
transitions presented by Beiersdorfer et al. in ref. 18.

For Z=90
RMBPT Expt
E(3d5/24s;|_/2(2)) = 256Q7 eV, 25613+ 0.2 eV
E (3ds;24s51/2(3)) = 25582 eV, 25587+ 0.2 eV
For Z=92
E(3ds5/2451/2(2)) = 26924 eV, 26919+ 0.2eV
E(3ds/24s1/2(3)) = 2689 8eV, 26893+ 0.2 eV 4)
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Table 11. Wavelengths X in A) for transitions from @j4l;’ (J) states to the ground
state in Ni-like ions. Comparison of (a) our RMBPT results with (b) theoretical
results presented by Biémont in ref. 17 and (c) experimental results given in ref. 16.

V4
92 90 83 80 70 60 50

3dsdsy2 (1) () 4.306 4543 5579 6.149 8.927 14349 27.344
(b) 4.318 4556 5593 6.163 8951 14.403 27.518
3dsds12(2)  (a) 4.304 4541 5576 6.145 8.920 14.334 27.299
(b) 4316 4553 5589 6.159 8.944 14.388 27.473
3dsp4s12(2)  (a) 4.605 4.842 5880 6.453 9.254 14.725 27.793
(b) 4.617 4.854 5810 6.467 9.277 14.777 28.007
3ds;24s12(3) (a) 4.609 4.847 5886 6.460 9.265 14.747 27.885
(b) 4.621 4.859 5.899 6.474 9289 14.801 28.066
3ds4ps2 (0) (a) 3.704 3930 4.907 5438 7.998 12910 24.373
() 3.710 3.936 4.914 5447 8.017 12.951 24512

3dsApi2 (1) () 4.095 4318 5287 5817 8383 13.312 24.817
(b) 4101 4324 5295 5826 8401 13352 24.952
© 5816 8.377 24.783
3ds24ps2 (1) () 3917 4145 5128 5663 8.239 13.166 24.628
(b) 3920 4149 5134 5670 8254 13204 24755
© 5657 8.235 24.596
3dsphpsp (1) () 3.699 3.924 4897 5427 7.978 12.863 24.236
(b) 3.703 3929 4.905 5436 7.996 12.904 24.374
© 5417 7.978 24.211

3ds;4p1,(2) (a) 4375 4598 5572 6106 8700 13.689 25.340
(b) 4.380 4.607 5578 6.114 8.715 13.727 25.472
3ds;4ps2 (2) (a) 4.101 4325 5296 5.827 8400 13.341 24.871
(b) 4.108 4331 5304 5837 8418 13.385 25.014
3d34p1n(2) (a) 3.919 4147 5131 5666 8244 13.175 24.650
() 3.923 4.151 5.137 5.674 8.260 13.215 24.787
3ds24ps, (2) (a) 3.695 3.920 4.891 5419 7.965 12.838 24.181
(b) 3.699 3.925 4.899 5429 7.994 12.880 24.319
3ds;4p12(3) (a) 4.373 4596 5568 6.102 8692 13.673 25288
() 4.378 4602 5576 6.111 8.710 13.715 25.430
3ds;4ps,(3) (a) 3.913 4141 5123 5657 8229 13.148 24.501
() 3.918 4.146 5.130 5.666 8.246 13.189 24.730
3ds4ps2 (3 (a) 3.698 3.923 4.896 5426 7.978 12.863 24.249
() 3.703 3.929 4.905 5436 7.996 12.906 24.391
3ds;4ps, (4 (a) 3.922 4150 5135 5672 8254 13.199 24.718
() 3.926 4.155 5.143 5680 8.272 13.240 24.863

6.2. The E1, E2, M1, and M2 transition probabilities

We present the resulting transition probabilities)(in Figs. 7—10. Transition rates and oscillator
strengths for the seven E1 lines froni4y 3Py, D1, 1Py, 3d4f 3Py, 3D, 1P; and P4s 1Py levels
to the ground state are plotted in Fig. 7. The sharp features in the curves shown in these figures can be
explained in many cases by a strong mixing of states inside of the odd-parity complek with The
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Fig. 7. E1 transition rates and oscillator strengths between odd-parity states and ground state in Ni-like ions
as function ofZ.
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deep minimum in the curve with the/dp 3P label in theZ = 43—44 range can be explained by mixing
of the 373,24 p1/2 (1) and 35,24 p3/2 (1) states. In Fig. 3, the double cusp in the interval = 57-59 is
due to the mixing of thed 24 f5,2 (1) and 315,24 f7,2 (1) states. The mixing of thedg/24fgz (1) and
3d3;24 f5/2 (1) states in theZ = 55-56 range gives a singularity in the curve with tiid 8> D, label.
The mixing of the d3/24 f5,2 (1) and 3p3/24s1/2 (1) states in theZ = 49-50 range gives a singularity
in the curves with the@4 f 1 P; and 3»4s 1 P; labels. Most of remaining singularities in the Figs. 7-10
can be explained in a similar way.

