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E1, E2, M1, and M2 transitions in
the nickel isoelectronic sequence

S.M. Hamasha, A.S. Shlyaptseva, and U.I. Safronova

Abstract: A relativistic many-body method is developed to calculate energy and transition
rates for multipole transitions in many-electron ions. This method is based on relativistic
many-body perturbation theory (RMBPT), agrees with MCDF calculations in lowest
order, includes all second-order correlation corrections, and includes corrections from
negative-energy states. Reduced matrix elements, oscillator strengths, and transition rates are
calculated for electric-dipole (E1) and electric-quadrupole (E2) transitions, and magnetic-
dipole (M1) and magnetic-quadrupole (M2) transitions in Ni-like ions with nuclear charges
ranging fromZ = 30 to 100. The calculations start from a 1s22s22p63s23p63d10 Dirac–Fock
potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients,
and second-order RMBPT is used to determine the matrix elements. The contributions from
negative-energy states are included in the second-order E1, M1, E2, and M2 matrix elements.
The resulting transition energies and transition rates are compared with experimental values
and with results from other recent calculations.

PACS Nos.: 32.30.Rj, 32.70.Cs, 32.80.Rm, 34.70.+e

Résumé : Nous développons une méthode relativiste àN corps pour calculer l’énergie et
les taux de transitions multiples dans les atomes multi-électroniques. Cette méthode, qui
est basée sur la théorie perturbative relativiste (RMBPT), est en accord avec les calculs
MCDF à l’ordre le plus bas, inclut toutes les corrections de corrélation du second ordre et les
corrections pour les états d’énergie négative. Nous calculons les éléments de matrice réduits,
les forces d’oscillateur et les taux de transition pour les transitions dipolaires électriques (E1),
dipolaires magnétiques (M1), quadripolaires électriques (E2) et quadripolaires magnétiques
(M2) dans les ions de type Ni avec charges nucléaires dans le domaineZ = 30–100. Le
calcul démarre avec un potentiel Dirac–Fock 1s22s22p63s23p63d10. Nous utilisons les
perturbation au premier ordre pour obtenir les coefficients de couplage intermédiaire et
au deuxième ordre RMBPT pour obtenir les éléments de matrice. Les contributions des
états d’énergie négative sont inclues dans les éléments de matrice E1, M1, E2 et M2. Nous
comparons nos énergies et taux de transition avec les résultats expérimentaux et avec les
résultats calculés par d’autre sauteurs.

[Traduit par la Rédaction]

1. Introduction

Relativistic many-body perturbation theory (RMBPT) was used recently to study atomic character-
istics of particle–hole excitations of closed-shell ions [1–6]. In the first of these studies, energies [1–3]
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and oscillator strengths [4] in Ne-like ions were considered by Avgoustoglou et al. Reduced matrix
elements, oscillator strengths, and transition rates into the ground state for all allowed and forbidden
electric- and magnetic-dipole and electric- and magnetic-quadrupole transitions (E1, M1, E2, M2) in
Ne-like ions were presented by Safronova in ref. 5. The second-order RMBPT calculations for Ni-like
ions was used in ref. 6 to determine excitation energies and oscillator strengths.

The Ni-isoelectronic sequence has been studied extensively in connection with X-ray lasers. The
lasing action occurs because the 3d−14d levels are metastable to radiative decay to the Ni-like ground
state; the transitions to the ground state from the lower 3d−14p levels are of course radiatively allowed.
Ni-like X-ray lasers were first demonstrated in 1987 in a laser-produced plasma of Eu and later in laser-
produced plasmas of Ta, W, andAu (see refs. 7 and 8 and references therein).Accurate knowledge of the
lasing wavelengths is essential for applications to laboratory X-ray lasers. Wavelengths of 3d94d 1S0–
3d94p 1P1 X-ray lines in several low-Z Ni-like ions ranging from Y (Z = 39) to Cd (Z = 48) were
measured recently by Li et al. [9]. Measurements for two lasing lines: 3d3/24d3/2(0)–3d5/24p3/2(1)
and 3d3/24d3/2(0)–3d5/24p1/2(1) in ions ranging from Nd (Z = 60) to Ta (Z = 73) were reported by
Daido et al. in ref. 10. It should be noted that neitherLS norjj coupling schemes described these states
properly; this is why different designations are used for these states in refs. 9 and 10. Lasing on the
Ni-like 3d94f 1P1–3d94d 1P1 X-ray line in Zr (Z = 40), Nb (Z = 41), and Mo (Z = 42) are reported
by Nilsen et al. in ref. 11. Measured wavelengths are presented for these ions as well as predicted
values for ions fromZ = 36 to 54. The predictions in ref. 11 were made by fitting the differences
between energies calculated with the multiconfiguration Dirac–Fock (MCDF) code and experimentally
determined energies forZ = 37 to 42 to a straight line. A similar method was used for predicting lasing
lines in refs. 7 and 9. Accurate theoretical values for two lasing lines: 3d3/24d3/2(0)–3d5/24p3/2(1) and
3d3/24d3/2(0)–3d5/24p1/2(1) in selected Ni-like ions withZ from 60 to 73 were presented in ref. 10,
where it was shown that good agreement between theoretical and experimental wavelengths could be
obtained by taking into account thed-correlation.

A detailed analysis of 3–4 transitions in the X-ray spectrum by laser-produced plasmas of Ni-like Ba
(Z = 56), La (Z = 57), and Pr (Z = 59) is reported by Doron et al. [12] and Zigler et al. [13]. Ab-initio
calculations are reported in ref. 12 using the RELAC relativistic computer code to identify 3d − nf

(n = 4 to 8), 3p − 4s, and 3p − 4d transitions of Ni-like Ba. The same computer code was used by
Busquet et al. [14] to identify X-ray spectral lines emitted by a target ofAu (Z = 79). In ref. 14, a detailed
description of the RELAC code, which is based on a relativistic model potential, is given. The HULLAC
package is also based on a relativistic model potential [15]. Then = 3–4 transitions observed in X-ray
spectra of Ni-like ions (Ag19+–Pb54+) were investigated theoretically by Quinet and Biémont [16],
where the MCDF approach (Grant’s code) was used to calculate wavelengths and oscillator strengths
for the 3d − 4p, 3d − 4f , 3p − 4s, and 3p − 4d electric-dipole transitions. The theoretical results
in ref. 16 were compared with all previous published experimental data obtained from X-ray spectra
emitted by strongly ionized atoms and generated by vacuum sparks, Tokamaks, or high-power lasers
and the differences between theoretical and experimental values for the 3–4 transition were found to be
about 0.5%. The relative magnitudes of the electric-multipole (E1, E2, E3) and magnetic-multipole (M1,
M2, M3) radiative decay rates calculated by the MCDF approach, are presented by Biémont [17] for the
lowest 17 levels of highly ionized nickel-like ions. Observation of electric-quadrupole and magnetic-
octupole decay in the X-ray spectum of highly charged Ni-like ions (Th62+ and U64+) are reported by
Beiersdorfer et al. in ref. 18.

There are fewer papers concerned with the analysis of the 4s − 4p and 4p − 4d transitions in
Ni-like ions. Spectra of 4–4 transitions in a laser-produced plasma of Ni-like ions (Ru16+–Sn22+) are
observed and analyzed by Churilov et al. in ref. 19. The analysis of these spectra was based on the
theoretical prediction by Wyart [20]. The prediction of 4s − 4p and 4p − 4d transitions in Ni-like
ions (Mo14+–Sn22+) in ref. 20 was based on Slater–Condon type calculations of 3d94s, 3d94p, and
3d94d configurations. The radial parameters involved in the three configurations were determined by
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generalized least-squares fits using all known levels in the sequence.
In the present paper, relativistic many-body perturbation theory (RMBPT) is used to determine

energies of the 3s23p63d94l(J ), 3s23p53d104l(J ), and 3s3p63d104l(J ) states of Ni-like ions with
nuclear chargesZ = 30–100. The calculations are carried out to second order in perturbation theory.
The second-order RMBPT calculations for Ni-like ions start from a 1s22s22p63s23p63d10 Dirac–
Fock potential. Corrections for the frequency-dependent Breit interaction are included in first order
only. Lamb-shift corrections to energies are also estimated and included. We consider all possible 3l

holes and 4l particles leading to the 56 odd-parity 3d−14p(J ), 3d−14f (J ), 3p−14s(J ), 3p−14d(J ),
3s−14p(J ), and 3s−14f (J ) excited states and the 50 even-parity 3d−14s(J ), 3d−14d(J ), 3p−14p(J ),
3p−14f (J ), 3s−14s(J ), and 3s−14d(J ) excited states in Ni-like ions withZ = 30 to 100.

Relativistic MBPT is used to determine reduced matrix elements, oscillator strengths, and tran-
sition rates for all allowed and forbidden electric-dipole and magnetic-dipole (E1, M1) and electric-
quadrupole and magnetic-quadrupole transitions (E2, M2) from 3s23p63d94l(J ), 3s23p53d104l(J ),
and 3s3p63d104l(J ) excited states into the ground state in Ni-like ions. Retarded E1 and E2 matrix
elements are evaluated in both length and velocity forms. The present RMBPT calculations start from
a nonlocal 1s22s22p63s23p63d10 Dirac–Fock potential and consequently give gauge-dependent tran-
sition matrix elements. Second-order correlation corrections compensate almost exactly for the gauge
dependence of the first-order matrix elements, leading to corrected matrix elements that differ by less
than 1% in length and velocity forms throughout the Ni isoelectronic sequence.

2. Theoretical technique

Details of the RMBPT method are presented in refs. 1 and 6 for the calculation of energies of
hole–particle states, in ref. 21 for the calculation of energies of particle–particle states, in ref. 22 for
the calculation of radiative electric-dipole rates in two-particle states, and in ref. 5 for calculation of
multipole radiative rates in Ne-like system. We will present, here, only the model space for Ni-like ions
and the first- and second-order diagram contributions for hole–particle systems without repeating the
detailed discussions given in refs. 1,6,21,22, and 5.

For atoms with one hole in closed shells and one electron above the closed shells, the model space is
formed from hole–particle states of the typea+

v aa|0〉, where|0〉 is the closed-shell and the ground state
is 1s2

1/22s2
1/22p2

1/22p4
3/2 3s2

1/23p2
1/23p4

3/2 3d4
3/23d6

3/2. The single-particle indicesv range over states in
the valence shell and the single-hole indicesa range over the closed core. For our study of low-lying
states 3l−14l′ states of Ni-like ions, values ofa are 3s1/2, 3p1/2, 3p3/2, 3d3/2, and 3d5/2, while values
of v are 4s1/2, 4p1/2, 4p3/2, 4d3/2, 4d5/2, 4f5/2, and 4f7/2. To obtain orthonormal model states, we
consider the coupled states�JM(av) defined by

�JM(av) = √
(2J + 1)

∑
mamv

(−1)jv−mv

(
jv J ja

−mv M ma

)
a†
vmv

aama |0〉 (1)

Combining then = 3 hole orbitals and then = 4 particle orbitals in nickel, we obtain 56 odd-parity
states consisting of fiveJ = 0 states, thirteenJ = 1 states, fifteenJ = 2 states, twelveJ = 3 states,
sevenJ = 4 states, threeJ = 5 states, and oneJ = 6 state. Additionally, there are 50 even-parity states
consisting of fiveJ = 0 states, twelveJ = 1 states, fourteenJ = 2 states, elevenJ = 3 states, six
J = 4 states, and twoJ = 5 states. The distribution of the 106 states in the model space is summarized
in Table 1. In Table 1, we give bothjj andLS designations for hole–particle states and instead of using
the 3l−1

j 4l′
j ′ or 3l−14l′ designations, we use simpler designations 3lj4l′j ′ or 3l4l′. The same (3lj4l′j ′ or

3l4l′) designations are used for simplicity in all the following tables and the text below.
Analytical expressions for energy matrixes and multipole matrix elements in the second-order

RMBPT are given by (2.2)–(2.11) and (2.12)–(2.17), respectively, in ref. 6. Electric- and magnetic-
dipole and electric- and magnetic-quadrupole first-order matrix elements together with derivative terms
are presented in the Appendix.
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Table 1. Possible hole–particle states in the 3lj4l′j ′(J ) and 3l4l′ LS complexes;jj andLS coupling
schemes.

