Relativistic many-body calculations of energies for doubly-excited 1s2/2I' and 1s3/3/' states in Li-like ions

U.I. Safronova and M.S. Safronova

Abstract

Energies of $1 s 2 l 2 l^{\prime}$ and $1 s 3 l 3 l^{\prime}$ states for Li-like ions with $Z=6-100$ are evaluated to second order in relativistic many-body perturbation theory. Second-order Coulomb and Breit-Coulomb interactions are included. The calculations start with a Dirac potential and include all possible $1 s 2 l 2 l^{\prime}$ and $1 s 3 l 3 l^{\prime}$ configurations. Correction for the frequency dependence of the Breit interaction is taken into account in lowest order. The Lamb-shift correction to the energies is also included in lowest order. A detailed discussion of the various contributions to the energy levels is given for Li-like iron $(Z=26)$. We found that the three-electron corrections to the energy contribute about $10-20 \%$ of the total second-order energy. Comparisons are made with available experimental data and excellent agreement for term splitting is obtained even for low- Z ions. These calculations are presented as a theoretical benchmark for comparison with experiment and theory.

PACS Nos.: 32.30.Rj, 32.70.Cs, 31.25.Jf, 31.15.Md

Résumé : Nous utilisons la théorie relativiste des perturbations au deuxième ordre pour évaluer les énergies des états $1 s 2 l 2 l^{\prime}$ et $1 s 3 l 3 l^{\prime}$ des ions de type Li avec $Z=6-100$. Nous incluons les effets de Coulomb et de Breit-Coulomb au deuxième ordre. Le calcul démarre avec un potentiel de Dirac et inclut toutes les configurations possibles $1 s 2 l 2 l^{\prime}$ et $1 s 3 l 3 l^{\prime}$. Nous tenons compte à l'ordre le plus bas des corrections pour la dépendance en fréquence de l'interaction de Breit. Nous analysons en détail les différentes contributions aux niveaux d'énergie pour le cas $Z=26$. Nous trouvons que les corrections à trois électrons contribuent à peu près $10-20 \%$ du total des corrections de deuxième ordre. Nous comparons nos résultats avec des données expérimentales et trouvons un excellent accord pour la séparation entre états, même pour les ions de faible Z. Ces résultats seront utilisés comme barème pour comparaison avec la théorie et l'expérience.
[Traduit par la Rédaction]

[^0]
1. Introduction

Excitation energies, nonradiative, and electric dipole (E1) radiative rates for $1 s 2 \ln l^{\prime}$ states along the lithium isoelectronic sequence have been studied theoretically and experimentally during the past 30-40 years. Z-expansion [1-3], configuration interaction (CI) [4], multiconfiguration Hartree-Fock (MCHF) [5-7], and multiconfiguration Dirac-Fock (MCDF) [8-10] methods have been used to calculate these quantities for Li-like ions. Comparison of results for Li -like Fe, Ca, and S obtained by different codes is presented by Kato et al. in ref. 11. It should be noted that doubly-excited $1 \operatorname{snn} n^{\prime} l^{\prime}$ states give the simplest example of states to study the contribution of correlation energy. There are no filled subshells and any codes based on the Hartree-Fock approximation are not applicable. The second-order perturbation theory describes the correlation effects by including virtual excitations. This contribution can be partly taken into account using the CI method. CI calculations give very accurate results for twoelectron systems. The importance of a three-electron interaction for a three-electron system is shown in refs. 12 and 13 for boronlike and aluminumlike systems, respectively. Two-particle and three-particle second-order contributions for $1 s 2 l 2 l^{\prime}$ states are given in the nonrelativistic approximation in refs. 1 and 2.

In the present paper, relativistic many-body perturbation theory (RMBPT) is used to determine the $1 s 2 l 2 l^{\prime}-1 s^{2} 2 l$ and $1 s 3 l 3 l^{\prime}-1 s^{2} 3 l$ transition energies in Li-like ions with nuclear charges $Z=6-100$. We illustrate our calculation with detailed studies of the case of Li -like iron, $Z=26$. Our calculations are carried out to second order in perturbation theory and include the second-order Coulomb and Breit interactions. Correction for the frequency-dependent Breit interaction is taken into account in the lowest order. The screened self-energy and vacuum polarization data given by Johnson and Soff [14] are used to determine the quantum-electrodynamic (QED) correction $E^{(\mathrm{Lamb})}$. Three-electron contributions to the energy are compared with the two-electron contributions and are found to contribute about 20-30\% of the total second-order energy.

Our perturbation theory calculations are carried out using single-particle orbitals calculated in the Dirac potential. As a first step, we determine and store the $281 s 2 l$ and $2 l 2 l^{\prime}$, and $1711 s 3 l$ and $3 l 3 l^{\prime}$ two-particle matrix elements of the effective Hamiltonian, $\left\langle n n^{\prime} l^{\prime} J\right| H^{\text {eff }}\left|n l^{\prime \prime} n^{\prime} l^{\prime \prime \prime} J\right\rangle$, calculated in the first and second orders. It should be noted that these one- and two-particle matrix elements could be used also to evaluate energies of the $\left(n n^{\prime} l^{\prime}\right)$ levels for heliumlike ions. Finally, second-order three-particle matrix elements are evaluated. Combining these data using the method described below, we calculate the two- and three-particle contributions to the energies of Li-like ions.

The present calculations are compared with data recommended by the National Institute of Standards and Technology (NIST) from refs. 15-31. Comparisons of multiplet splitting for ions along the isoelectronic sequence with available experimental data are also given.

2. Method

The evaluation of the second-order energies for doubly-excited states in Li-like ions follows the pattern of the corresponding calculation for B-like ions given in ref. 12. In particular, we calculate the second-order two-particle matrix elements for He-like ions, and recouple them as described in the Appendix, to obtain the contributions from all diagrams of the type shown in Fig. 1b. We discuss in the Appendix how these matrix elements are combined to obtain the two-particle contributions to energies of Li-like ions. Intrinsically, three-particle diagrams of the type shown in Fig. $1 c$ also contribute to the second-order energy for Li-like ions. We discuss the evaluation of these three-particle diagrams in detail in the Appendix. It should be noted that the three-particle matrix elements calculated here can also be used in calculations of energies of ions with four or more valence electrons.

The model space for $1 s 2 l 2 l^{\prime}$ states of Li-like ions includes seven odd-parity states consisting of three $J=1 / 2$ states, three $J=3 / 2$ states, and one $J=5 / 2$ state. There are nine $1 s 2 l 2 l^{\prime}$ even-parity states consisting of four $J=1 / 2$ states, three $J=3 / 2$ states, and two $J=5 / 2$ states. The model space

Fig. 1. First-order (1E) and second-order (2 E and 2 G) diagrams. The broken lines designate Coulomb + Breit interactions and continuous lines are electrons in different states.

(b)

(c)

for $1 s 3 l 3 l^{\prime}$ states of Li-like ions includes thirty odd-parity states consisting of seven $J=1 / 2$ states, ten $J=3 / 2$ states, eight $J=5 / 2$ states, four $J=7 / 2$ states, and one $J=9 / 2$ state. There are thirtythree $1 s 3 l 3 l^{\prime}$ even-parity states consisting of eight $J=1 / 2$ states, ten $J=3 / 2$ states, nine $J=5 / 2$ states, four $J=7 / 2$ states, and two $J=9 / 2$ states. The distribution of the sixteen $1 s 2 l 2 l^{\prime}$ and sixtythree $1 s 3 l 3 l^{\prime}$ states in the model space is summarized in Table 1 where both $j j$ and LS designations are given.