Transition rates for the six E2 lines from théB 3D,, 1D, and 314d 3 Py, 3D2, 3F», 1Dslevelsto
the ground state are plotted in Fig. 8. The curves describingie®®,, 1D, transition rates increase
smoothly withZ without any sharp features. It should be noted that the difference in valugsfof
the 374s 3D, and 314s 1 D, lines is about 20%. There is a small difference in the values,dor the
3d4d 3 D5, 3d4d 3 F,, and 314d 1 D, lines shown in Fig. B.

Transition rates for the six M1 lines from th&®3Sy, 1Py, 3D, 3Py, 3d4s3D4, and 34535,
levels to the ground state are plotted in Fig. 9. The deep minima in Rifpr®mall Z has the same
nature as those of the/84 1 Py line strengths shown on Fig. 6: strong mixing betweésy 3id3/» and
3ds 24452 states. As can be seen from Fig, €he value ofA, for the 34s 31 line is smaller than the
value of A, for the 374s 3Dy line by a factor of 18-10".

Transition rates for eight M2 lines fromthé&p 3F», 3P, 1Dy, 2Drand 3141 3 P>, 3Do, 1Dy, 3F>
levels to the ground state are plotted in Fig. 10. The sharp features in the curves shown in these figures
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Fig. 8. E2 transition rates between even-parity states and ground state in Ni-like ions as func#ion of
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Fig. 9. M1 transition rates between even-parity states and the ground state in Ni-like ions as funcion of
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Fig. 10. M2 transition rates between odd-parity states and the ground state in Ni-like ions as func#on of
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can be explained in many cases as a strong mixing of states inside of the odd-ga#ity $2) and
3d;4f; (2) complexes.

In Table 12, we compare our RMBPT results for E1, E2, M1, and M2 transition rates with the
theoretical results presented by Biémont in ref. 17 and Quinet and Biémont in ref. 16. In particular, we
list results for transitions betweend &s, 3d4p excited states and the ground state for idfis<( 92, 90,
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Table 12. E1, E2, M1, and M2 transition rates\, in s1) in Ni-like ions for transitions between
excited 3/j4lj' (J) states and the ground state. Comparison of our (a) RMBPT results with (b)
theoretical results presented by Biémont in ref. 17 and (c) results by Quinet in ref. 16.

VA
92 90 83 80 70 60 50

Magnetic-quadrupoletransitions

3ds4p12(2)  (8) 4.20[7] 3.34[7] 1.42[7] 9.36[6] 2.19[6] 3.81[5] 4.21[4]
(b) 4.43[71 3.53[7] 1.51[7] 1.02[7] 2.42[6] 4.41[5]

3ds24ps2(2)  (a) 2.54[6] 1.94[6] 6.75[5] 4.16[5] 5.05[4] 1.04[3] 3.79[2]
(b) 3.53[6] 2.716] 9.80[5] 6.02[5]

3ds4p12(2) (@) 1.56[8] 1.23[8] 5.07[7] 3.34[7] 7.45[6] 1.16[6]  9.53[4]
(b) 1.64[8] 1.31[8] 5.63[7] 3.82[7] 8.92[6] 1.48[6] 1.31[5]

3ds04psn (2)  (a) 3.48[6]  6.51[5] 3.19[3] 9.82[2] 5.32[3] 3.28[3] 1.03[3]
(b) 1.02[5]

3dsdfs2(2)  (2) 3.06[8] 2.47[8] 1.06[8] 7.00[7] 1.78[7] 4.93[6]  5.90[6]

3ds;4f72(2) (a) 2.03[8] 2.00[8] 1.88[8] 1.83[8] 1.43[8] 4.90[7]  2.16[6]

3ds24fs2(2)  (a) 1.01[10] 8.02[9] 3.37[9] 2.23[9] 4.16[8] 4.00[7]  6.48[4]

3dspbfr2(2) (d) 6.77[8] 5.09[8] 1.51[8] 7.55[7] 6.39[3] 8.94[5] 1.10[6]