Odd-parity states

jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl.

3d3/24p3/2(0) 3d4p 3P 3d3/24p1/2(1) 3d4p 3P 3d5/24p1/2(2) 3d4p 3F 3d5/24p1/2(3) 3d4p 3F

3d5/24f5/2(0) 3d4f 3P 3d5/24p3/2(1) 3d4p 3D 3d5/24p3/2(2) 3d4p 3P 3d5/24p3/2(3) 3d4p 1F

3p1/24s1/2(0) 3p4s 3P 3d3/24p3/2(1) 3d4p 1P 3d3/24p1/2(2) 3d4p 1D 3d3/24p3/2(3) 3d4p 3D

3p3/24d3/2(0) 3p4d 3P 3d5/24f5/2(1) 3d4f 3P 3d3/24p3/2(2) 3d4p 3D 3d5/24f5/2(3) 3d4f 3D

3s1/24p1/2(0) 3s4p 3P 3d5/24f7/2(1) 3d4f 3D 3d5/24f5/2(2) 3d4f 3P 3d5/24f7/2(3) 3d4f 3G

3d5/24p3/2(4) 3d4p 3F 3d3/24f5/2(1) 3d4f 1P 3d5/24f7/2(2) 3d4f 3D 3d3/24f5/2(3) 3d4f 3F

3d5/24f5/2(4) 3d4f 3H 3p3/24s1/2(1) 3p4s 1P 3d3/24f5/2(2) 3d4f 1D 3d3/24f7/2(3) 3d4f 1F

3d5/24f7/2(4) 3d4f 3G 3p1/24s1/2(1) 3p4s 3P 3d3/24f7/2(2) 3d4f 3F 3p3/24d3/2(3) 3p4d 3F

3d3/24f5/2(4) 3d4f 3F 3p3/24d3/2(1) 3p4d 3P 3p3/24s1/2(2) 3p4s 3P 3p3/24d5/2(3) 3p4d 1F

3d3/24f7/2(4) 3d4f 1G 3p3/24d5/2(1) 3p4d 1P 3p3/24d3/2(2) 3p4d 3F 3p1/24d5/2(3) 3p4d 3D

3p3/24d5/2(4) 3p4d 3F 3p1/24d3/2(1) 3p4d 3D 3p3/24d5/2(2) 3p4d 3P 3s1/24f5/2(3) 3s4f 3F

3s1/24f7/2(4) 3s4f 3F 3s1/24p1/2(1) 3s4p 3P 3p1/24d3/2(2) 3p4d 3D 3s1/24f7/2(3) 3s4f 1F

3d5/24f5/2(5) 3d4f 3H 3s1/24p3/2(1) 3s4p 1P 3p1/24d5/2(2) 3p4d 1D

3d5/24f7/2(5) 3d4f 3G 3s1/24p3/2(2) 3s4p 3P

3d3/24f7/2(5) 3d4f 1H 3s1/24f5/2(2) 3s4f 3F

3d5/24f7/2(6) 3d4f 3H

Even-parity states

jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl.

3d5/24d5/2(0) 3d4d 3P 3d3/24s1/2(1) 3d4s 3D 3d5/24s1/2(2) 3d4s 3D 3d5/24s1/2(3) 3d4s 3D

3d3/24d3/2(0) 3d4d 1S 3d5/24d3/2(1) 3d4d 3S 3d3/24s1/2(2) 3d4s 1D 3d5/24d3/2(3) 3d4d 3G

3p3/24p3/2(0) 3p4p 3P 3d5/24d5/2(1) 3d4d 1P 3d5/24d3/2(2) 3d4d 3P 3d5/24d5/2(3) 3d4d 3D

3p1/24p1/2(0) 3p4p 1S 3d3/24d3/2(1) 3d4d 3D 3d5/24d5/2(2) 3d4d 3D 3d3/24d3/2(3) 3d4d 3F

3s1/24s1/2(0) 3s4s 1S 3d3/24d5/2(1) 3d4d 3P 3d3/24d3/2(2) 3d4d 3F 3d3/24d5/2(3) 3d4d 1F

3d5/24d3/2(4) 3d4d 3G 3p3/24p1/2(1) 3p4p 3D 3d3/24d5/2(2) 3d4d 1D 3p3/24p3/2(3) 3p4p 3D

3d5/24d5/2(4) 3d4d 1G 3p3/24p3/2(1) 3p4p 3S 3p3/24p1/2(2) 3p4p 3D 3p3/24f5/2(3) 3p4f 3D

3d3/24d5/2(4) 3d4d 3F 3p1/24p1/2(1) 3p4p 1P 3p3/24p3/2(2) 3p4p 1D 3p1/24f5/2(3) 3p4f 3G

3p3/24f5/2(4) 3p4f 3G 3p1/24p3/2(1) 3p4p 3P 3p1/24p3/2(2) 3p4p 3P 3p3/24f7/2(3) 3p4f 1F

3p3/24f7/2(4) 3p4f 1G 3p3/24f5/2(1) 3p4f 3D 3p3/24f5/2(2) 3p4f 3D 3p1/24f7/2(3) 3p4f 3F

3p1/24f7/2(4) 3p4f 3F 3s1/24s1/2(1) 3s4s 3S 3p3/24f7/2(2) 3p4f 1D 3s1/24d5/2(3) 3s4d 3D

3d5/24d5/2(5) 3p4f 3G 3s1/24d3/2(1) 3s4d 3D 3p1/24f5/2(2) 3p4f 3F

3p3/24f7/2(5) 3p4f 3G 3s1/24d3/2(2) 3s4d 3D

3s1/24d5/2(2) 3s4d 1D

3. Excitation energies

3.1. Example: energy matrix for W46+

In Table 2, we give various contributions to the second-order energies for the special case of Ni-like
tungsten,Z = 74. In Table 2, we show the one-body and two-body second-order Coulomb contributions
to the energy matrix labeledE(2)

1 andE(2)
2 , respectively. The corresponding Breit–Coulomb contribu-

tions are given in columns headedB(2)
1 andB(2)

2 . The one-body second-order energy is obtained as a

sum of the valenceE(2)
v and holeE(2)

a energies with the latter being the dominant contribution. The
values ofE(2)

1 andB(2)
1 are nonzero only for diagonal matrix elements. Although there are 106 diagonal

and 1042 nondiagonal matrix elements for(3lj4l′j ′) (J ) hole–particle states, we list only part of the
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Table 2. Second-order contributions to the energy matrices (a.u.) for odd-parity
states withJ = 2 in the case of Ni-like tungsten,Z = 74. One-body and two-body
second-order Coulomb and Breit–Coulomb contributions are given in columns
labeledE(2)

1 , E(2)
2 , B(2)

1 , andB(2)
2 , respectively.

Coulomb interaction Breit–Coulomb correction

3l1j1 4l2j2,3l3j3 4l4j4 E
(2)
1 E

(2)
2 B

(2)
1 B

(2)
2

3d5/24p1/2 3d5/24p1/2 −0.165064 0.061571 0.054106 0.004770
3d5/24p3/2 3d5/24p3/2 −0.154592 0.051703 0.055966 0.003453
3d3/24p1/2 3d3/24p1/2 −0.176234 0.063549 0.056644 0.004810
3d3/24p3/2 3d3/24p3/2 −0.165763 0.052947 0.058504 0.003570
3d5/24f5/2 3d5/24f5/2 −0.157878 0.043947 0.060093 0.002957
3d5/24f7/2 3d5/24f7/2 −0.154863 0.039527 0.060825 0.001999
3d3/24f5/2 3d3/24f5/2 −0.169049 0.043242 0.062631 0.002739
3d3/24f7/2 3d3/24f7/2 −0.166034 0.043219 0.063364 0.002031
3p3/24s1/2 3p3/24s1/2 −0.239748 0.045008 0.048713 0.003117
3p3/24d3/2 3p3/24d3/2 −0.243322 0.046631 0.046497 0.003430
3p3/24d5/2 3p3/24d5/2 −0.239194 0.044062 0.046897 0.002790
3p1/24d3/2 3p1/24d3/2 −0.293196 0.059744 0.053373 0.004037
3p1/24d5/2 3p1/24d5/2 −0.289068 0.067060 0.053773 0.003396
3s1/24p3/2 3s1/24p3/2 −0.301835 0.037263 0.047780 0.003076
3s1/24f5/2 3s1/24f5/2 −0.305121 −0.004315 0.051907 0.003058
3d5/24p1/2 3d5/24p3/2 −0.003176 −0.000175
3d5/24p3/2 3d5/24p1/2 −0.002828 −0.000194
3d5/24p1/2 3d3/24p1/2 0.000346 −0.000045
3d3/24p1/2 3d5/24p1/2 0.000365 0.000051
3d5/24p1/2 3d3/24p3/2 0.001105 0.000103
3d3/24p3/2 3d5/24p1/2 0.000745 0.000181
3d5/24p1/2 3d5/24f5/2 0.002992 0.000161
3d5/24f5/2 3d5/24p1/2 0.003058 0.000218
3d5/24p1/2 3d5/24f7/2 0.000901 0.000135
3d5/24f7/2 3d5/24p1/2 0.000851 0.000199

odd-parity subset withJ = 2 in Table 2. It can be seen from Table 2 that second-order Breit–Coulomb
corrections are relatively large and, therefore, must be included for accurate calculations. The values of
the nondiagonal matrix elements given in columns headedE

(2)
2 andB(2)

2 are comparable with the values

of diagonal two-body matrix elements. However, the values of the one-body contributions,E
(2)
1 and

B
(2)
1 , are larger than the values of the two-body contributions,E

(2)
2 andB(2)

2 , respectively. As a result,
total second-order diagonal matrix elements are much larger than the nondiagonal matrix elements that
are shown in Table 3.

In Table 3, we present results for the zeroth-, first-, and second-order Coulomb contributions,E(0),
E(1), andE(2), and the first- and second-order Breit–Coulomb corrections,B

(1)
hf andB(2). It should be

noted that corrections for the frequency-dependent Breit interaction [23] are included in the first order
only. The difference between the first-order Breit–Coulomb corrections calculated with and without
frequency dependence is less than 1%. As one can see from Table 3, the ratio of nondiagonal and diag-
onal matrix elements is larger for the first-order contributions than for the second-order contributions.
Another difference in the first- and second-order contributions is the symmetry properties: the first-order
nondiagonal matrix elements are symmetric and the second-order nondiagonal matrix elements are not
symmetric. The values ofE(2)[a′v′(J ), av(J )] andE(2)[av(J ), a′v′(J )] matrix elements differ in some
cases by a factor 2–3 and occasionally have opposite signs.
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Table 3. Contributions to the energy matrixE[3l1j1 4l2j2(J ),3l3j3 4l4j4(J )] = E(0) + E(1) +
E(2) + B

(1)
hf + B(2) before diagonalization. These contributions are given for a hole–particle ion

with a 1s22s22p63s23p63d10 core, in the case of odd-parity states withJ = 2, andZ = 74.