2.1. Energy matrix elements

In Table 2, we give various contributions to the second-order energies for the special case of doublyexcited $1 s 2 l 2 l^{\prime}$ states in Li-like iron, $Z=26$. In Table 2, we show the two-body and three-body second-order Coulomb and Breit contributions to the energy matrix labeled $E_{2}^{(2)}, E_{3}^{(2)}$ and $B_{2}^{(2)}, B_{3}^{(2)}$, respectively. The expressions for $E_{2}^{(2)}$ and $E_{3}^{(2)}$ are given by (A5), (A7), and (A11). The same expressions for $B_{2}^{(2)}$ and $B_{3}^{(2)}$ are obtained from the expressions for $E_{2}^{(2)}$ and $E_{3}^{(2)}$ replacing one Coulomb matrix element by a Breit matrix element (see (A12)). There are sixteen diagonal and twenty-four nondiagonal matrix elements for $2 l 2 l^{\prime}\left(J_{1}\right) 1 s[J]$ three-particle states in $j j$ coupling. It can be seen from Table 2 that the Coulomb three-body contributions are almost half of the Coulomb two-body contributions. The Breit $B_{i}^{(2)}$ matrix elements are smaller than the Coulomb $E_{i}^{(2)}$ matrix elements by a factor of 100 for many cases. The values of the nondiagonal contributions are smaller than the values of the diagonal contributions by a factor of 3-10.

In Figs. $2 a$ and $2 b$, we present two-particle $\left(E_{2}^{(2)}\right.$ and $\left.B_{2}^{(2)}\right)$ and three-particle $\left(E_{3}^{(2)}\right.$ and $B_{3}^{(2)}$) contributions for the $2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s[5 / 2]$ diagonal matrix element as functions of Z. We see from Fig. $2 a$ that the ratio $E_{3}^{(2)} / E_{2}^{(2)}$ is equal to $1 / 2$ and is almost constant for all Z; however, the ratio of $B_{3}^{(2)} / B_{2}^{(2)}$ decreases with the increase in Z.

Reference 33 shows that the leading term for $E_{2}^{(2)}$ is independent of Z and the leading term for $B_{2}^{(2)}$ is proportional to $(\alpha Z)^{2}$.
$E_{2}^{(2)}=E_{20}+Z^{2} \alpha^{2} E_{22}+Z^{4} \alpha^{4} E_{24}+\cdots$
$B_{2}^{(2)}=Z^{2} \alpha^{2} B_{22}+Z^{4} \alpha^{4} B_{24}+\cdots$
The nonrelativistic second-order term E_{20} was given in refs. 1 and 2 for doubly-excited $1 s 2 l 2 l^{\prime}$ states. Comparing those values with $E_{2}^{(2)}$, we can estimate the next term in (1). For example, for the diagonal matrix element presented in Fig. $2 a$ we obtain
$E_{2}^{(2)}(a, a)=-0.0148094-0.096 Z^{2} \alpha^{2}+\cdots$

Table 1. Possible doubly excited $2 l 2 l^{\prime} 1 s$ and $3 l 3 l^{\prime} 1 s$ states of Li-like ions in $j j$ and LS coupling schemes.