Electric-quadrupole transitions

3ds4s12(2)  (a) 3.01[10] 2.56[10] 1.38[10] 1.03[10] 3.25[9] 7.29[8]  9.52[7]
(b) 3.35[10] 2.86[10] 1.33[10] 1.16[10] 3.77[9] 8.86[8] 1.16[8]

3dspds12(2)  (a) 2.30[10] 1.95[10] 1.04[10] 7.74[9] 2.51[9] 6.11[8]  8.79[7]
(b) 2.63[10] 2.24[10] 1.20[10] 8.98[9] 2.98[9] 7.50[8] 1.19(8]

3ds4ds, (2)  (a) 3.48[10] 2.82[10] 1.30[10] 9.15[9] 2.32[9] 3.54[8] 2.59[7]

(© 1.01[10] 257[9] 3.97[8]  2.03[7]
3ds;4ds; (2) () 1.36[11] 1.15[11] 6.03[10] 4.47[10] 1.43[10] 3.38[9]  4.67[8]
(© 4.94[10] 1.61[10] 3.89[9]  5.45[8]
3ds4dsn (2) ()  1.82[11] 1.40[11] 4.22[10] 3.05[10] 9.78[9] 2.43[9]  4.09[8]
(© 3.38[10] 1.10[10] 2.83[9]  4.84][8]
3dsAdsy (2) ()  4.27[10] 4.84[10] 1.39[10] 1.12[10] 3.97[9] 1.08[9]  1.80[8]
(© 1.25[10] 4.53[9] 1.25[9] 2.35[8]

Magnetic-dipole transitions
3ds8s12(1) (@) 3.32[5] 2.41[5] 8.28[4] 4.95[4] 7.28[3] 7.20[2]  3.91[1]
3ds4ds (1) (a)  1.16[9]  8.60[8]  2.97[8] 1.86[8] 3.42[7] 4.48[6] 2.99[5]
3dsy4ds;, (1) () 6.84[8]  5.05[8] 1.65[8] 9.86[7] 1.32[7] 8.64[5] 1.01[4]
3ds324d32 (1) ()  4.59[9] 1.10[7] 4.19[7] 3.12[7] 7.87[6] 1.47[6] 1.89[5]
3dsp4ds (1) (@)  1.50[9]  4.57[9] 5.72[7] 4.76[7]  1.13[7] 1.55[6] 8.83[4]
Electric-dipole transitions
3ds4p12 (1) (@) 2.61[13] 2.28[13] 1.3713] 1.10[13] 4.59[12] 1.31[12] 1.24[11]
(b) 2.73[13] 2.41[13] 1.4713] 1.17[13] 4.89[12] 1.48[12] 1.48[11]
3ds;24p32 (1) (@) 4.00[13] 3.55[13] 2.3213] 1.90[13] 9.57[12] 4.44[12] 1.59[12]
(b) 3.66[13] 3.29[13] 2.2313] 1.86[13] 9.62[12] 4.46[12] 1.68[12]
3ds24psp (1) (a)  1.50[12] 2.15[12] 2.10[12] 1.94[12] 1.12[12] 5.23[11] 2.43[11]
(b) 4.38[12] 3.94[12] 2.70[12] 2.27[12] 1.23[12] 6.16[11] 2.01[11]

83, 80, 70, 60, and 50) presented by Biémont in ref. 17. As can be seen from Table 12, the difference
between both results is about 5—-20% that can be explained by the second-order contribution included in
our RMBPT calculations since the results in refs. 16,17 were obtained using the MCDF approximation.
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7. Conclusion

We have presented a systematic second-order relativistic RMBPT study of excitation energies,
reduced matrix elements, line strengths, and transition rates#oe 1 electric- and magnetic-dipole
and electric- and magnetic-quadrupole transitions in Ni-like ions with nuclear chZrges80-100.
Our calculation of the retarded E1, E2, M1, and M2 matrix elements include correlation corrections
from both Coulomb and Breit interactions. Contributions from virtual electron—positron pairs were
also included in the second-order matrix elements. Both length and velocity forms of the E1 and E2
matrix elements were evaluated and small differences, caused by the nonlocality of the starting DF
potential, were found between the two forms. Second-order RMBPT transition energies were used
to evaluate oscillator strengths and transition rates. Good agreement of our RMBPT data with other
accurate theoretical results leads us to conclude that the RMBPT method provides accurate data for
Ni-like ions. Results from the present calculations provide benchmark values for future theoretical and
experimental studies of the nickel isoelectronic sequence.
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Appendix A. Matrix elements