3l1j1 4l2j2,3l3j3 4l4j4 E(0) E(1) B
(1)
hf E(2) B(2)

3d5/24p1/2 3d5/24p1/2 63.946959 −2.897065 −0.044328 −0.103493 0.058876
3d5/24p3/2 3d5/24p3/2 67.700562 −2.766233 −0.086067 −0.102890 0.059419
3d3/24p1/2 3d3/24p1/2 66.454528 −2.910600 −0.101760 −0.112686 0.061454
3d3/24p3/2 3d3/24p3/2 70.208131 −2.701466 −0.137045 −0.112816 0.062074
3d5/24f5/2 3d5/24f5/2 80.001175 −3.040893 −0.131847 −0.113931 0.063050
3d5/24f7/2 3d5/24f7/2 80.210728 −3.102061 −0.147633 −0.115336 0.062824
3d3/24f5/2 3d3/24f5/2 82.508744 −3.027474 −0.189739 −0.125807 0.065370
3d3/24f7/2 3d3/24f7/2 82.718297 −3.185489 −0.197412 −0.122815 0.065395
3p3/24s1/2 3p3/24s1/2 76.989075 −2.802900 −0.185291 −0.194740 0.051830
3p3/24d3/2 3p3/24d3/2 89.908848 −2.712244 −0.199086 −0.196691 0.049927
3p3/24d5/2 3p3/24d5/2 90.715573 −2.770880 −0.216900 −0.195132 0.049688
3p1/24d3/2 3p1/24d3/2 101.409027 −2.862060 −0.326498 −0.233452 0.057411
3p1/24d5/2 3p1/24d5/2 102.215752 −2.831900 −0.339351 −0.222007 0.057169
3s1/24p3/2 3s1/24p3/2 104.600025 −2.736867 −0.175038 −0.264572 0.050856
3s1/24f5/2 3s1/24f5/2 116.900638 −3.011717 −0.223007 −0.309436 0.054964
3d5/24p1/2 3d5/24p3/2 0.000000 −0.141135 0.000847 −0.003176 −0.000175
3d5/24p3/2 3d5/24p1/2 0.000000 −0.141135 0.000847 −0.002828 −0.000194
3d5/24p1/2 3d3/24p1/2 0.000000 0.000000 0.000422 0.000346−0.000045
3d3/24p1/2 3d5/24p1/2 0.000000 0.000000 0.000422 0.000365 0.000051
3d5/24p1/2 3d3/24p3/2 0.000000 −0.079629 −0.000306 0.001105 0.000103
3d3/24p3/2 3d5/24p1/2 0.000000 −0.079629 −0.000306 0.000745 0.000181
3d5/24p1/2 3d5/24f5/2 0.000000 −0.040667 0.000165 0.002992 0.000161
3d5/24f5/2 3d5/24p1/2 0.000000 −0.040667 0.000165 0.003058 0.000218
3d5/24p1/2 3d5/24f7/2 0.000000 0.008608 0.000737 0.000901 0.000135
3d5/24f7/2 3d5/24p1/2 0.000000 0.008608 0.000737 0.000851 0.000199

We now discuss how the final energy levels are obtained from the above contributions. To deter-
mine the first-order energies of the states under consideration, we diagonalize the symmetric first-order
effective Hamiltonian, including both the Coulomb and Breit interactions. The first-order expansion
coefficientCN [av(J )] is theN th eigenvector of the first-order effective Hamiltonian andE(1)[N ]
is the corresponding eigenvalue. The resulting eigenvectors are used to determine the second-order
Coulomb correctionE(2)[N ], the second-order Breit–Coulomb correctionB(2)[N ] and the QED cor-
rectionELamb[N ].

In Table 4, we list the following contributions to the energies of 15 excited states in W46+: the sum
of the zeroth- and first-order energiesE(0+1) = E(0) +E(1) +B

(1)
hf , the second-order Coulomb energy

E(2), the second-order Breit–Coulomb correctionB(2), the QED correctionELamb, and the sum of the
above contributionsEtot. The QED correction is approximated as the sum of the one-electron self energy
and the first-order vacuum-polarization energy. The screened self-energy and vacuum polarization data
given by Kim et al. [24], which are in close agreement with screened self-energy calculations by
Blundell [25], are used to determine the QED correctionELamb.

When starting calculations from relativistic DHF wave functions, it is natural to usejj designations
for uncoupled transition and energy matrix elements; however, neitherjj norLS coupling describes
the physical states properly, except for the single-configuration state 3d5/24f7/2(6) ≡ 3d4f 3H6. Both
designations are used in Table 4.
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Table 4. Energies of Ni-like tungsten for odd-parity states withJ = 2 relative to the ground
state.E(0+1) ≡ E(0) + E(1) + B

(1)
hf .

jj coupl. LS coupl. E(0+1) E(2) B(2) ELamb Etot

3d5/24p1/2 3d4p 3F 60.984569 −0.105568 0.058819 −0.000536 60.937284
3d5/24p3/2 3d4p 3P 63.431374 −0.110837 0.061363 0.007112 63.389012
3d3/24p1/2 3d4p 1D 64.835220 −0.100670 0.059479 0.003707 64.797735
3d3/24p3/2 3d4p 3D 67.361256 −0.112172 0.061944 0.011364 67.322393
3d5/24f5/2 3d4f 3P 74.038405 −0.193298 0.051893 0.027450 73.924449
3d5/24f7/2 3d4f 3D 76.790414 −0.114212 0.063027 −0.004421 76.734808
3d3/24f5/2 3d4f 1D 76.973652 −0.112346 0.062906 −0.003648 76.920563
3d3/24f7/2 3d4f 3F 79.249794 −0.123899 0.065239 0.003390 79.194524
3p3/24s1/2 3p4s 3P 79.376078 −0.123261 0.065484 0.003877 79.322178
3p3/24d3/2 3p4d 3F 87.017623 −0.198179 0.049910 −0.027362 86.841992
3p3/24d5/2 3p4d 3P 87.747648 −0.194982 0.049711 −0.025308 87.577069
3p1/24d3/2 3p4d 3D 98.221187 −0.236010 0.057493 −0.013794 98.028875
3p1/24d5/2 3p4d 1D 98.996485 −0.235425 0.056976 −0.014971 98.803064
3s1/24p3/2 3s4p 3P 101.761043 −0.256048 0.051078 −0.159746 101.396327
3s1/24f5/2 3s4f 3F 113.672635 −0.308896 0.054984 −0.171642 113.247081

3.2. Z dependence of eigenvectors and eigenvalues in Ni-like ions

In Figs. 1 and 2, we illustrate theZ dependence of the eigenvectors and eigenvalues of the 3lj 4l′
j ′ (J )

hole–particle states. Strong mixing between states within odd-parity complex withJ = 1 was discussed
in many papers (see, for example, ref. 6). We refer to a set of states of the same parity and the sameJ as
a complex of states. Additionally, we found strong mixing within the odd-parity complex withJ = 2
and even-parity complex withJ = 1, and 2. In Fig. 1, we show the dependence of the eigenvectors for
the example of even-parity states withJ = 2. This particularJ = 2 even-parity complex includes 14
states that are listed in Table 1. Using the first-order expansion coefficientsCN [av(J )] defined in the
previous section, we can present the resulting eigenvectors as

�(N) = CN [3d5/24s1/2(2)]�[3d5/24s1/2(2)] + CN [3d3/24s1/2(2)]�[3d3/24s1/2(2)] +
CN [3d5/24d3/2(2)]�[3d5/24d3/2(2)] + CN [3d5/24d5/2(2)]�[3d5/24d5/2(2)] +
CN [3d3/24d3/2(2)]�[3d3/24d3/2(2)] + CN [3d3/24d5/2(2)]�[3d3/24d5/2(2)] +
CN [3p3/24p1/2(2)]�[3p3/24p1/2(2)] + CN [3p3/24p3/2(2)]�[3p3/24p3/2(2)] +
CN [3p1/24p3/2(2)]�[3p1/24p3/2(2)] + CN [3p3/24f5/2(2)]�[3p3/24f5/2(2)] +
CN [3p3/24f7/2(2)]�[3p3/24f7/2(2)] + CN [3p1/24f5/2(2)]�[3p1/24f5/2(2)] +
CN [3s1/24d3/2(2)]�[3s1/24d3/2(2)] + CN [3s1/24d5/2(2)]�[3s1/24d5/2(2)] (2)

As a result, 196CN [av(J )] coefficients are needed to describe the 14 eigenvalues. These coefficients
are often called mixing coefficients. For simplicity, we plot only three of the 14 mixing coefficients for
the levelN = 3p4f 3D2 in Fig. 1. These coefficients are chosen to illustrate the mixing of the states;
the remaining mixing coefficients give very small contributions to this level. We observe strong mixing
between[3p3/24f5/2(2)] + [3p1/24f7/2(2)] + [3p1/24p3/2(2)] states forZ = 41–42 andZ = 75–76.

Energies, relative to the ground state, of even-parity states withJ = 1 and 2, divided by(Z− 21)2,
are shown in Fig. 2. It should be noted thatZ was decreased by 21 to provide better presentation of the
energy diagrams. We plot the limited number of energy levels to illustrateZ dependence choosing one
representative from a configuration. As a result, we show 6 levels instead of 12 in Fig. 2a, and 5 levels
instead of 14 in Fig. 2b. It should be noted that theLS designations are chosen by comparing our results
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Fig. 1. Mixing coefficients for the 3p4f 3D2 level as functions ofZ.
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Fig. 2. Energies (E/(Z − 21)2) in cm−1 for even-parity states withJ = 1 and 2 in Ni-like ions as function
of Z.
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with available experimental data for low-Z ions. To confirm thoseLS designations we obtain the fine
structure splitting for the 3d4s, 3d4d, 3p4p, 3p4f , 3s4s, and 3s4d triplets.

Energy differences between levels of even-parity triplet terms, divided by(Z − 21)2, are shown in
Fig. 3. In Fig. 3, we show how the energy intervals vary strongly with nuclear charge for the3D term
of 3d4s configuration,3P , 3D, 3F , and3G terms of 3d4d configuration, and3P , 3D terms of 3p4p
configuration. Our calculations show that the fine structures of the 3d4s, 3d4d, and 3p4p levels do not
follow the Landé rules even for smallZ. As can be seen from Fig. 3a, the 3d4s 3D levels are completely
inverted, the 3d4s (3D3 −3 D2) interval changes very slowly withZ, while the 3d4s (3D2 −3 D1)

interval increases by factor 25 in the range ofZ = 30–100. The 3d4d 3D levels (Fig. 3c) are also
completely inverted, while 3d4d 3P, 3F, 3G levels are partially inverted and only the 3p4p 3P, 3D

levels (Fig. 3b) show regular ordering of the fine-structure splittings for low and highZ. The unusual
splittings are principally due to changes fromLS to jj coupling, with mixing from other triplet and
singlet states. The differentJ states are mixed differently. Further experimental confirmation would be
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Fig. 3. Energy splitting (�E/(Z − 21)2) in cm−1 for terms of even-parity states in Ni-like ions as function
of Z.
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very helpful in verifying the correctness of these sometimes sensitive mixing parameters. We can see
the sharp feature in curves shown in Fig. 1 aroundZ = 41–42 andZ = 75–76. These singularities are
similar to singularities in the energy diagram discussed in refs. 5 and 6. It is mentioned [6] that these
sharp features disappear when 3l5l′ and 3l6l′ states are included in a model space.