Even-parity states		Odd-parity states	
$j j$ coupling	LS coupling	$j j$ coupling	LS coupling
$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	$2 s^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$
$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s 2 p\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$
$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	$2 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s 2 p\left({ }^{1} P\right) 1 s^{2} P_{1 / 2}$
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$		
		$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s 2 p\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p^{2}\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$	$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 s 2 p\left({ }^{1} P\right) 1 s^{2} P_{3 / 2}$
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$		
		$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 s 2 p\left({ }^{1} P\right) 1 s{ }^{4} P_{5 / 2}$
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$		
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p^{2}\left({ }^{3} P\right) 1 s^{2} D_{5 / 2}$		
$3 s_{1 / 2} 3 s_{1 / 2}(0) 1 s$	$3 s^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	$3 s_{1 / 2} 3 p_{1 / 2}(0) 1 s$	$3 s 3 p\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$
$3 s_{1 / 2} 3 d_{3 / 2}(1) 1 s$	$3 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	$3 s_{1 / 2} 3 p_{1 / 2}(1) 1 s$	$3 s 3 p\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$
$3 p_{1 / 2} 3 p_{1 / 2}(0) 1 s$	$3 s 3 d\left({ }^{3} D\right) 1 s^{4} D_{1 / 2}$	$3 s_{1 / 2} 3 p_{3 / 2}(1) 1 s$	$3 s 3 p\left({ }^{1} P\right) 1 s^{2} P_{1 / 2}$
$3 p_{1 / 2} 3 p_{3 / 2}(1) 1 s$	$3 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	$3 p_{1 / 2} 3 d_{3 / 2}(1) 1 s$	$3 p 3 d\left({ }^{3} D\right) 1 s^{4} D_{1 / 2}$
$3 p_{3 / 2} 3 p_{3 / 2}(0) 1 s$	$3 p^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	$3 p_{3 / 2} 3 d_{3 / 2}(0) 1 s$	$3 p 3 d\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$
$3 d_{3 / 2} 3 d_{3 / 2}(0) 1 s$	$3 d^{2}\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	$3 p_{3 / 2} 3 d_{3 / 2}(1) 1 s$	$3 p 3 d\left({ }^{3} P 1 s^{2} P_{1 / 2}\right.$
$3 d_{3 / 2} 3 d_{5 / 2}(1) 1 s$	$3 d^{2}\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	$3 p_{3 / 2} 3 d_{5 / 2}(1) 1 s$	$3 p 3 d\left({ }^{1} P\right) 1 s^{2} P_{1 / 2}$
$3 d_{5 / 2} 3 d_{5 / 2}(0) 1 s$	$3 d^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$		
		$3 s_{1 / 2} 3 p_{1 / 2}(1) 1 s$	$3 s 3 p\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$
$3 s_{1 / 2} 3 d_{3 / 2}(1) 1 s$	$3 s 3 d\left({ }^{3} D\right) 1 s^{2} D_{3 / 2}$	$3 s_{1 / 2} 3 p_{3 / 2}(1) 1 s$	$3 s 3 p\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$
$3 s_{1 / 2} 3 d_{3 / 2}(2) 1 s$	$3 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	$3 s_{1 / 2} 3 p_{3 / 2}(2) 1 s$	$3 s 3 p\left({ }^{1} P\right) 1 s^{2} P_{3 / 2}$
$3 s_{1 / 2} 3 d_{5 / 2}(2) 1 s$	$3 s 3 d\left({ }^{3} D\right) 1 s^{4} D_{3 / 2}$	$3 p_{1 / 2} 3 d_{3 / 2}(1) 1 s$	$3 p 3 d\left({ }^{3} F\right) 1 s^{4} F_{3 / 2}$
$3 p_{1 / 2} 3 p_{3 / 2}(1) 1 s$	$3 s 3 d\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$	$3 p_{1 / 2} 3 d_{3 / 2}(2) 1 s$	$3 p 3 d\left({ }^{3} D\right) 1 s^{2} D_{3 / 2}$
$3 p_{1 / 2} 3 p_{3 / 2}(2) 1 s$	$3 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	$3 p_{1 / 2} 3 d_{5 / 2}(2) 1 s$	$3 p 3 d\left({ }^{3} \mathrm{D}\right) 1 s^{4} D_{3 / 2}$
$3 p_{3 / 2} 3 p_{3 / 2}(2) 1 s$	$3 p^{2}\left({ }^{1} D 1 s^{2} D_{3 / 2}\right.$	$3 p_{3 / 2} 3 d_{3 / 2}(1) 1 s$	$3 p 3 d\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$
$3 d_{3 / 2} 3 d_{3 / 2}(2) 1 s$	$3 d^{2}\left({ }^{3} F\right) 1 s^{4} F_{3 / 2}$	$3 p_{3 / 2} 3 d_{3 / 2}(2) 1 s$	$3 p 3 d\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$
$3 d_{3 / 2} 3 d_{5 / 2}(1) 1 s$	$3 d^{2}\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	$3 p_{3 / 2} 3 d_{5 / 2}(1) 1 s$	$3 p 3 d\left({ }^{3} P 1 s^{2} P_{3 / 2}\right.$
$3 d_{3 / 2} 3 d_{5 / 2}(2) 1 s$	$3 d^{2}\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	$3 p_{3 / 2} 3 d_{5 / 2}(2) 1 s$	$3 p 3 d\left({ }^{1} P\right) 1 s^{2} P_{3 / 2}$
$3 d_{5 / 2} 3 d_{5 / 2}(2) 1 s$	$3 d^{2}\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$		
		$3 s_{1 / 2} 3 p_{3 / 2}(2) 1 s$	$3 s 3 p\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$
$3 s_{1 / 2} 3 d_{3 / 2}(2) 1 s$	$3 s 3 d\left({ }^{3} D\right) 1 s^{2} D_{5 / 2}$	$3 p_{1 / 2} 3 d_{3 / 2}(2) 1 s$	$3 p 3 d\left({ }^{3} F\right) 1 s^{4} F_{5 / 2}$
$3 s_{1 / 2} 3 d_{5 / 2}(2) 1 s$	$3 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$	$3 p_{1 / 2} 3 d_{5 / 2}(2) 1 s$	$3 p 3 d\left({ }^{3} D\right) 1 s^{2} D_{5 / 2}$
$3 s_{1 / 2} 3 d_{5 / 2}(3) 1 s$	$3 s 3 d\left({ }^{3} D\right) 1 s^{4} D_{5 / 2}$	$3 p_{1 / 2} 3 d_{5 / 2}(3) 1 s$	$3 p 3 d\left({ }^{3} F\right) 1 s^{2} F_{5 / 2}$
$3 p_{1 / 2} 3 p_{3 / 2}(2) 1 s$	$3 s 3 d\left({ }^{1} D\right) 1 s^{2} D_{5 / 2}$	$3 p_{3 / 2} 3 d_{3 / 2}(2) 1 s$	$3 p 3 d\left({ }^{3} \mathrm{D}\right) 1 s^{4} D_{5 / 2}$
$3 p_{3 / 2} 3 p_{3 / 2}(2) 1 s$	$3 p^{2}\left({ }^{1} D\right) 1 s^{2} D_{5 / 2}$	$3 p_{3 / 2} 3 d_{3 / 2}(3) 1 s$	$3 p 3 d\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$
$3 d_{3 / 2} 3 d_{3 / 2}(2) 1 s$	$3 d^{2}\left({ }^{3} F\right) 1 s^{4} F_{5 / 2}$	$3 p_{3 / 2} 3 d_{5 / 2}(2) 1 s$	$3 p 3 d\left({ }^{1} D\right) 1 s^{2} D_{5 / 2}$
$3 d_{3 / 2} 3 d_{5 / 2}(2) 1 \mathrm{~s}$	$3 d^{2}\left({ }^{3} F\right) 1 s^{2} F_{5 / 2}$	$3 p_{3 / 2} 3 d_{5 / 2}(3) 1 s$	$3 p 3 d\left({ }^{1} F\right) 1 s^{2} F_{5 / 2}$
$3 d_{3 / 2} 3 d_{5 / 2}(3) 1 s$	$3 d^{2}\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$		
$3 d_{5 / 2} 3 d_{5 / 2}(2) 1 s$	$3 d^{2}\left({ }^{1} D\right) 1 s^{2} D_{5 / 2}$	$3 p_{1 / 2} 3 d_{5 / 2}(3) 1 s$	$3 p 3 d\left({ }^{3} F 1 s^{4} F_{7 / 2}\right.$
		$3 p_{3 / 2} 3 d_{3 / 2}(3) 1 s$	$3 p 3 d\left({ }^{3} F\right) 1 s^{2} F_{7 / 2}$
$3 s_{1 / 2} 3 d_{5 / 2}(3) 1 s$	$3 s 3 d\left({ }^{3} \mathrm{D}\right) 1 s^{4} D_{7 / 2}$	$3 p_{3 / 2} 3 d_{5 / 2}(3) 1 s$	$3 p 3 d\left({ }^{3} D\right) 1 s^{4} D_{7 / 2}$
$3 d_{3 / 2} 3 d_{5 / 2}(4) 1 s$	$3 d^{2}\left({ }^{3} F\right) 1 s^{2} F_{7 / 2}$	$3 p_{3 / 2} 3 d_{5 / 2}(4) 1 s$	$3 p 3 d\left({ }^{1} F\right) 1 s^{2} F_{7 / 2}$
$3 d_{3 / 2} 3 d_{5 / 2}(3) 1 s$	$3 d^{2}\left({ }^{3} F\right) 1 s^{4} F_{7 / 2}$		
$3 d_{5 / 2} 3 d_{5 / 2}(4) 1 s$	$3 d^{2}\left({ }^{1} G\right) 1 s^{2} G_{7 / 2}$	$3 p_{3 / 2} 3 d_{5 / 2}(4) 1 s$	$3 p 3 d\left({ }^{3} F\right) 1 s^{4} F_{9 / 2}$
$3 d_{3 / 2} 3 d_{5 / 2}(4) 1 s$	$3 d^{2}\left({ }^{3} F\right) 1 s^{4} F_{9 / 2}$		
$3 d_{5 / 2} 3 d_{5 / 2}(4) 1 s$	$3 d^{2}\left({ }^{1} G\right) 1 s^{2} G_{9 / 2}$		

Table 2. Second-order contributions to the energy matrices (a.u.) in the case of Li-like iron, $Z=26$. Two-particle and three-particle second-order Coulomb contributions are given in columns labelled $E_{2}^{(2)}$ and $E_{3}^{(2)}$, respectively.