Al. Multipole matrix elements
The first-order reduced multipole matrix elem@ﬁ) for a transition between the ground stile

and the uncoupled particle—hole stédtgys (av) of (1) is

ZP10 - av(n)] = Z(av)syk (A1)

1
v2J +1
The multipole matrixZ g (av) element, which includes retardation is given below for electric-dipole
(K = 1) and electric-quadrupol&( = 2) transitions in length and velocity forms and magnetic-dipole
(K = 1) and magnetic-quadrupol& (= 2) transitions.

The second_-order reduced matrix eIemE&ft)[O —av(J)] consists of three contributionZ:}?PN,
Z%HF), andP,((de”V). The quantitny,fPA), ZfKHF) are defined by eqs. (2.14), (2.15) of ref. 6. The quantity

P{%™ is defined by
(deriv) (deriv)

P 0—-(av)J]l= ——=Z2 V)4 A.2
x  [0—(av)J] 5712 (av)dyk (A.2)

The derivative ternZ '™ (av), which includes retardation is given below for E1 and &2+ 1 and
K = 2) transitions in length and velocity forms and M1 and M2 £ 1 andK = 2) transitions.

A2. Electric-dipole matrix elements

The electric-dipole matrix elemeft (av), which includes retardation, is given in length and velocity
forms as
length form

3 [
Z1(av) = (k4 IC1ll kv) z /0 dr {j1kr) [Ga(r) Gy (r) + Fu(r) Fy ()]

Kqg —

2

+j2(kr) [ ©Gu)Fo(r) + Fa()G ()] + [Ga (M) Fu(r) — Fa(r)Gu(r)]” (A.3)

velocity form

1 o
Z1(av) = (ka [[C1ll kv) %/o dr {[j2(kr) + jo(kr)][Ga(r) Fy(r) — Fa(r)Gy(r)]

Kqg —

2

© [ jatkr) + 2jokr)] [Ga(r) Fu(r) + Fa (V)Gv(r)]} (A4)

The electric-dipole derivative matrix elemeﬂﬁe”"(av), which includes retardation, is given in
length and velocity forms as
length form

Z\%™ (1) = (i, [C1]l k1) . /O dr[jatkr) — (kr) jo(kr) 1[G o () Gy (r) 4 Fa(r) Fy(r)]

3 o0
FlkalCall) 7 /0 dr{(kr) jukr) — 3ja(kr)]

x [K“ ;K” [Ga(MFo(r) + Fa(r)Gy(M] + [Ga (M) Fy(r) — Fa<r>Gv(r)]] (A.5)
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velocity form

Z\%™ (qv) = (icq [C1]l 1) p fo dr {[— j2(kr)1[Ga(r) Fy (r) — Fa(r)Gy(r)]

g D k) + k0N [Ga DR + Fa<r)Gv(r>l} (A.6)

Herek, is the angular momentum quantum numper= F(j, + %) for j, = (I, + %)], andk = wa,
wherew = ¢, — ¢, is the photon energy andis the fine-structure constant. The functiaghg(r) and

F,(r) are large- and small-component radial Dirac—Fock wave functions, respectively. The quantity
C14(7) is a normalized spherical harmonic afg ||Cx | «,) is equal to

a v k
{ica | Cill ) = (— 1>fa+1/2\/uu]uv]< j; U O)n(z +1y + k) A7)
2
_ N TRITRTTATIA] la ja vk
= (~DM Y2 GG ( ){ o 1/2}

A3. Magnetic-dipole matrix element
The magnetic-dipole matrix elemefj (av), which includes retardation, is given by

6 [ (koK) .
28R (@) = (I Crll ) - /O dr@n(kw [Ga(F)Fo(r) + Fa(r)Go(r)] (A8)

6 [ | (kq+kKy)
Z\%™ (qv) = (—k, ICallicn) — /0 dr =2

x [jatkr) — (kr) j2(kr)][Ga () Fy(r) + Fa(r)Gy(r)]  (A.9)

The magnetic-dipole matrix elemefi (av), without retardation, is given by

l o0
Z?(av) = (—kq [1C1ll ko) ;(Ka + Ku)/o dr (") [Ga(r) Fy(r) + Fu(r)Gy(r)] (A.10)
7\%™ (1) = ZR(av) (A.11)