4. Electric-dipole and electric-quadrupole matrix elements

We calculate electric-dipole (E1) matrix elements for the transitions between the 13 odd-parity
3dj4pj ′(1), 3dj4fj ′(1), 3pj4s1/2(1), 3pj4dj ′(1), and 3s1/24pj ′(1) excited states and the ground state,
and electric-quadrupole (E2) matrix elements between the 14 even-parity 3dj4s1/2(2), 3dj4dj ′(2),
3pj4pj ′(2), 3pj4fj ′(2), and 3s1/24dj ′(2) excited states and the ground state for Ni-like ions with
nuclear chargesZ = 30–100. Analytical expressions for multipole matrix elements in the second-order
RMBPT are given by (2.12)–(2.17) of ref. 6. First-order electric-dipole and electric-qudrupole matrix
elements together with derivative terms are presented in the Appendix.

The first- and second-order Coulomb corrections and second-order Breit–Coulomb corrections to
reduced E1 and E2 matrix elements will be referred to asZ(1),Z(2), andB(2), respectively, throughout
the text. These contributions are calculated in both length and velocity gauges. In this section, we show
the importance of the different contributions and discuss the gauge dependence of the E1 and E2 matrix
elements.
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Table 5. E1 and E2 uncoupled reduced matrix elements in lengthL and velocityV forms for transitions fromav(J ) states with
J = 1 into the ground state in W46+.

av(J ) Z
(1)
L Z

(1)
V Z

(2)
L Z

(2)
V B

(2)
L B

(2)
V P

(deriv)
L P

(deriv)
V

E1 uncoupled reduced matrix elements

3d3/24p1/2(1) −0.058467 −0.054955 −0.002220 −0.002167 0.000051 0.000185−0.058082 0.000151
3d5/24p3/2(1) −0.064023 −0.060061 −0.003656 −0.003010 0.000035 0.000157−0.063601 −0.000013
3d3/24p3/2(1) −0.019017 −0.017913 −0.001320 −0.001060 −0.000028 0.000028 −0.018784 0.000180
3d5/24f5/2(1) −0.065946 −0.062474 0.002540 0.000584−0.000138 0.000058 −0.065944 −0.000430
3d5/24f7/2(1) −0.293391 −0.278016 0.011451 0.002497−0.000496 0.000220 −0.291188 0.002462
3d3/24f5/2(1) 0.238430 0.226128 −0.009886 −0.002767 0.000558 −0.000186 0.237106 −0.001017
3p3/24s1/2(1) 0.078769 0.074300 0.002654 0.002831 0.000253−0.000005 0.078222 −0.000046
3p1/24s1/2(1) −0.037928 −0.035887 −0.003080 −0.002773 −0.000292 −0.000125 −0.037380 0.000346
3p3/24d3/2(1) −0.049494 −0.046976 0.000266 −0.000310 −0.000152 0.000006 −0.049208 −0.000108
3p3/24d5/2(1) 0.140049 0.133133 −0.000341 0.001179 0.000546 0.000102 0.138327−0.001408
3p1/24d3/2(1) −0.082946 −0.078829 −0.000325 −0.000970 −0.000713 −0.000365 −0.081919 0.000538
3s1/24p1/2(1) −0.054338 −0.051506 −0.003111 −0.003271 −0.000084 0.000038 −0.053715 0.000141
3s1/24p3/2(1) 0.053584 0.050877 0.021778 0.020437 0.000947 0.000774 0.052474−0.000709

E2 uncoupled reduced matrix elements
3d5/24s1/2(2) 0.028181 0.026386 0.000341 0.000375 0.000053 0.000009 0.056303 0.026423
3d3/24s1/2(2) 0.021351 0.020057 0.000318 0.000358 0.000064 0.000015 0.042592 0.019965
3d5/24d3/2(2) −0.017197 −0.016278 −0.000217 −0.000297 −0.000026 −0.000000 −0.034360 −0.016333
3d5/24d5/2(2) 0.033205 0.031479 0.000500 0.000677 0.000066 0.000014 0.066227 0.031364
3d3/24d3/2(2) 0.024533 0.023270 0.000354 0.000485 0.000061 0.000011 0.048929 0.023184
3d3/24d5/2(2) 0.015476 0.014702 0.000273 0.000352 0.000047 0.000013 0.030809 0.014540
3p3/24p1/2(2) −0.031164 −0.029514 −0.000356 −0.000477 −0.000055 0.000003 −0.062199 −0.029525
3p3/24p3/2(2) 0.026883 0.025535 0.000491 0.000553 0.000073 0.000015 0.053561 0.025406
3p1/24p3/2(2) −0.020004 −0.019030 0.001058 0.000933−0.000096 −0.000033 −0.039756 −0.018802
3p3/24f5/2(2) 0.031555 0.030092 0.000261 0.000696 0.000099 0.000018 0.062982 0.030103
3p3/24f7/2(2) 0.077018 0.073465 0.001189 0.002237 0.000215 0.000025 0.153256 0.072565
3p1/24f5/2(2) 0.050777 0.048476 0.012232 0.012550 0.000155−0.000015 0.101160 0.048194
3s1/24d3/2(2) 0.029103 0.027766 −0.001621 −0.001355 0.000040 −0.000011 0.057942 0.027658
3s1/24d5/2(2) −0.034254 −0.032712 0.000100 −0.000171 −0.000081 −0.000017 −0.068015 −0.032239
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Table 6. E1 and E2 coupled reduced matrix elements in lengthL and velocityV
forms for transitions fromav(J ) states into the ground state in W46+.

First order RMBPT

av(J ) av(LSJ ) L V L V

E1 coupled reduced matrix elements
3d3/24p1/2(1) 3d4p 3P1 −0.058310 −0.054843 −0.060387 −0.060268
3d5/24p3/2(1) 3d4p 3D1 0.077184 0.072498 0.080784 0.080607
3d3/24p3/2(1) 3d4p 1P1 −0.024089 −0.022704 −0.025563 −0.025497
3d5/24f5/2(1) 3d4f 3P1 −0.084916 −0.080155 −0.087317 −0.087167
3d5/24f7/2(1) 3d4f 3D1 −0.008862 −0.008402 −0.008672 −0.008674
3d3/24f5/2(1) 3d4f 1P1 −0.195115 −0.184837 −0.187815 −0.187809
3p3/24s1/2(1) 3p4s 1P1 −0.331733 −0.314553 −0.318319 −0.318362
3p1/24s1/2(1) 3p4s 3P1 −0.031758 −0.030059 −0.035852 −0.035692
3p3/24d3/2(1) 3p4d 3P1 0.033520 0.031780 0.033500 0.033480
3p3/24d5/2(1) 3p4d 1P1 0.139072 0.132217 0.139603 0.139504
3p1/24d3/2(1) 3p4d 3D1 0.083642 0.079391 0.086667 0.086502
3s1/24p1/2(1) 3s4p 3P1 −0.042780 −0.040726 −0.042137 −0.042160
3s1/24p3/2(1) 3s4p 1P1 0.043847 0.041632 0.066358 0.065302

E2 coupled reduced matrix elements
3d5/24s1/2(2) 3d4s 3D2 −0.028768 −0.026948 −0.027295 −0.027378
3d3/24s1/2(2) 3d4s 1D2 −0.022467 −0.021110 −0.021455 −0.021512
3d5/24d3/2(2) 3d4d 3P2 0.015192 0.014377 0.014621 0.014647
3d5/24d5/2(2) 3d4d 3D2 0.034461 0.032672 0.033378 0.033425
3d3/24d3/2(2) 3d4d 3F2 −0.026663 −0.025291 −0.025869 −0.025904
3d3/24d5/2(2) 3d4d 1D2 −0.016388 −0.015569 −0.015898 −0.015920
3p3/24p1/2(2) 3p4p 3D2 −0.030345 −0.028747 −0.029200 −0.029253
3p3/24p3/2(2) 3p4p 1D2 −0.026678 −0.025350 −0.025907 −0.025945
3p1/24p3/2(2) 3p4p 3P2 −0.027505 −0.026190 −0.025353 −0.025499
3p3/24f5/2(2) 3p4f 3D2 0.002730 0.002614 0.002928 0.002908
3p3/24f7/2(2) 3p4f 1D2 −0.080639 −0.076922 −0.079163 −0.079185
3p1/24f5/2(2) 3p4f 3F2 0.054854 0.052369 0.065466 0.065092
3s1/24d3/2(2) 3s4d 3D2 −0.020633 −0.019685 −0.016700 −0.016834
3s1/24d5/2(2) 3s4d 1D2 −0.032341 −0.030888 −0.030740 −0.030800

4.1. Example: E1 and E2 matrix elements for W46+

In Table 5, we list values ofuncoupled first- and second-order E1 and E2 matrix elementsZ(1),Z(2),
andB(2) together with derivative termsP (deriv), for Ni-like tungsten,Z = 74. We list values for the
thirteen E1 transitions between odd-parity states withJ = 1 and the ground state and the fourteen E2
transitions between even-parity states withJ = 2 and the ground state, respectively. Matrix elements
in both length (L) and velocity (V ) forms are given. We can see that the first-order matrix elements,
Z
(1)
L andZ(1)

V , differ by 5–10%; however, theL–V differences between second-order matrix elements
are much larger for some transitions. It can be also seen from Table 5 that for the E1 transitions the
derivative term in length form,P (deriv)

L , is almost equal toZ(1)
L but the derivative term in velocity form,

P
(deriv)
V , is smaller thanZ(1)

V by three to four orders of magnitude. For the E2 transition, the value of
P (deriv) in velocity form almost equalsZ(1) in velocity form and theP (deriv) in length form is larger by
factor of two thanZ(1) in length form.

The values of the E1 and E2coupled reduced matrix elements in length and velocity forms are
given in Table 6 for the transitions considered in Table 5. Although we use an intermediate-coupling
scheme, it is nevertheless convenient to label the physical states using thejj labelling for highZ and
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Fig. 4. The first- and second-order Coulomb corrections (Z(1), Z(2)), and second-order Breit–Coulomb
corrections (B(2)) for (a) E1 and (b) E2 uncoupled matrix elements for transition between excited and
ground states calculated in length (L) and velocity (V ) forms in Ni-like ions.
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theLS labelling for lowZ; both designations are used in Table 6. The first two columns in Table 6
show theL andV values ofcoupled reduced matrix elements calculated in first order. TheL − V

difference is about 5–10%. Including the second-order contributions (columns headed RMBPT in Table
6) decreases theL− V difference to 0.002–0.2%. This nonzerothL− V difference arises because we
start our RMBPT calculations using a nonlocal Dirac–Fock (DF) potential. If we were to replace the DF
potential by a local potential, the differences would disappear completely. It should be emphasized that
we include the negative-energy-state (NES) contributions to sum over intermediate states (see ref. 22
for details). Neglecting the NES contributions leads to small changes in theL-form matrix elements
but to substantial changes in some of theV -form matrix elements with a consequent loss of gauge
independence.