$2 l_{1} j_{1} 2 l_{2} j_{2}\left(J_{12}\right) 1 s$	$2 l_{3} j_{3} 2 l_{4} j_{4}\left(J_{34}\right) 1 s$	$E_{2}^{(2)}$	$E_{3}^{(2)}$	$B_{2}^{(2)}$	$B_{3}^{(2)}$
Odd-parity states, $J=1 / 2$					
$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	-0.193825	-0.106398	-0.003731	-0.001018
$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	-0.237561	-0.124665	-0.009566	-0.001935
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-0.253589	-0.119031	-0.003277	-0.000774
$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	-0.042755	-0.012340	0.000541	-0.000041
$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	-0.042755	-0.012340	0.000541	0.000182
$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-0.034748	-0.004426	0.001354	0.000526
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	-0.034403	-0.004524	0.001338	0.000219
$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.012480	0.008471	0.001165	0.000217
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	0.012331	0.008551	0.001154	0.000131
Odd-parity states, $J=3 / 2$					
$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	-0.206146	-0.108680	-0.000779	0.000136
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-0.227394	-0.121216	-0.003354	-0.000897
$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-0.248060	-0.117944	-0.005786	-0.001151
$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.042573	0.012163	-0.000008	-0.000136
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	0.042124	0.012327	-0.000005	0.000214
$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-0.038850	-0.004963	0.001514	0.000243
$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	-0.038463	-0.005073	0.001495	0.000615
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-0.020468	-0.010156	-0.002047	-0.000310
$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-0.020468	-0.010156	-0.002047	-0.000753
Odd-parity states, $J=5 / 2$					
$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-0.151553	-0.095671	-0.000630	0.000043
Even-parity states, $J=1 / 2$					
$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	-0.170297	-0.096618	-0.003247	-0.000927
$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	-0.262073	-0.160578	-0.005715	-0.001918
$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	-0.277998	-0.171339	-0.005030	-0.002463
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-0.276600	-0.155257	-0.003743	-0.001676
$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	0.017788	0.011430	0.000579	0.000415
$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	0.017788	0.011430	0.000579	0.000071
$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	0.025993	0.016993	0.001037	0.000584
$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	0.025628	0.017438	0.001022	0.000509
$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	-0.000064	0.000000	0.000188
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	0.000000	-0.000065	0.000000	-0.000078
$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	-0.033784	-0.021423	-0.001274	-0.000570
$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	-0.033135	-0.022070	-0.001256	-0.000628
$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-0.049142	-0.014321	0.001915	0.000436
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	-0.048652	-0.014509	0.001892	0.000372
$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.034403	0.010135	-0.001338	-0.000251
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	0.034748	0.010005	-0.001354	-0.000305
Even-parity states, $J=3 / 2$					
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-0.213379	-0.136514	-0.004289	-0.001621
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-0.285911	-0.161537	-0.007264	-0.001454
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	-0.287856	-0.158846	-0.004584	-0.001365
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	0.027333	0.007988	-0.002652	-0.000689
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.027333	0.007988	-0.002652	-0.000781

Table 2. (concluded).

$2 l_{1} j_{1} 2 l_{2} j_{2}\left(J_{12}\right) 1 s$	$2 l_{3} j_{3} 2 l_{4} j_{4}\left(J_{34}\right) 1 s$	$E_{2}^{(2)}$	$E_{3}^{(2)}$	$B_{2}^{(2)}$	$B_{3}^{(2)}$
Even-parity states, $J=3 / 2$					
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	-0.038850	-0.011127	0.001514	0.000329
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-0.038463	-0.011273	0.001495	0.000339
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	0.008210	-0.000165	-0.001651	-0.000593
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	0.008166	-0.000177	-0.001634	-0.000564
Even-parity states, $J=5 / 2$					
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-0.251115	-0.150760	-0.001327	0.000520
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	-0.217774	-0.138230	-0.002071	-0.000382
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	-0.041945	-0.014365	0.000303	-0.000008
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-0.041490	-0.014565	0.000296	-0.000047

Fig. 2. (a) Second-order Coulomb and (b) Breit energy contributions to diagonal matrix elements in Li-like ions.

Similarly, for the three-particle contribution we obtain
$E_{3}^{(2)}(a, a)=-0.093573-0.058 Z^{2} \alpha^{2}+\cdots$
Additional values for terms proportional to $(\alpha Z)^{2}$ are found from (2). For example, for the diagonal matrix element presented in Fig. $2 b$ we obtain
$B_{2}^{(2)}(a, a)=-0.018 Z^{2} \alpha^{2}+\cdots$
$B_{3}^{(2)}(a, a)=0.0012 Z^{2} \alpha^{2}+\cdots$
As a result, we can find for the second-order correction
$E_{2}^{(2)}(a, a)+E_{3}^{(2)}(a, a)+B_{2}^{(2)}(a, a)+B_{3}^{(2)}(a, a)=-0.243667-0.170 Z^{2} \alpha^{2}+\cdots$
for $a=2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s[5 / 2]$. The second term in (7) is defined as the second-order relativistic correction and has not previously been calculated.

In Figs. $3 a$ and $3 b$, we illustrate the Coulomb $E_{2}^{(2)}$ and $E_{3}^{(2)}$ contributions together with the Breit $B_{2}^{(2)}$ and $B_{3}^{(2)}$ contributions for the two nondiagonal elements $E_{i}^{(2)}(a, b), B_{i}^{(2)}(a, b)$ and $E_{2}^{(i)}(b, a)$,

Fig. 3. (a) Second-order Coulomb and (b) Breit energy contributions to nondiagonal matrix elements in Li-like ions.

$B_{2}^{(i)}(b, a)$ for $a=2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s[1 / 2]$ and $b=2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s[1 / 2]$. We see from Figs. $3 a$ and $3 b$, that the ratio of $E_{3}^{(2)}$ to $E_{2}^{(2)}$ is about 50%, but the ratio of $B_{3}^{(2)}$ to $B_{2}^{(2)}$ is about 20% for both matrix elements. Figure $3 b$ illustrates the asymmetry of the nondiagonal matrix elements. The asymmetry of the energy matrix elements in RMBPT calculation is discussed in ref. 12.

In Table 3, we show results for the zeroth-, first-, and second-order Coulomb contributions, $E^{(0)}$, $E^{(1)}$, and $E^{(2)}$ and the first- and second-order Breit-Coulomb corrections, $B^{(1)}$ and $B^{(2)}$. Similar to Table 2, we present the results for the doubly-excited $1 s 2 l 2 l^{\prime}$ states for the special case of Li-like iron, $Z=26$. As one can see from Table 3, the second-order Breit-Coulomb corrections $B^{(2)}$ are smaller than the first-order Breit corrections $B^{(1)}$ by a factor of 10 ; however, the $B^{(1)}$ is smaller than the first- and second-order Coulomb corrections, $E^{(1)}$ and $E^{(2)}$, by factors 50-100 and 4-7, respectively. It should be noted that the value of the first-order Breit correction $B^{(1)}$ calculated with Dirac functions is different from value of the first-order Breit correction $B_{N R}^{(1)}$ calculated with Coulomb functions (see, for example ref. 32). To clarify this result, let us represent $E^{(1)}$ and $B^{(1)}$ in an αZ expansion form (see, for example ref. 33)
$E^{(1)}=Z E_{10}+Z^{3} \alpha^{2} E_{12}^{\prime}+Z^{5} \alpha^{4} E_{14}^{\prime}+\cdots$
$B^{(1)}=Z^{3} \alpha^{2} B_{12}+Z^{5} \alpha^{4} B_{14}+\cdots$
The sum of E_{12}^{\prime} and B_{12} in (8) and (9) gives us $B_{N R}^{(1)}$ calculated with Coulomb functions (or E_{12} in Table 4 of ref. 33).

The ratio of nondiagonal and diagonal matrix elements is smaller for the first-order contributions than for the second-order contributions. Another difference between the first- and second-order contributions is the symmetry properties: the first-order nondiagonal matrix elements are symmetric and the secondorder nondiagonal matrix elements are not symmetric. The values of $B^{(2)}\left[v^{\prime} w^{\prime}\left(J_{12}^{\prime}\right) u^{\prime}[J], v w\left(J_{12}\right) u[J]\right]$ and $B^{(2)}\left[v w\left(J_{12}\right) u[J], v^{\prime} w^{\prime}\left(J_{12}^{\prime}\right) u^{\prime}[J]\right]$ matrix elements differ by $30-50 \%$.