The nonrelativistic limit is different for transitions inside of one configuratiepss n,, and transitions
between different configurations, # n,. For the case, = n,, we obtain

ZMR(av) = — (k4 [IC1ll k0) (a + o — 1>(K”—J2”‘“) f Y PP () (A12)
0

where P, (r) is a nonrelativistic limit the large-component radial wave functign(r). The caser, #

n, was considered in many papers fo 1So- 1525 353 transitions (see, for example, ref. 27). The
nonrelativistic limit in this case is proportional #7, and for transitions witti, = /, = 0 the matrix
element is given by [26]

ZNR(qy) = —(aZ)z\/? 3 /OO Larp, )Py + i BT () Py (r) (A.13)
1 - 3 Z 0 r a v 222 0 a v '
Using hydrogenic wave functions, we find
16 2423
M3 = —(@z)? . MYR = —(@z2)2=" A.14
1s2s = ( ) «/é 2535 = ( ) ( )
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A4. Electric-quadrupole matrix element

The electric-quadrupole matrix eleméefit(av), which includes retardation, is given in velocity and
length forms as
length gauge

15 > )
Zz(av) = (ka [ C2ll kv) ﬁ/o dr {j2(kr) [Ga(r) Gy (r) + Fa(r)Fy(r)]

Kg —

3

+Jj3(kr) ( o [Gu(M)Fy(r) + Fo(r)Gy(N)] + [Ga(r)Fy(r) — Fa(r)Gv(r)]>} (A.15)

velocity form

3 o
Zz(av) = (ka [C2ll k) ﬁ/o dr {2 (jutkr) + ja(kr)) [Ga () Fy(r) — Fa(r)Gy(r)]

Ka — Ky

3

[=2j3kr) + 3j1(kr)][Ga(r) Fy(r) + Fa(r)Gu(V)]} (A.16)

The reduced matrix element for the derivative term is given by the following expressions:
length gauge

7™ (av) = (ka 1C2]l 1) ﬁ/o dr[2j2(kr) — (kr) j3kr)1[Ga(r)Gy(r) + Fa(r) Fy(r)]

15 [*® . .
+lka IC2ll ) 3 /O dr(kr) ja(kr) — Aja(kr)]

x [K“ ;K“ [Ga()Fu(r) + Fa(r)Gu(N] + [Ga(n) Fy(r) — Fu(r>Gu<r)]] (A.17)

velocity form

738%™ (1) = (icq | C2l 1) e /O dr {[—8j3(kr) + 2j1(kr)1 [Go(r) Fy(r) — Fu(r)G o (r)]

Ka — Ky . . .
T3 [—5(kr) jo(kr) + 8j3(kr) + 3ja(kr)][Ga(r) Fy(r) + Fa(r)Gu(r)]} (A.18)
The nonrelativistic limit for the length and velocity forms of electric-quadrupole matrix eledgnt)
is equal to
length gauge
(o)
ZyR(av) = Z(av) = (k4 C2l c0) fo dr ()% Pa (r) Py(r) (A.19)
velocity form
o o0
ZyR(@v) = — (ka ICall ko) (v — £a) - fo dr (r)? P (r) Py (r) (A.20)

The nonrelativistic limit for the derivative term of electric-quadrupole matrix eIerﬁéﬁ’ﬁ”")(av) is
equal to
length gauge
. o0
28 @) = (aICall) 2 [ © PP (A.21)
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velocity form

Z3e™ (av) = — (k4 1 Call ) (60 — €4) % /O dr (r)?Pa(r) Py(r) (A.22)

AS5. Magnetic-quadrupole matrix element
The magnetic-quadrupole matrix eleméhtav), which includes retardation, is given as

30 [ a T k)
Zz(av) = (—ka [|C2ll kv) W/o dr(K—JgK)Jz(kr) [Ga(r)Fu(r) + Fa(r)Gy(r)] (A.23)

The magnetic-quadrupole derivative matrix elemésntav), which includes retardation, is equal to

29 ) — (o [Cal ) % /0 0 T (k) — k) jotkr)]

x [Ga(r)Fy(r) + Fa(r)Go(r)]  (A.24)

The nonrelativistic limit for the magnetic-quadrupole matrix eleniérv) is

Kq + Ky

3

1 .
S 75 av) = 28R @v) = — (kI Cal k)

(K + Ky —2) /Oo dr(r) Py (r) Py(r)
0
(A.25)

whereP, (r) is a nonrelativistic limit of the large-component radial wavefunctify(r).
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