4.2. Z dependencies of E1 and E2 matrix elements in Ni-like ions

In Fig. 4a, differences between length and velocity forms are illustrated for the various contributions
to uncoupled 0−3d3/24p3/2(1)matrix element, where 0 is the ground state. In the case of E1 transitions,
the first-order matrix elementZ(1) is proportional to 1/Z, the second-order Coulomb matrix elementZ(2)

is proportional to 1/Z2, and the second-order Breit–Coulomb matrix elementB(2) is almost independent
of Z (see ref. 22) for highZ. Therefore, we plotZ(1) × (Z− 21),Z(2) × (Z− 21)2, andB(2) × 104 in
Fig. 4a. As one can see from Fig. 4a, all these contributions are positive, except for the second-order
Breit–Coulomb matrix elementsB(2) in velocity form.

The difference between length and velocity forms for the E2 uncoupled 0− 3d5/24d5/2(2) matrix
element is illustrated in Fig. 4b. In the case of E2 transitions, the first-order matrix elementZ(1) is
proportional to 1/Z2, the second-order Coulomb matrix elementZ(2) is proportional to 1/Z3, and the
second-order Breit–Coulomb matrix elementB(2) is proportional to 1/Z for highZ. Taking into account
these dependencies, we plotZ(1) × (Z− 21)2,Z(2) × (Z− 21)3, andB(2) × (Z− 21)× 104 in Fig. 4b.
The second-order Breit–Coulomb correction to the E2 matrix elementB(2) is much smaller in velocity
form than in length form, as seen in Fig. 4b.

The differences between results in length- and velocity-forms shown in Figs. 4a and 4b are compen-
sated by additional second-order terms called “derivative terms”P (deriv); they are defined by (A.2) (see,
also Tables 5 and 6). The derivative terms arise because transition amplitudes depend on the energy,
and the transition energy changes order-by-order in RMBPT calculations.
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Fig. 5. The first- and second-order corrections (Z(1), Z(2)) for (a) M1 and (b) M2 uncoupled matrix
elements for transition between excited and ground states in Ni-like ions. The first-order (Z(1)) matrix
elements calculated in nonrelativistic (Z

(1)
NR), relativistic frequency-independent(Z

(1)
R ), and relativistic

frequency-dependent (Z(1)
RF) approximations are presented. The second-order Coulomb (Z

(2)
CL) and Breit–

Coulomb corrections (Z(2)
BR)) are compared.
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5. Magnetic-dipole and magnetic-quadrupole matrix elements

We calculate magnetic-dipole (M1) matrix elements for the transitions between the 12 even-parity
3dj4s1/2(1), 3dj4dj ′(1), 3pj4pj ′(1), 3pj4fj ′(1), 3s1/24s1/2(1), and 3s1/24dj ′(1) excited states and
the ground state and magnetic-quadrupole (M2) matrix elements between the 15 odd-parity 3dj4pj ′(2),
3dj4fj ′(2), 3pj4s1/2(2), 3pj4dj ′(2), 3s1/24pj ′(2), and 3s1/24fj ′(2) excited states and the ground state
for Ni-like ions with nuclear chargesZ = 30–100.

We calculate first- and second-order Coulomb, second-order Breit–Coulomb corrections, and second-
order derivative term to reduced M1 and M2 matrix elementsZ(1),Z(2),B(2), andP (deriv), respectively,
using the method described in eqs. (2.13)–(2.18) of ref. 6 and (A.1), (A.2), (A.8)–(A.14), and (A.23)–
(A.25) of the Appendix. In this section, we illustrate the importance of the relativistic and frequency-
dependent contributions to the first-order M1 and M2 matrix elements. We also show the importance
of the taking into account the second-order RMBPT contributions to M1 and M2 matrix elements
and we subsequently discuss the necessity of including the negative-energy contributions to sums over
intermediate states.

5.1. Z dependencies of M1 and M2 matrix elements in Ni-like ions

The differences between first-order M1 uncoupled matrix elements, calculated in nonrelativistic,
relativistic frequency-independent, and relativistic frequency-dependent approximations are illustrated
for the 0− 3d5/24d5/2(1) matrix element in Fig. 5a. The corresponding matrix elements are labeled

Z
(1)
RF, Z(1)

R , andZ(1)
NR. Formulas for relativistic frequency-dependent and nonrelativistic first-order M1

matrix elements are given by (A.8), (A.10), and (A.12) in the Appendix, respectively. We also plot the
second-order Coulomb contributions,Z(2)

CL, and the second-order Breit–Coulomb contributions,Z
(2)
BR,

in the same figure. As we observe from Fig. 5a, the values ofZ
(1)
NR are twice as small as the values of

Z
(1)
R andZ(1)

RF. Therefore, relativistic effects are very large for M1 transitions. The frequency-dependent

relativistic matrix elementsZ(1)
RF differ from the relativistic frequency-independent matrix elements

Z
(1)
R by 10–40%. The differences between other first-order matrix elements calculated with and without

frequency dependence are also the order of a few percent. Uncoupled second-order M1 matrix elements
Z
(2)
CL are comparable to first-order matrix elementsZ

(1)
RF for smallZ but the relative size of the second-
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Fig. 6. The total M1 line strengths (S(1+2)
RF ) between the 3d4d 1P1 and ground state in Ni-like ions as

functions ofZ. The first-order (S(1)) line strengths calculated in nonrelativistic (S
(1)
NR), relativistic frequency-

independent (S(1)R ), and relativistic frequency-dependent approximations (S
(1)
RF) are presented.
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order contribution decreases for highZ. This is expected since second-order Coulomb matrix elements
Z
(2)
CL are proportional toZ for highZ while first-order matrix elementsZ(1)

RF grow asZ2. The second-

order Breit–Coulomb matrix elementsZ(2)
BR are proportional toZ3 and become larger thanZ(2)

CL for
highZ.

The differences between first-order M2 uncoupled matrix elements, calculated in relativistic fre-
quency-dependent and relativistic frequency-independent approximations are illustrated for the 0−
3d5/24f7/2(2) matrix element in Fig. 5b. The corresponding matrix elements are labeledZ

(1)
RF and

Z
(1)
R . Formulas for relativistic frequency-dependent and frequency-independent first-order M2 matrix

elements are given by (A.23), and (A.25) in the Appendix, respectively. We also plot the second-order
Coulomb contributions,Z(2)

CL, and the second-order Breit–Coulomb contributions,Z
(2)
BR, in the same

figure.
In Fig. 6, we illustrate theZ dependence of the line strengths of M1 transition from the 3d4d 1P1

excited state to the ground state. In Fig. 6, we plot the values of the first-order line strengthsS
(1)
NR, S(1)R ,

andS(1)RF calculated in the same approximations as the M1 uncoupled matrix elements: nonrelativistic,
relativistic frequency-independent, and relativistic frequency-dependent approximations, respectively.
The total line strengthsS(1+2), which include second-order corrections, are also plotted. Strong mixing
inside of the even-parity complex withJ = 1 between 3d5/24d3/2 and 3d5/24d5/2 states occurring for
smallZ leads to the sharp features in the line strengths seen in the graphs. The deep minimum in Fig. 6
shifts when different approximations are used for the calculation of line strengths. This shift in the
placement of the minimum leads to difficulties in comparison of data for M1 transitions obtained in
nonrelativistic and relativistic approximations. We discuss this question further in the next section.

5.2. Example: M1 and M2 matrix elements for W46+

Ab initio relativistic calculations require careful treatment of negative-energy states (NES) (virtual
electron–positron pairs). In second-order matrix elements, such contributions arise explicitly from those
terms in the sum over states for whichεi < −mc2. The effect of the NES contributions to M1 amplitudes
has been studied recently in ref. 26. The NES contributions drastically change the second-order Breit–
Coulomb matrix elementsB(2). However, the second-order Breit–Coulomb correction contributes only
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Table 7. M1 uncoupled reduced matrix for transitions from even-parity states withJ = 1 into the
ground state in W46+.

av(J ) Z
(1)
NR Z

(1)
RN Z

(1)
RF Z(2) B

(2)
(pos) B

(2)
(neg) P (deriv)

3d3/24s1/2 0.000000 −0.000174 0.000408−0.000004 0.000006 0.000095 0.001568
3d5/24d3/2 −0.032954 −0.035971 −0.033363 −0.001009 0.000483−0.000530 −0.028162
3d5/24d5/2 −0.020691 −0.039891 −0.030614 −0.001467 0.000071−0.003165 −0.012102
3d3/24d3/2 −0.007499 −0.016060 −0.015197 −0.000584 −0.000006 −0.001331 −0.013466
3d3/24d5/2 −0.024780 −0.021826 −0.024389 −0.000371 0.000404 0.000547−0.029501
3p3/24p1/2 −0.097709 −0.101061 −0.098271 −0.001655 0.000779−0.000356 −0.092707
3p3/24p3/2 −0.015809 −0.030442 −0.022188 −0.001136 0.000075−0.001771 −0.005733
3p1/24p1/2 0.002664 0.006233 0.007228 0.000235 0.000032 0.000414 0.009202
3p1/24p3/2 0.077145 0.074047 0.076584 0.000837−0.000512 −0.000402 0.081633
3p3/24f5/2 0.000000 −0.007711 −0.003544 −0.000355 0.000008−0.000797 0.004756
3s1/24s1/2 0.008716 0.016561 0.010950 0.001212−0.000017 0.000748−0.000223
3s1/24d3/2 0.000000 −0.003255 −0.000813 0.000298 0.000007−0.000124 0.004039

2–5% to uncoupled M1 matrix elements and, as a result, negative-energy states change the total values
of M1 matrix elements by a few percent only.

In Table 7, we list values ofuncoupled first- and second-order M1 matrix elementsZ(1), Z(2),
B(2), together with derivative termsP (deriv), for Ni-like tungsten,Z = 74. We list values for the 12
M1 transitions between even-parity states withJ = 1 and the ground state. The difference between
M1 uncoupled matrix elements, calculated in different approximations, is illustrated by the three first
columns of Table 7. The importance of NES is illustrated for the second-order Breit–Coulomb matrix
elementsB(2). In Table 7, we compare the values ofB(2)

(pos) andB(2)
(neg) calculated with positive and

negative parts of the spectra, respectively. The value ofB
(2)
(neg) is sometimes even larger than the value

of B(2)
(pos), and including NES changes the Breit–Coulomb matrix elements by a factor of 10.

In Table 8, we list values ofuncoupled first- and second-order M2 matrix elementsZ(1), Z(2), and
B(2), together with derivative termsP (deriv), for Ni-like tungsten,Z = 74. We list values for the 15
M2 transitions between odd-parity states withJ = 2 and the ground state. We note that the first-order
M2 matrix elements 0− 3d3/24p3/2(2), 0− 3d5/24f5/2(2), and 0− 3p3/24d3/2(2) vanish because the
corresponding factor(κa + κv), whereκi is a relativistic angular momentum quantum number of a state
i, in (A.23) forZ(1) equals zero for this transition. Differences between first-order uncoupled M2 matrix
elements calculated with and without frequency dependence are shown in first two columns of Table 8
labeledZ(1)

R andZ(1)
RF. As one can see from Table 8, the difference betweenZ

(1)
R andZ(1)

RF is about 1%.
The importance of the NES is illustrated for the second-order Breit–Coulomb matrix elementsB(2). In
Table 8, we compare the values ofB(2)

(pos) andB(2)
(neg) calculated with positive and negative part of the

spectra, respectively. The ratio ofB(2)
(neg) toB(2)

(pos) is about 10%.