2.2. Eigenvalues and eigenvectors for doubly-excited states in Li-like ions

After evaluating the energy matrices, we calculate eigenvalues and eigenvectors for states with given values of J and parity. There are two possible methods to carry out the diagonalization: (a) diagonalize the sum of zeroth- and first-order matrices, then calculate the second-order contributions using the resulting eigenvectors; or (b) diagonalize the sum of the zeroth-, first-, and second-order matrices together. We choose the first method here.

Table 3. Contributions to energy matrices (a.u.) before diagonalization in the case of Li-like iron, $Z=26$.

$2 l_{1} j_{1} 2 l_{2} j_{2}\left(J_{12}\right) 1 s$	$2 l_{3} j_{3} 2 l_{4} j_{4}\left(J_{34}\right) 1 s$	$E^{(0)}$	$E^{(1)}$	$B^{(1)}$	$E^{(2)}$	$B^{(2)}$
Odd-parity states, $J=1 / 2$						
$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	-171.080643	14.979799	0.042307	-0.300223	-0.004749
$2 s_{1 / 2} 2 p_{1 / 2}$ (1) $1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	-171.080643	15.933970	0.101898	-0.362226	-0.011501
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-170.302660	15.963091	0.025948	-0.372619	-0.004051
$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	0.000000	0.641018	-0.016443	-0.055095	0.000499
$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	0.000000	0.641018	-0.016443	-0.055095	0.000723
$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	0.362020	-0.020392	-0.039174	0.001880
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(0) 1 s$	0.000000	0.362020	-0.020392	-0.038927	0.001556
$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	-0.516178	-0.012372	0.020951	0.001382
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	0.000000	-0.516178	-0.012372	0.020882	0.001284
Odd-parity states, $J=3 / 2$						
$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	-171.080643	15.269847	0.002745	-0.314825	-0.000643
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-170.302660	15.855894	0.028212	-0.348610	-0.004251
$2 s_{1 / 2} 2 p_{3 / 2}$ (2) $1 s$	$2 s_{1 / 2} 2 p_{3 / 2}$ (2) $1 s$	-170.302660	15.637351	0.050910	-0.366003	-0.006937
$2 s_{1 / 2} 2 p_{1 / 2}$ (1) $1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	-0.829696	0.005288	0.054736	-0.000143
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	0.000000	-0.829696	0.005288	0.054451	0.000209
$2 s_{1 / 2} 2 p_{1 / 2}$ (1) $1 s$	$2 s_{1 / 2} 2 p_{3 / 2}$ (2) $1 s$	0.000000	0.404751	-0.022798	-0.043813	0.001756
$2 s_{1 / 2} 2 p_{3 / 2}$ (2) $1 s$	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$	0.000000	0.404751	-0.022798	-0.043536	0.002111
$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	0.000000	0.430469	0.018832	-0.030625	-0.002357
$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	0.430469	0.018832	-0.030625	-0.002800
Odd-parity states, $J=5 / 2$						
$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-170.302660	14.347223	0.006059	-0.247224	-0.000587
Even-parity states, $J=1 / 2$						
$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	-171.080395	14.474443	0.028248	-0.266915	-0.004174
$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	-171.080891	17.229558	0.059070	-0.422651	-0.007633
$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	-169.524926	17.443735	0.042133	-0.449337	-0.007493
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-170.302909	17.091768	0.034729	-0.431857	-0.005419
$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	0.000000	-0.767134	-0.002828	0.029218	0.000995
$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	0.000000	-0.767134	-0.002828	0.029218	0.000650
$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	0.000000	-1.090732	-0.007774	0.042985	0.001620
$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	0.000000	-1.090732	-0.007774	0.043065	0.001531
$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	0.000000	0.000000	-0.000064	0.000188
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$	0.000000	0.000000	0.000000	-0.000065	-0.000078
$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	0.000000	0.646169	0.005458	-0.055207	-0.001844
$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	0.000000	0.646169	0.005458	-0.055205	-0.001884
$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	0.511974	-0.028838	-0.063462	0.002351
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$	0.000000	0.511974	-0.028838	-0.063161	0.002263
$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	-0.362020	0.020392	0.044538	-0.001588
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$	0.000000	-0.362020	0.020392	0.044753	-0.001659
Even-parity states, $J=3 / 2$						
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	-170.302909	16.429434	0.051234	-0.349893	-0.005911
$2 p_{1 / 2} 2 p_{3 / 2}$ (2) $1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-170.302909	17.234680	0.072831	-0.447449	-0.008718
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	-169.524926	17.151116	0.037997	-0.446703	-0.005949
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	0.000000	-0.286210	0.037216	0.035321	-0.003341
$2 p_{1 / 2} 2 p_{3 / 2}$ (2) $1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	-0.286210	0.037216	0.035321	-0.003432
$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	0.000000	0.404751	-0.022798	-0.049977	0.001843
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$	0.000000	0.404751	-0.022798	-0.049736	0.001834
$2 p_{1 / 2} 2 p_{3 / 2}$ (2) $1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	0.000000	-0.054668	0.019897	0.008045	-0.002245
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	0.000000	-0.054668	0.019897	0.007988	-0.002198

Table 3. (concluded).

$2 l_{1} j_{1} 2 l_{2} j_{2}\left(J_{12}\right) 1 s$	$2 l_{3} j_{3} 2 l_{4} j_{4}\left(J_{34}\right) 1 s$	$E^{(0)}$	$E^{(1)}$	$B^{(1)}$	$E^{(2)}$	$B^{(2)}$
Even-parity states, $J=3 / 2$						
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	0.000000	-0.054668	0.019897	0.008045	-0.002245
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	0.000000	-0.054668	0.019897	0.007988	-0.002198
Even-parity states, $J=5 / 2$						
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	-170.302909	16.869780	0.004247	-0.401875	-0.000808
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	-169.524926	16.416721	0.017458	-0.356004	-0.002453
$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	0.000000	0.467863	-0.009536	-0.056310	0.000295
$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$	0.000000	0.467863	-0.009536	-0.056055	0.000250

Fig. 4. Contribution to the energies of (a) the $2 s 2 p\left({ }^{3} P\right) 1 s{ }^{4} P_{5 / 2}$ and (b) the $2 p^{2}\left({ }^{3} P\right) 2 p{ }^{4} P_{5 / 2}$ levels of Li-like ions.

In Table 4, we list the following contributions to the energies of sixteen doubly-excited $1 s 2 l 2 l^{\prime}$ states and the ground state in $\mathrm{Fe}^{23+}: E^{(0+1)}=E^{(0)}+E^{(1)}+B^{(1)}$; the second-order Coulomb energy, $E^{(2)}$; the QED correction, E_{LAMB}; and the total theoretical energy, $E_{\text {tot }}$, relative to the 1 s state. The QED correction is approximated as the sum of the one-electron self energy and the first-order vacuumpolarization energy. The screened self-energy and vacuum polarization data given by Johnson and Soff [14] are used to determine the QED correction $E_{\text {LAMB }}$. Both $j j$ and LS designations are given in Table 4; however, neither $j j$ nor LS coupling describes the physical states properly, except for the single-configuration state $2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s[5 / 2] \equiv 2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$. We find that the second-order contribution is the largest contribution among the corrections to the $E^{(0+1)}$ value and is equal to about 0.2% of the total energy.