5.3. Example: E1, E2, M1, and M2 transition rates for W46+

The E1, E2, M1, and M2 transition probabilitiesA (s−1) for the transitions between the ground state
and 3lj4l′j ′(J ) states are obtained in terms of line strengthsS (a.u.) and wavelengthλ(Å) as

A(E1) = 2.02613× 1018

(2J + 1)λ3 S(E1), A(E2) = 1.11995× 1018

(2J + 1)λ5
S(E2)

A(M1) = 2.69735× 1013

(2J + 1)λ3 S(M1), A(M2) = 1.49097× 1013

(2J + 1)λ5
S(M2) (3)
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Table 8. M2 uncoupled reduced matrix for transitions from odd-parity states withJ = 2 into the
ground state in W46+.

av(J ) Z
(1)
RN Z

(1)
RF Z(2) B

(2)
(pos) B

(2)
(neg) P (deriv)

3d5/24p1/2 −0.163836 −0.163043 −0.002595 0.000418 −0.000049 −0.324499
3d5/24p3/2 −0.285213 −0.283560 −0.002356 0.000285 −0.000119 −0.563816
3d3/24p1/2 −0.045303 −0.045467 0.000251 0.000079−0.000020 −0.091263
3d3/24p3/2 0.000000 0.000000 0.000645−0.000007 −0.000003 0.000000
3d5/24f5/2 0.000000 0.000000 0.002448−0.000014 −0.000056 0.000000
3d5/24f7/2 −1.590367 −1.585966 −0.037939 −0.002489 0.000082 −3.163131
3d3/24f5/2 0.448687 0.448339 0.007853 0.001035−0.000089 0.895981
3d3/24f7/2 0.585334 0.583257 0.019392 0.001235−0.000089 1.162362
3p3/24s1/2 0.308057 0.306121 0.005528 0.000728 0.000079 0.608371
3p3/24d3/2 0.000000 0.000000 0.001616−0.000026 −0.000026 0.000000
3p3/24d5/2 0.621628 0.617660 0.009966 0.001636 0.000107 1.227386
3p1/24d3/2 −0.063771 −0.064179 0.002136 −0.000283 −0.000002 −0.129175
3p1/24d5/2 0.196819 0.194852 0.002998 0.000990 0.000025 0.385771
3s1/24p3/2 0.211407 0.208579 −0.027184 −0.001118 0.000087 0.411504
3s1/24f5/2 0.001902 0.000711 0.005294−0.000184 0.000108 −0.000958

Table 9. E1 and M2 transition rates (Ar in s−1) and wavelengths (λ in Å) for transitions from
odd-parity states withJ = 1 and 2 into the ground state in W46+.

av(J ) av(LS) AE1
r λE1 av(J ) av(LS) AM2

r λM2

3d3/24p1/2(1) 3d4p 3D 6.684[12] 7.174 3d5/24p1/2(2) 3d4p 3F 4.051[06] 7.477
3d5/24p3/2(1) 3d4p 1P 1.272[13] 7.027 3d5/24p3/2(2) 3d4p 3P 1.281[05] 7.188
3d3/24p3/2(1) 3d4p 3P 1.420[12] 6.778 3d3/24p1/2(2) 3d4p 1D 1.408[07] 7.032
3d5/24f5/2(1) 3d4f 3P 2.414[11] 5.953 3d3/24p3/2(2) 3d4p 3D 4.509[03] 6.768
3d5/24f7/2(1) 3d4f 3D 1.181[14] 5.870 3d5/24f5/2(2) 3d4f 3P 3.173[07] 6.164
3d3/24f5/2(1) 3d4f 1P 3.733[14] 5.689 3d5/24f7/2(2) 3d4f 3D 1.666[08] 5.938
3p3/24s1/2(1) 3p4s 1P 2.218[13] 6.154 3d3/24f5/2(2) 3d4f 1D 8.733[08] 5.923
3p1/24s1/2(1) 3p4s 3P 5.714[12] 5.345 3d3/24f7/2(2) 3d4f 3F 7.053[06] 5.753
3p3/24d3/2(1) 3p4d 3P 5.252[12] 5.255 3p3/24s1/2(2) 3p4s 3P 2.101[08] 5.744
3p3/24d5/2(1) 3p4d 1P 9.402[13] 5.201 3p3/24d3/2(2) 3p4d 3F 1.134[06] 5.247
3p1/24d3/2(1) 3p4d 3D 5.007[13] 4.679 3p3/24d5/2(2) 3p4d 3P 2.336[08] 5.203
3s1/24p1/2(1) 3s4p 3P 1.213[13] 4.635 3p1/24d3/2(2) 3p4d 3D 4.088[06] 4.648
3s1/24p3/2(1) 3s4p 1P 3.320[13] 4.492 3p1/24d5/2(2) 3p4d 1D 4.947[07] 4.612

3s1/24p3/2(2) 3s4p 3P 2.292[07] 4.494
3s1/24f5/2(2) 3s4f 3F 1.270[05] 4.023

In Tables 9 and 10, we present our RMBPT calculations for E1, M2, E2, and M1 transition rates
and wavelengths in the case of Ni-like tungsten,Z = 74.

6. Comparison of results with other theory and experiment

We calculate energies of the 50 even-parity 3dj4s1/2(J ), 3dj4dj ′(J ), 3pj4pj ′(J ), 3pj4fj ′(J ),
3s1/24s1/2′(J ), and 3s1/24dj ′(J )excited states and 56 odd-parity 3dj4pj ′(J ), 3dj4fj ′(J ), 3pj4s1/2(J ),
3pj4dj ′(J ), 3s1/24pj ′(J ), and 3s1/24fj ′(J ) excited states for Ni-like ions with nuclear charges ranging
fromZ = 30–100. Reduced matrix elements, oscillator strengths, and transition rates are determined for
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Table 10. E2 and M1 transition rates (Ar in s−1) and wavelengths (λ in Å) for transitions from
even-parity states withJ = 2 and 1 into the ground state in W46+.

av(J ) av(LS) AE2
r λE2 av(J ) av(LS) AM1

r λM1

3d5/24s1/2(2) 3d4s 3D 5.320[09] 7.929 3d3/24s1/2(1) 3d4s 3D 1.633[04] 7.614
3d3/24s1/2(2) 3d4s 1D 4.042[09] 7.608 3d5/24d3/2(1) 3d4d 3S 6.929[07] 6.508
3d5/24d3/2(2) 3d4d 3P 4.181[09] 6.487 3d5/24d5/2(1) 3d4d 1P 3.141[07] 6.428
3d5/24d5/2(2) 3d4d 3D 2.321[10] 6.405 3d3/24d3/2(1) 3d4d 3D 1.427[07] 6.276
3d3/24d3/2(2) 3d4d 3F 1.568[10] 6.258 3d3/24d5/2(1) 3d4d 3P 2.150[07] 6.212
3d3/24d5/2(2) 3d4d 1D 6.210[09] 6.198 3p3/24p1/2(1) 3p4p 3D 4.271[08] 5.881
3p3/24p1/2(2) 3p4p 3D 2.749[10] 5.878 3p3/24p3/2(1) 3p4p 3S 1.908[07] 5.607
3p3/24p3/2(2) 3p4p 1D 2.768[10] 5.595 3p1/24p1/2(1) 3p4p 1P 3.682[06] 5.134
3p1/24p3/2(2) 3p4p 3P 5.045[10] 4.921 3p1/24p3/2(1) 3p4p 3P 3.975[08] 4.928
3p3/24f5/2(2) 3p4f 3D 6.945[08] 4.888 3p3/24f5/2(1) 3p4f 3D 2.022[05] 4.898
3p3/24f7/2(2) 3p4f 1D 5.234[11] 4.858 3s1/24s1/2(1) 3s4s 3S 6.645[07] 4.842
3p1/24f5/2(2) 3p4f 3F 6.220[11] 4.354 3s1/24d3/2(1) 3s4d 3D 3.173[04] 4.267
3s1/24d3/2(2) 3s4d 3D 4.507[10] 4.265
3s1/24d5/2(2) 3s4d 1D 1.586[11] 4.233

E1, M1, E2, and M2 allowed and forbidden transitions into the ground state for each ions. Comparisons
are also given with other theoretical results and with experimental data. Our results are presented in two
parts: E1, M1, E2, and M2 wavelengths and transition probabilities.

6.1. Transition wavelengths

In Table 11, we compare our RMBPT results for wavelengths with theoretical results presented by
Biémont in ref. 17 and experimental results given in ref. 16.

In particular, we list results for transitions between 3d4s, 3d4p excited states and the ground state
for ions (Z = 92, 90, 83, 80, 70, 60, and 50) presented by Biémont in ref. 17. We did not repeat
comparison with experimental data given in our previous paper [6]. It should be noted that we improved
our results [6] including nondiagonal energy-matrix elements. A new computer code was developed
that allows us to consider not only the high-Z ions (Z ≥ 47) as was done previously [6] but also the
low-Z ions (30≤ Z ≤ 46). It is well-known that there is almost no deviation from the purejj coupling
scheme for high-Z Ni-like ions and we found only very small difference (0.003–0.01% forZ = 50) in
wavelengths between our present results and results given in ref. 6. The difference between our present
RMBPT results and MCDF results given by Biémont in ref. 17 is much larger (0.5–1% forZ = 50).
As can be seen from Table 11, our results are in better agreement with experiment [16] than the MCDF
results from ref. 17.

Our results are in excellent agreement with experimental results for the energy of the E2 and M3
transitions presented by Beiersdorfer et al. in ref. 18.

For Z = 90

RMBPT Expt.

E(3d5/24s1/2(2)) = 2560.7 eV, 2561.3 ± 0.2 eV

E(3d5/24s1/2(3)) = 2558.2 eV, 2558.7 ± 0.2 eV

For Z = 92

E(3d5/24s1/2(2)) = 2692.4 eV, 2691.9 ± 0.2 eV

E(3d5/24s1/2(3)) = 2689. 8eV, 2689.3 ± 0.2 eV (4)
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Table 11. Wavelengths (λ in Å) for transitions from 3dj4lj ′ (J ) states to the ground
state in Ni-like ions. Comparison of (a) our RMBPT results with (b) theoretical
results presented by Biémont in ref. 17 and (c) experimental results given in ref. 16.