The importance of the second-order contribution to the energies is illustrated in Figs. $4 a$ and $4 b$. In these figures, the second-order energy, $E^{(2)}$; the first-order Breit energy, $B^{(1)}$; and the QED contribution, E_{LAMB}, are plotted as functions of Z for the doubly-excited $2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$ (Fig. 4a) and $2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$ (Fig. 4b) states in Li-like ions. We can see from Figs. $4 a$ and $4 b$ that $E^{(2)}$ is the dominant contribution up to $Z=54$ and $Z=42$ for those levels, respectively. In the case of high Z, the E_{LAMB} contribution becomes the largest contribution for the $2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$ level and the $B^{(1)}$ contribution becomes the largest one for the $2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$ level. The E_{LAMB} value is smaller than the $E^{(2)}$ value up to $Z=85$ for the level shown in Fig. $4 b$.

Fig. 5. Energies $E /(Z-0.8)^{2}$ in $10^{4} \mathrm{~cm}^{-1}$ of the $1 s 2 l 2 l^{\prime}$ levels as functions of Z in Li -like ions.

Fig. 6. Energies $E /(Z-0.8)^{2}$ of $1 s 3 l 3 l^{\prime}$ states in $10^{4} \mathrm{~cm}^{-1}$ as functions of Z in Li-like ions.

Energies of the $1 s 2 l 2 l^{\prime}$ and $1 s 3 l 3 l^{\prime}$ states relative to the energy of the $1 s$ state and divided by $(Z-0.8)^{2}$ are plotted in Figs. 5 and 6. It should be noted that Z was decreased by 0.8 to provide better presentation of the energy diagrams. The Z dependence of the odd-parity $2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$ level and the three even-parity $2 p^{2}\left({ }^{1,3} L\right) 1 s^{2,4} L_{3 / 2}$ levels is shown in Figs. $5 a$ and $5 b$, respectively. The Z dependence of the eight odd-parity $3 l 3 l^{\prime}\left({ }^{1,3} L\right) 1 s^{2,4} L_{3 / 2}$ levels is shown in Fig. $6 a$. We use LS labels for low- Z ions and $j j$ labels for high- Z ions. We see that the energy of all these levels increases sharply with Z for low Z up to $Z=20$ and then increases slowly for high Z (it is almost constant with Z for $\left.2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s[3 / 2]\right)$. Comparison of Z dependencies presented in Figs. 5 and 6 shows that energies of the $1 s 2 l 2 l^{\prime}$ levels are in the range of 4.8-6.4 in units of $10^{4} \times(Z-0.8)^{2} \mathrm{~cm}^{-1}$; however, the energies of the $1 s 3 l 3 l^{\prime}$ levels are in the range of $1.9-2.7$ in units of $10^{4} \times(Z-0.8)^{2} \mathrm{~cm}^{-1}$.

Strong mixing between states inside of the $1 s 2 l 2 l^{\prime}$ odd-parity complex with $J=1 / 2$ and $3 / 2$ is discussed in refs. 1 and 2 . The $2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s[3 / 2], 2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s[3 / 2]$, and $2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s[3 / 2]$ states are mixed with mixing coefficients equal to $0.4-0.7$ for the entire isoelectronic sequence. Similar strong mixing is found inside the $1 s 3 l 3 l^{\prime}$ odd-parity complex with $J=1 / 2$ and $3 / 2$. In addition to the $3 s_{1 / 2} 3 p_{j}\left(J_{12}\right) 1 s[3 / 2]$, the complex with $J=3 / 2$ includes the $3 p_{j} 3 d_{j^{\prime}}\left(J_{12}\right) 1 s[3 / 2]$ states. We found that for the second level of this complex (level labelled $3 s 3 p\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$), the contributions

Table 4. Energy levels of Li-like iron, $Z=26$ in a.u., $E^{(0+1)} \equiv E_{0}+E_{1}+B_{1}$.

$j j$-coupling	$E^{(0+1)}$	E_{2}	B_{2}	$E_{\text {LAMB }}$	$E_{\text {tot }}$	$j j$-coupling
$1 s^{2}\left({ }^{1} S\right) 2 s^{2} S_{1 / 2}$	-399.323466	-0.420482	-0.021942	0.160383	-399.605505	$1 s_{1 / 2} 1 s_{1 / 2}(0) 2 s$
$2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	-156.348260	-0.253226	-0.007109	0.017003	-156.591592	$2 s_{1 / 2} p_{1 / 2}(0) 1 s$
$2 s 2 p\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	-154.744513	-0.394425	-0.006850	0.017085	-155.128702	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$
$2 s 2 p\left({ }^{1} P\right) 1 s^{2} P_{1 / 2}$	-153.895227	-0.387417	-0.006342	0.018066	-154.270922	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$
$2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	-156.215283	-0.255029	-0.002214	0.017313	-156.455214	$2 s_{1 / 2} 2 p_{1 / 2}(1) 1 s$
$2 s 2 p\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	-154.411471	-0.387204	-0.003294	0.018064	-154.783905	$2 s_{1 / 2} 2 p_{3 / 2}(1) 1 s$
$2 s 2 p\left({ }^{1} P\right) 1 s^{2} P_{3 / 2}$	-153.785316	-0.387206	-0.006323	0.018178	-154.160667	$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$
$2 s 2 p\left({ }^{1} P\right) 1 s^{4} P_{5 / 2}$	-155.806401	-0.247224	-0.000587	0.018318	-156.035893	$2 s_{1 / 2} 2 p_{3 / 2}(2) 1 s$
$\left.2 s^{2}{ }^{1} S\right) 1 s^{2} S_{1 / 2}$	-156.807514	-0.256840	-0.003688	0.032236	-157.035806	$2 s_{1 / 2} 2 s_{1 / 2}(0) 1 s$
$2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	-154.123778	-0.333900	-0.008340	0.000054	-154.465965	$2 p_{1 / 2} 2 p_{1 / 2}(0) 1 s$
$2 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	-152.743760	-0.485003	-0.003675	0.000306	-153.232131	$2 p_{3 / 2} 2 p_{3 / 2}(0) 1 s$
$2 p^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	-151.338472	-0.495017	-0.009018	0.003490	-151.839017	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$
$2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	-153.827071	-0.324243	-0.008277	0.000492	-154.159100	$2 p_{1 / 2} 2 p_{3 / 2}(1) 1 s$
$2 p^{2}\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$	-152.807675	-0.449407	-0.008157	0.000490	-153.264749	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$
$2 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	-152.089772	-0.470393	-0.004143	0.001692	-152.562616	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$
$2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$	-153.605262	-0.333390	-0.001618	0.000895	-153.939374	$2 p_{1 / 2} 2 p_{3 / 2}(2) 1 s$
$\left.2 p^{2}{ }^{3} P\right) 1 s^{2} D_{5 / 2}$	-152.628410	-0.424490	-0.001643	0.001355	-153.053188	$2 p_{3 / 2} 2 p_{3 / 2}(2) 1 s$

from the $3 p_{1 / 2} 3 d_{3 / 2}(2) 1 s[3 / 2]$ and $3 p_{3 / 2} 3 d_{5 / 2}(2) 1 s[3 / 2]$ states are important. The odd-parity complex with $J=5 / 2$ includes eight states shown in Fig. 6. The first level of this complex $3 s 3 p\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$ is defined by the $3 s_{1 / 2} 3 p_{3 / 2}(2) 1 s[5 / 2]$ state with a small contribution from the $3 p_{3 / 2} 3 d_{3 / 2}(3) 1 s[5 / 2]$ state for low- Z ions. Two states $3 p_{1 / 2} 3 d_{3 / 2}(2) 1 s[5 / 2]$ and $3 p_{1 / 2} 3 d_{3 / 2}(3) 1 s[5 / 2]$ give almost equal contributions to the third, $3 p 3 d\left({ }^{3} D\right) 1 s^{2} D_{5 / 2}$, and fourth, $3 p 3 d\left({ }^{3} F\right) 1 s^{2} F_{5 / 2}$, levels of this complex. Mixing between $3 s_{1 / 2} 3 d_{j}$ and $3 p_{j} 3 p_{j^{\prime}}$ states inside of the even-parity complex for Mg -like ions is discussed in ref. 34. We find similar mixing between $3 s_{1 / 2} 3 d_{j}\left(J_{12}\right) 1 s$ and $3 p_{j} 3 p_{j^{\prime}}\left(J_{12}\right) 1 s$ states inside of the even-parity complex with $J=1 / 2-5 / 2$ in Li-like ions.

3. Comparison of results with theory and experiment

We calculated the energies of the 16 doubly-excited $1 s 2 l 2 l^{\prime}$ states, the 63 doubly-excited $1 s 3 l 3 l^{\prime}$ states, and the $1 s^{2} 2 p$ and $1 s^{2} 3 l$ singly-excited states together with the ground $1 s^{2} 2 s$ state for Li-like ions with nuclear charges $Z=6-100$. In Table 5, we illustrate our theoretical results for energies of the $1 s^{2} 2 p, 1 s^{2} 3 l$, and the 79 doubly-excited $1 s 2 l 2 l^{\prime}$ and $1 s 3 l 3 l^{\prime}$ states counted from the ground $1 s^{2} 2 s$ state for Li -like $\mathrm{Ar}, \mathrm{Fe}, \mathrm{Kr}$, and Mo . These ions are most frequently studied experimentally and theoretically (see, for example, refs. 11,35-40).

3.1. Excitation energies of doubly-excited states in Li-like ions

Comparisons of our RMBPT energies with other theoretical and experimental data are too voluminous to include here; therefore, we present several examples of comparisons for selected levels and ions. In Table 6, our theoretical results for the $2 s 2 p\left({ }^{1,3} P\right) 1 s^{4} P_{J}$ and $2 s 2 p\left({ }^{1,3} P\right) 1 s^{2} P_{J}$ levels are compared with available recommended NIST data for Mg^{9+} [16], Al^{10+} [17], Si^{11+} [18], P^{12+} [19], S^{13+} [20], K^{16+} [21], Ca^{17+} [21], Sc^{18+} [21], Ti^{19+} [21], V^{20+} [24], Cr^{21+} [25], Fe^{23+} [27], Ni^{25+} [21], and Cu^{26+} [29]. We see from Table 6 that the difference between our RMBPT results and recommended NIST data is $0.001-0.01 \%$. In Table 7, our theoretical results for the $2 s^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$ level and the eight $2 p^{2}\left({ }^{1,3} L\right) 1 s{ }^{2,4} L_{J}$ levels are compared with NIST data. Table 7 is organized in a similar way to Table 6. We can see that our RMBPT results are in excellent agreement with recommended NIST

Table 5. Energies $\left(10^{4} \mathrm{~cm}^{-1}\right)$ for the $1 s^{2} n l^{2} L_{J}, 2 l 2 l\left({ }^{1,3} L\right) 1 s^{2,4} L_{J}$, and $3 l 3 l\left({ }^{1,3} L\right) 1 s^{2,4} L_{J}$ levels in Li-like ions given relative to the ground state, $1 s^{2} 2 s^{2} S_{1 / 2}$.

	$Z=18$	$Z=26$	$Z=36$	$Z=42$
$1 s^{2} 2 p^{2} P_{1 / 2}$	25.72	39.23	57.53	69.55
$1 s^{2} 2 p^{2} P_{3 / 2}$	28.28	52.11	109.94	171.15
$1 s^{2} 3 s^{2} S_{1 / 2}$	417.57	926.91	1859.84	2586.65
$1 s^{2} 3 p^{2} P_{1 / 2}$	424.68	937.80	1875.80	2605.92
$1 s^{2} 3 p^{2} P_{3 / 2}$	425.44	941.61	1891.33	2636.06
$1 s^{2} 3 d^{2} D_{3 / 2}$	428.12	945.74	1897.18	2642.86
$1 s^{2} 3 d^{2} D_{5 / 2}$	428.35	946.94	1902.05	2652.23
$2 s^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	2483.63	5324.07	10429.62	14352.12
$2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	2490.09	5333.82	10444.22	14370.19
$2 s 2 p\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	2490.78	5336.81	10451.87	14380.13
$2 s 2 p\left({ }^{1} P\right) 1 s^{4} P_{5 / 2}$	2492.49	5346.02	10495.05	14469.94
$2 s 2 p\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	2510.40	5365.93	10491.85	14427.51
$2 s 2 p\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	2511.75	5373.49	10530.14	14509.27
$2 s 2 p\left({ }^{1} P\right) 1 s^{2} P_{1 / 2}$	2519.84	5384.75	10547.06	14530.29
$2 s 2 p\left({ }^{1} P\right) 1 s^{2} P_{3 / 2}$	2520.39	5387.17	10553.86	14540.74
$2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	2518.12	5380.47	10518.97	14461.80
$2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	2519.26	5387.21	10556.68	14545.31
$2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$	2520.51	5392.03	10565.81	14555.39
$2 p^{2}\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$	2532.09	5406.84	10583.63	14576.12
$2 p^{2}\left({ }^{3} P\right) 1 s^{2} D_{5 / 2}$	2532.16	5411.48	10620.35	14659.16
$2 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	2534.66	5407.55	10579.03	14568.56
$2 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	2537.22	5422.25	10639.83	14683.48
$2 p^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	2549.98	5438.13	10657.03	14701.22
$3 s^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	3367.07	7248.87	14249.66	19644.39
$3 s 3 p\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	3368.10	7250.40	14251.95	19647.21
$3 s 3 p\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	3368.30	7251.28	14254.40	19650.73
$3 s 3 p\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$	3368.78	7253.89	14266.69	19676.44
$3 s 3 p\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	3373.45	7258.91	14264.91	19663.22
$3 s 3 p\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	3373.83	7261.20	14276.60	19688.02
$3 s 3 d\left({ }^{3} D\right) 1 s^{2} D_{3 / 2}$	3374.86	7263.62	14281.80	19694.84
$3 s 3 d\left({ }^{3} \mathrm{D}\right) 1 s^{2} D_{5 / 2}$	3374.70	7262.95	14279.82	19691.97
$3 s 3 p\left({ }^{1} P\right) 1 s^{2} P_{1 / 2}$	3376.29	7265.05	14282.95	19696.01
$3 s 3 p\left({ }^{1} P\right) 1 s^{2} P_{3 / 2}$	3376.45	7265.58	14284.03	19697.54
$3 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	3376.08	7263.90	14274.39	19675.37
$3 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	3376.41	7265.78	14284.53	19698.09
$3 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$	3376.85	7266.62	14286.39	19701.32
$3 s 3 d\left({ }^{3} D\right) 1 s^{4} D_{1 / 2}$	3376.87	7265.98	14283.74	19696.45
$3 s 3 d\left({ }^{3} D\right) 1 s^{4} D_{3 / 2}$	3376.92	7266.25	14285.45	19700.01
$3 s 3 d\left({ }^{3} D\right) 1 s^{4} D_{5 / 2}$	3377.00	7268.11	14292.80	19711.36
$3 s 3 d\left({ }^{3} D\right) 1 s^{4} D_{7 / 2}$	3377.12	7267.21	14288.71	19705.99
$3 p 3 d\left({ }^{3} F\right) 1 s^{4} F_{3 / 2}$	3379.66	7270.52	14291.00	19705.54
$3 p 3 d\left({ }^{3} F\right) 1 s^{4} F_{5 / 2}$	3379.83	7271.00	14291.36	19705.46
$3 p 3 d\left({ }^{3} F\right) 1 s^{4} F_{7 / 2}$	3380.18	7273.06	14299.92	19721.05
$3 p 3 d\left({ }^{3} F\right) 1 s^{4} F_{9 / 2}$	3380.61	7275.47	14311.48	19745.49
$3 s 3 d\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$	3380.15	7271.25	14292.35	19707.98
$3 s 3 d\left({ }^{1} D\right) 1 s^{2} D_{5 / 2}$	3380.35	7272.32	14298.08	19719.93
$3 p 3 d\left({ }^{3} \mathrm{D}\right) 1 s^{2} D_{3 / 2}$	3380.89	7274.60	14302.57	19721.44
$3 p 3 d\left({ }^{3} \mathrm{D}\right) 1 s^{2} D_{5 / 2}$	3380.80	7273.98	14300.96	19722.21