Z

92 90 83 80 70 60 50

3d3/24s1/2 (1) (a) 4.306 4.543 5.579 6.149 8.927 14.349 27.344
(b) 4.318 4.556 5.593 6.163 8.951 14.403 27.518

3d3/24s1/2 (2) (a) 4.304 4.541 5.576 6.145 8.920 14.334 27.299
(b) 4.316 4.553 5.589 6.159 8.944 14.388 27.473

3d5/24s1/2 (2) (a) 4.605 4.842 5.880 6.453 9.254 14.725 27.793
(b) 4.617 4.854 5.810 6.467 9.277 14.777 28.007

3d5/24s1/2 (3) (a) 4.609 4.847 5.886 6.460 9.265 14.747 27.885
(b) 4.621 4.859 5.899 6.474 9.289 14.801 28.066

3d3/24p3/2 (0) (a) 3.704 3.930 4.907 5.438 7.998 12.910 24.373
(b) 3.710 3.936 4.914 5.447 8.017 12.951 24.512

3d3/24p1/2 (1) (a) 4.095 4.318 5.287 5.817 8.383 13.312 24.817
(b) 4.101 4.324 5.295 5.826 8.401 13.352 24.952
(c) 5.816 8.377 24.783

3d5/24p3/2 (1) (a) 3.917 4.145 5.128 5.663 8.239 13.166 24.628
(b) 3.920 4.149 5.134 5.670 8.254 13.204 24.755
(c) 5.657 8.235 24.596

3d3/24p3/2 (1) (a) 3.699 3.924 4.897 5.427 7.978 12.863 24.236
(b) 3.703 3.929 4.905 5.436 7.996 12.904 24.374
(c) 5.417 7.978 24.211

3d5/24p1/2 (2) (a) 4.375 4.598 5.572 6.106 8.700 13.689 25.340
(b) 4.380 4.607 5.578 6.114 8.715 13.727 25.472

3d5/24p3/2 (2) (a) 4.101 4.325 5.296 5.827 8.400 13.341 24.871
(b) 4.108 4.331 5.304 5.837 8.418 13.385 25.014

3d3/24p1/2 (2) (a) 3.919 4.147 5.131 5.666 8.244 13.175 24.650
(b) 3.923 4.151 5.137 5.674 8.260 13.215 24.787

3d3/24p3/2 (2) (a) 3.695 3.920 4.891 5.419 7.965 12.838 24.181
(b) 3.699 3.925 4.899 5.429 7.994 12.880 24.319

3d5/24p1/2 (3) (a) 4.373 4.596 5.568 6.102 8.692 13.673 25.288
(b) 4.378 4.602 5.576 6.111 8.710 13.715 25.430

3d5/24p3/2 (3) (a) 3.913 4.141 5.123 5.657 8.229 13.148 24.591
(b) 3.918 4.146 5.130 5.666 8.246 13.189 24.730

3d3/24p3/2 (3) (a) 3.698 3.923 4.896 5.426 7.978 12.863 24.249
(b) 3.703 3.929 4.905 5.436 7.996 12.906 24.391

3d5/24p3/2 (4) (a) 3.922 4.150 5.135 5.672 8.254 13.199 24.718
(b) 3.926 4.155 5.143 5.680 8.272 13.240 24.863

6.2. The E1, E2, M1, and M2 transition probabilities

We present the resulting transition probabilities (Ar) in Figs. 7–10. Transition rates and oscillator
strengths for the seven E1 lines from 3d4p 3P1,

3D1,
1P1, 3d4f 3P1,

3D1,
1P1 and 3p4s 1P1 levels

to the ground state are plotted in Fig. 7. The sharp features in the curves shown in these figures can be
explained in many cases by a strong mixing of states inside of the odd-parity complex withJ = 1. The
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Fig. 7. E1 transition rates and oscillator strengths between odd-parity states and ground state in Ni-like ions
as function ofZ.
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deep minimum in the curve with the 3d4p 3P label in theZ = 43–44 range can be explained by mixing
of the 3d3/24p1/2 (1) and 3d5/24p3/2 (1) states. In Fig. 7b, the double cusp in the intervalZ = 57–59 is
due to the mixing of the 3d5/24f5/2 (1) and 3d5/24f7/2 (1) states. The mixing of the 3d5/24f7/2 (1) and
3d3/24f5/2 (1) states in theZ = 55–56 range gives a singularity in the curve with the 3d4f 3D1 label.
The mixing of the 3d3/24f5/2 (1) and 3p3/24s1/2 (1) states in theZ = 49–50 range gives a singularity
in the curves with the 3d4f 1P1 and 3p4s 1P1 labels. Most of remaining singularities in the Figs. 7–10
can be explained in a similar way.

Transition rates for the six E2 lines from the 3d4s 3D2,
1D2 and 3d4d 3P2,

3D2,
3F2,

1D2 levels to
the ground state are plotted in Fig. 8. The curves describing the 3d4s 3D2,

1D2 transition rates increase
smoothly withZ without any sharp features. It should be noted that the difference in values ofAr for
the 3d4s 3D2 and 3d4s 1D2 lines is about 20%. There is a small difference in the values ofAr for the
3d4d 3D2, 3d4d 3F2, and 3d4d 1D2 lines shown in Fig. 8b.

Transition rates for the six M1 lines from the 3d4d 3S1,
1P1,

3D1,
3P1, 3d4s 3D1, and 3s4s 3S1

levels to the ground state are plotted in Fig. 9. The deep minima in Fig. 9a for smallZ has the same
nature as those of the 3d4d 1P1 line strengths shown on Fig. 6: strong mixing between 3d5/24d3/2 and
3d5/24d5/2 states. As can be seen from Fig. 9b, the value ofAr for the 3s4s 3S1 line is smaller than the
value ofAr for the 3d4s 3D1 line by a factor of 103–104.

Transition rates for eight M2 lines from the 3d4p 3F2,
3P2,

1D2,
3D2 and 3d4f 3P2,

3D2,
1D2,

3F2
levels to the ground state are plotted in Fig. 10. The sharp features in the curves shown in these figures
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Fig. 8. E2 transition rates between even-parity states and ground state in Ni-like ions as function ofZ.
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Fig. 9. M1 transition rates between even-parity states and the ground state in Ni-like ions as function ofZ.
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Fig. 10. M2 transition rates between odd-parity states and the ground state in Ni-like ions as function ofZ.

10 1

M
2

tr
an

si
tio

n
ra

te
s

(s
-1
)

M
2

tr
an

si
tio

n
ra

te
s

(s
-1
)

A

can be explained in many cases as a strong mixing of states inside of the odd-parity 3dj4pj ′ (2) and
3dj4fj ′ (2) complexes.

In Table 12, we compare our RMBPT results for E1, E2, M1, and M2 transition rates with the
theoretical results presented by Biémont in ref. 17 and Quinet and Biémont in ref. 16. In particular, we
list results for transitions between 3d4s, 3d4p excited states and the ground state for ions (Z = 92, 90,
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Table 12. E1, E2, M1, and M2 transition rates(Ar in s−1) in Ni-like ions for transitions between
excited 3dj4lj ′ (J ) states and the ground state. Comparison of our (a) RMBPT results with (b)
theoretical results presented by Biémont in ref. 17 and (c) results by Quinet in ref. 16.

Z

92 90 83 80 70 60 50

Magnetic-quadrupole transitions
3d5/24p1/2 (2) (a) 4.20[7] 3.34[7] 1.42[7] 9.36[6] 2.19[6] 3.81[5] 4.21[4]

(b) 4.43[7] 3.53[7] 1.51[7] 1.02[7] 2.42[6] 4.41[5]

3d5/24p3/2 (2) (a) 2.54[6] 1.94[6] 6.75[5] 4.16[5] 5.05[4] 1.04[3] 3.79[2]
(b) 3.53[6] 2.71[6] 9.80[5] 6.02[5]

3d3/24p1/2 (2) (a) 1.56[8] 1.23[8] 5.07[7] 3.34[7] 7.45[6] 1.16[6] 9.53[4]
(b) 1.64[8] 1.31[8] 5.63[7] 3.82[7] 8.92[6] 1.48[6] 1.31[5]

3d3/24p3/2 (2) (a) 3.48[6] 6.51[5] 3.19[3] 9.82[2] 5.32[3] 3.28[3] 1.03[3]
(b) 1.02[5]

3d5/24f5/2 (2) (a) 3.06[8] 2.47[8] 1.06[8] 7.00[7] 1.78[7] 4.93[6] 5.90[6]
3d5/24f7/2 (2) (a) 2.03[8] 2.00[8] 1.88[8] 1.83[8] 1.43[8] 4.90[7] 2.16[6]
3d3/24f5/2 (2) (a) 1.01[10] 8.02[9] 3.37[9] 2.23[9] 4.16[8] 4.00[7] 6.48[4]
3d3/24f7/2 (2) (a) 6.77[8] 5.09[8] 1.51[8] 7.55[7] 6.39[3] 8.94[5] 1.10[6]

Electric-quadrupole transitions
3d3/24s1/2 (2) (a) 3.01[10] 2.56[10] 1.38[10] 1.03[10] 3.25[9] 7.29[8] 9.52[7]

(b) 3.35[10] 2.86[10] 1.33[10] 1.16[10] 3.77[9] 8.86[8] 1.16[8]

3d5/24s1/2 (2) (a) 2.30[10] 1.95[10] 1.04[10] 7.74[9] 2.51[9] 6.11[8] 8.79[7]
(b) 2.63[10] 2.24[10] 1.20[10] 8.98[9] 2.98[9] 7.50[8] 1.19[8]

3d5/24d3/2 (2) (a) 3.48[10] 2.82[10] 1.30[10] 9.15[9] 2.32[9] 3.54[8] 2.59[7]
(c) 1.01[10] 2.57[9] 3.97[8] 2.03[7]

3d5/24d5/2 (2) (a) 1.36[11] 1.15[11] 6.03[10] 4.47[10] 1.43[10] 3.38[9] 4.67[8]
(c) 4.94[10] 1.61[10] 3.89[9] 5.45[8]

3d3/24d3/2 (2) (a) 1.82[11] 1.40[11] 4.22[10] 3.05[10] 9.78[9] 2.43[9] 4.09[8]
(c) 3.38[10] 1.10[10] 2.83[9] 4.84[8]

3d3/24d5/2 (2) (a) 4.27[10] 4.84[10] 1.39[10] 1.12[10] 3.97[9] 1.08[9] 1.80[8]
(c) 1.25[10] 4.53[9] 1.25[9] 2.35[8]

Magnetic-dipole transitions
3d3/24s1/2 (1) (a) 3.32[5] 2.41[5] 8.28[4] 4.95[4] 7.28[3] 7.20[2] 3.91[1]
3d5/24d3/2 (1) (a) 1.16[9] 8.60[8] 2.97[8] 1.86[8] 3.42[7] 4.48[6] 2.99[5]
3d5/24d5/2 (1) (a) 6.84[8] 5.05[8] 1.65[8] 9.86[7] 1.32[7] 8.64[5] 1.01[4]
3d3/24d3/2 (1) (a) 4.59[9] 1.10[7] 4.19[7] 3.12[7] 7.87[6] 1.47[6] 1.89[5]
3d3/24d5/2 (1) (a) 1.50[9] 4.57[9] 5.72[7] 4.76[7] 1.13[7] 1.55[6] 8.83[4]

Electric-dipole transitions
3d3/24p1/2 (1) (a) 2.61[13] 2.28[13] 1.3713] 1.10[13] 4.59[12] 1.31[12] 1.24[11]

(b) 2.73[13] 2.41[13] 1.4713] 1.17[13] 4.89[12] 1.48[12] 1.48[11]

3d5/24p3/2 (1) (a) 4.00[13] 3.55[13] 2.3213] 1.90[13] 9.57[12] 4.44[12] 1.59[12]
(b) 3.66[13] 3.29[13] 2.2313] 1.86[13] 9.62[12] 4.46[12] 1.68[12]

3d3/24p3/2 (1) (a) 1.50[12] 2.15[12] 2.10[12] 1.94[12] 1.12[12] 5.23[11] 2.43[11]
(b) 4.38[12] 3.94[12] 2.70[12] 2.27[12] 1.23[12] 6.16[11] 2.01[11]

83, 80, 70, 60, and 50) presented by Biémont in ref. 17. As can be seen from Table 12, the difference
between both results is about 5–20% that can be explained by the second-order contribution included in
our RMBPT calculations since the results in refs. 16,17 were obtained using the MCDF approximation.

© 2004 NRC Canada



352 Can. J. Phys. Vol. 82, 2004

7. Conclusion

We have presented a systematic second-order relativistic RMBPT study of excitation energies,
reduced matrix elements, line strengths, and transition rates for�n = 1 electric- and magnetic-dipole
and electric- and magnetic-quadrupole transitions in Ni-like ions with nuclear chargesZ = 30–100.
Our calculation of the retarded E1, E2, M1, and M2 matrix elements include correlation corrections
from both Coulomb and Breit interactions. Contributions from virtual electron–positron pairs were
also included in the second-order matrix elements. Both length and velocity forms of the E1 and E2
matrix elements were evaluated and small differences, caused by the nonlocality of the starting DF
potential, were found between the two forms. Second-order RMBPT transition energies were used
to evaluate oscillator strengths and transition rates. Good agreement of our RMBPT data with other
accurate theoretical results leads us to conclude that the RMBPT method provides accurate data for
Ni-like ions. Results from the present calculations provide benchmark values for future theoretical and
experimental studies of the nickel isoelectronic sequence.
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Appendix A. Matrix elements

A1. Multipole matrix elements

The first-order reduced multipole matrix elementZ
(1)
K for a transition between the ground state|0〉

and the uncoupled particle–hole state�JM(av) of (1) is

Z
(1)
K [0 − av(J )] = 1√

2J + 1
ZJ (av)δJK (A.1)

The multipole matrixZK(av) element, which includes retardation is given below for electric-dipole
(K = 1) and electric-quadrupole (K = 2) transitions in length and velocity forms and magnetic-dipole
(K = 1) and magnetic-quadrupole (K = 2) transitions.

The second-order reduced matrix elementZ
(2)
K [0 − av(J )] consists of three contributions:Z(RPA)

K ,

Z
(HF)
K , andP (deriv)

K . The quantityZ(RPA)
K ,Z(HF)

K are defined by eqs. (2.14), (2.15) of ref. 6. The quantity

P
(deriv)
K is defined by

P
(deriv)
K [0 − (av)J ] = 1√

2J + 1
Z
(deriv)
J (av)δJK (A.2)

The derivative termZ(deriv)
K (av), which includes retardation is given below for E1 and E2 (K = 1 and

K = 2) transitions in length and velocity forms and M1 and M2 (K = 1 andK = 2) transitions.

A2. Electric-dipole matrix elements
The electric-dipole matrix elementZ1(av), which includes retardation, is given in length and velocity

forms as
length form

Z1(av) = 〈κa ‖C1‖ κv〉 3

k

∫ ∞

0
dr {j1(kr) [Ga(r)Gv(r)+ Fa(r)Fv(r)]

+j2(kr)

[
κa − κv

2
[Ga(r)Fv(r)+ Fa(r)Gv(r)] + [Ga(r)Fv(r)− Fa(r)Gv(r)]

]}
(A.3)

velocity form

Z1(av) = 〈κa ‖C1‖ κv〉 1

k

∫ ∞

0
dr {[j2(kr)+ j0(kr)] [Ga(r)Fv(r)− Fa(r)Gv(r)]

−κa − κv

2
[−j2(kr)+ 2j0(kr)] [Ga(r)Fv(r)+ Fa(r)Gv(r)]

}
(A.4)

The electric-dipole derivative matrix elementZderiv
1 (av), which includes retardation, is given in

length and velocity forms as
length form

Z
(deriv)
1 (av) = 〈κa ‖C1‖ κv〉 3

k

∫ ∞

0
dr[j1(kr)− (kr)j2(kr)] [Ga(r)Gv(r)+ Fa(r)Fv(r)]

+ 〈κa ‖C2‖ κv〉 3

k

∫ ∞

0
dr[(kr)j1(kr)− 3j2(kr)]

×
[
κa − κv

2
[Ga(r)Fv(r)+ Fa(r)Gv(r)] + [Ga(r)Fv(r)− Fa(r)Gv(r)]

]
(A.5)
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velocity form

Z
(deriv)
1 (av) = 〈κa ‖C1‖ κv〉 3

k

∫ ∞

0
dr {[−j2(kr)] [Ga(r)Fv(r)− Fa(r)Gv(r)]

−κa − κv

2
[−(kr)j1(kr)+ j2(kr)] [Ga(r)Fv(r)+ Fa(r)Gv(r)]

}
(A.6)

Hereκa is the angular momentum quantum number[κa = ∓(ja + 1
2) for ja = (la ± 1

2)], andk = ωα,
whereω = εv − εa is the photon energy andα is the fine-structure constant. The functionsGa(r) and
Fa(r) are large- and small-component radial Dirac–Fock wave functions, respectively. The quantity
C1q(r̂) is a normalized spherical harmonic and〈κa ‖Ck‖ κv〉 is equal to

〈κa ‖Ck‖ κv〉 = (−1)ja+1/2
√[ja][jv]

(
ja jv k

−1
2

1
2 0

)
π(la + lv + k) (A.7)

= (−1)k−jv−1/2
√[ja][jv][la][lv]

(
la lv k

0 0 0

) {
ja jv k

lv la 1/2

}

A3. Magnetic-dipole matrix element
The magnetic-dipole matrix elementZ1(av), which includes retardation, is given by

ZRF
1 (av) = 〈−κa ‖C1‖ κv〉 6

αk

∫ ∞

0
dr
(κa + κv)

2
j1(kr) [Ga(r)Fv(r)+ Fa(r)Gv(r)] (A.8)

Z
(deriv)
1 (av) = 〈−κa ‖C1‖ κv〉 6

αk

∫ ∞

0
dr
(κa + κv)

2

× [j1(kr)− (kr)j2(kr)] [Ga(r)Fv(r)+ Fa(r)Gv(r)] (A.9)

The magnetic-dipole matrix elementZ1(av), without retardation, is given by

ZR
1 (av) = 〈−κa ‖C1‖ κv〉 1

α
(κa + κv)

∫ ∞

0
dr(r) [Ga(r)Fv(r)+ Fa(r)Gv(r)] (A.10)

Z
(deriv)
1 (av) = ZR

1 (av) (A.11)

The nonrelativistic limit is different for transitions inside of one configurations,na = nv, and transitions
between different configurations,na �= nv. For the casena = nv, we obtain

ZNR
1 (av) = − 〈−κa ‖C1‖ κv〉 (κa + κv − 1)

(κa + κv)

2

∫ ∞

0
drPa(r)Pv(r) (A.12)

wherePa(r) is a nonrelativistic limit the large-component radial wave functionGa(r). The casena �=
nv was considered in many papers for 1s2 1S0- 1s2s 3S1 transitions (see, for example, ref. 27). The
nonrelativistic limit in this case is proportional toZ2, and for transitions withla = lv = 0 the matrix
element is given by [26]

ZNR
1 (av) = −(αZ)2

√
2

3

[
3

Z

∫ ∞

0

1

r
drPa(r)Pv(r)+ ω2

2Z2

∫ ∞

0
r2 drPa(r)Pv(r)

]
(A.13)

Using hydrogenic wave functions, we find

MNR
1s2s = −(αZ)2 16

27
√

3
, MNR

2s3s = −(αZ)2 2423

55
(A.14)
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A4. Electric-quadrupole matrix element
The electric-quadrupole matrix elementZ2(av), which includes retardation, is given in velocity and

length forms as
length gauge

Z2(av) = 〈κa ‖C2‖ κv〉 15

k2

∫ ∞

0
dr {j2(kr) [Ga(r)Gv(r)+ Fa(r)Fv(r)]

+j3(kr)

(
κa − κv

3
[Ga(r)Fv(r)+ Fa(r)Gv(r)] + [Ga(r)Fv(r)− Fa(r)Gv(r)]

)}
(A.15)

velocity form

Z2(av) = 〈κa ‖C2‖ κv〉 3

k2

∫ ∞

0
dr {2 (j1(kr)+ j3(kr)) [Ga(r)Fv(r)− Fa(r)Gv(r)]

−κa − κv

3
[−2j3(kr)+ 3j1(kr)] [Ga(r)Fv(r)+ Fa(r)Gv(r)]

}
(A.16)

The reduced matrix element for the derivative term is given by the following expressions:
length gauge

Z
(deriv)
2 (av) = 〈κa ‖C2‖ κv〉 15

k2

∫ ∞

0
dr[2j2(kr)− (kr)j3(kr)] [Ga(r)Gv(r)+ Fa(r)Fv(r)]

+ 〈κa ‖C2‖ κv〉 15

k2

∫ ∞

0
dr[(kr)j2(kr)− 4j3(kr)]

×
[
κa − κv

3
[Ga(r)Fv(r)+ Fa(r)Gv(r)] + [Ga(r)Fv(r)− Fa(r)Gv(r)]

]
(A.17)

velocity form

Z
(deriv)
2 (av) = 〈κa ‖C2‖ κv〉 3

k2

∫ ∞

0
dr {[−8j3(kr)+ 2j1(kr)] [Ga(r)Fv(r)− Fa(r)Gv(r)]

−κa − κv

3
[−5(kr)j2(kr)+ 8j3(kr)+ 3j1(kr)] [Ga(r)Fv(r)+ Fa(r)Gv(r)]

}
(A.18)

The nonrelativistic limit for the length and velocity forms of electric-quadrupole matrix elementZ2(av)

is equal to
length gauge

ZNR
2 (av) = Z(av) = 〈κa ‖C2‖ κv〉

∫ ∞

0
dr(r)2Pa(r)Pv(r) (A.19)

velocity form

ZNR
2 (av) = − 〈κa ‖C2‖ κv〉 (εv − εa)

α

k

∫ ∞

0
dr(r)2Pa(r)Pv(r) (A.20)

The nonrelativistic limit for the derivative term of electric-quadrupole matrix elementZ
(deriv)
2 (av) is

equal to
length gauge

Z
(deriv)
2 (av) = 〈κa ‖C2‖ κv〉 2

∫ ∞

0
dr(r)2Pa(r)Pv(r) (A.21)
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velocity form

Z
(deriv)
2 (av) = − 〈κa ‖C2‖ κv〉 (εv − εa)

α

k

∫ ∞

0
dr(r)2Pa(r)Pv(r) (A.22)

A5. Magnetic-quadrupole matrix element
The magnetic-quadrupole matrix elementZ2(av), which includes retardation, is given as

Z2(av) = 〈−κa ‖C2‖ κv〉 30

α(k)2

∫ ∞

0
dr
(κa + κv)

3
j2(kr) [Ga(r)Fv(r)+ Fa(r)Gv(r)] (A.23)

The magnetic-quadrupole derivative matrix elementZ2(av), which includes retardation, is equal to

Z
(deriv)
2 (av) = 〈−κa ‖C2‖ κv〉 30

α(k)2

∫ ∞

0
dr
(κa + κv)

3
[2j2(kr)− (kr)j3(kr)]

× [Ga(r)Fv(r)+ Fa(r)Gv(r)] (A.24)

The nonrelativistic limit for the magnetic-quadrupole matrix elementZ2(av) is

1

2
Z
(deriv)NR
2 (av) = ZNR

2 (av) = − 〈−κa ‖C2‖ κv〉 κa + κv

3
(κa + κv − 2)

∫ ∞

0
dr(r)Pa(r)Pv(r)

(A.25)

wherePa(r) is a nonrelativistic limit of the large-component radial wavefunctionGa(r).
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