Table 5. (concluded).

	$Z=18$	$Z=26$	$Z=36$	$Z=42$
$3 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	3380.34	7270.97	14290.54	19704.61
$3 p^{2}\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	3380.96	7274.09	14300.74	19720.46
$3 p 3 d\left({ }^{3} F\right) 1 s^{2} F_{5 / 2}$	3382.11	7275.78	14303.10	19723.59
$3 p 3 d\left({ }^{3} F\right) 1 s^{2} F_{7 / 2}$	3382.80	7278.62	14314.65	19745.75
$3 p^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	3382.02	7278.79	14312.21	19742.57
$3 p 3 d\left({ }^{3} \mathrm{D}\right) 1 s^{4} D_{1 / 2}$	3383.51	7277.25	14303.09	19721.19
$3 p 3 d\left({ }^{3} D\right) 1 s^{4} D_{3 / 2}$	3383.59	7277.52	14303.55	19723.54
$3 p 3 d\left({ }^{3} \mathrm{D}\right) 1 s^{4} \mathrm{D}_{5 / 2}$	3383.73	7278.24	14310.72	19740.81
$3 p 3 d\left({ }^{3} \mathrm{D}\right) 1 s^{4} \mathrm{D}_{7 / 2}$	3383.96	7279.72	14315.91	19750.75
$3 p 3 p\left({ }^{1} D\right) 1 s^{2} D_{5 / 2}$	3384.48	7279.39	14310.08	19737.19
$3 p^{2}\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$	3384.48	7279.49	14311.81	19741.35
$3 p 3 d\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	3385.05	7280.99	14315.68	19746.56
$3 p 3 d\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	3385.00	7280.81	14313.92	19744.13
$3 p 3 d\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$	3384.95	7280.94	14317.42	19750.45
$3 p 3 d\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$	3386.19	7281.86	14316.79	19748.37
$3 p 3 d\left({ }^{1} \mathrm{D}\right) 1 s^{2} \mathrm{D}_{5 / 2}$	3386.55	7283.69	14320.89	19754.64
$3 p 3 d\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	3387.46	7284.60	14320.66	19752.31
$3 p 3 d\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	3387.33	7284.34	14321.49	19755.88
$3 d 3 d\left({ }^{3} F\right) 1 s^{2} F_{5 / 2}$	3387.75	7286.18	14326.80	19763.65
$3 d 3 d\left({ }^{3} F\right) 1 s^{2} F_{7 / 2}$	3387.65	7285.97	14326.32	19762.91
$3 d^{2}\left({ }^{3} F\right) 1 s^{4} F_{3 / 2}$	3387.49	7285.24	14323.01	19755.84
$3 d^{2}\left({ }^{3} F\right) 1 s^{4} F_{5 / 2}$	3387.53	7285.25	14322.76	19755.28
$3 d^{2}\left({ }^{3} F\right) 1 s^{4} F_{7 / 2}$	3388.01	7287.28	14330.37	19769.26
$3 d^{2}\left({ }^{3} F\right) 1 s^{4} F_{9 / 2}$	3387.83	7286.91	14329.65	19768.23
$3 p 3 d\left({ }^{1} F\right) 1 s^{2} F_{7 / 2}$	3390.81	7289.71	14328.76	19764.00
$3 p 3 d\left({ }^{1} F\right) 1 s^{2} F_{5 / 2}$	3390.96	7290.26	14330.41	19766.59
$3 d^{2}\left({ }^{1} G\right) 1 s^{2} G_{7 / 2}$	3391.71	7292.48	14337.14	19778.24
$3 d^{2}\left({ }^{1} G\right) 1 s^{2} G_{9 / 2}$	3391.65	7292.28	14336.60	19777.40
$3 d^{2}\left({ }^{3} P\right) 1 s^{4} P_{1 / 2}$	3391.82	7291.77	14332.52	19767.49
$3 d^{2}\left({ }^{3} P\right) 1 s^{4} P_{3 / 2}$	3391.89	7292.16	14334.71	19772.09
$3 d^{2}\left({ }^{3} P\right) 1 s^{4} P_{5 / 2}$	3391.97	7292.44	14334.38	19771.32
$3 d^{2}\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	3392.36	7292.65	14335.10	19772.95
$3 d^{2}\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	3392.51	7293.12	14335.01	19772.52
$3 d^{2}\left({ }^{1} D\right) 1 s^{2} D_{5 / 2}$	3394.36	7295.58	14340.97	19783.08
$3 d^{2}\left({ }^{1} D\right) 1 s^{2} D_{3 / 2}$	3394.42	7295.80	14341.59	19783.84
$3 p 3 d\left({ }^{1} P\right) 1 s^{2} P_{1 / 2}$	3395.61	7296.24	14336.34	19771.99
$3 p 3 d\left({ }^{1} P\right) 1 s^{2} P_{3 / 2}$	3395.70	7296.69	14337.91	19774.41
$3 d^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	3404.61	7310.95	14361.13	19804.84

data. The $1 s 3 l 3 l^{\prime}$ doubly-excited states have received much less attention in the literature than the $1 s 2 l 2 l^{\prime}$ states discussed above. A limited number of $1 s 3 l_{1} j_{1} 3 l_{2} j_{2}-1 s^{2} 3 l_{3} j_{3}$ transitions was presented by Beiersdorfer et al. in ref. 37. In Table 8, we compare the RMBPT results with theoretical results and experimental measurements from ref. 37. The theoretical results in ref. 37 were obtained by using the Hebrew University Lawrence Livermore Atomic Code (HULLAC). The difference between RMBPT and HULLAC results is $0.02-0.06 \%$.

3.2. Fine structure of the ${ }^{\mathbf{2}} L$ and ${ }^{4} L$ terms in doubly-excited states of $L i$-like ions

No direct measurement of fine-structure intervals was made by observing the wavelength differences between transitions within the doublet or quartet states. The intervals of both upper and lower states

Table 6. Energies $\left(10^{4} \mathrm{~cm}^{-1}\right)$ of the odd-parity $2 l 2 l\left({ }^{1,3} L\right) 1 s^{2,4} L_{J}$ levels in Li-like ions given relative to the ground state, $1 s^{2} 2 s s^{2} S_{1 / 2}$. Comparison of the RMBPT results with recommended NIST data.

	$\begin{aligned} & 2 s 2 p\left({ }^{3} P\right) 1 s \\ & { }^{4} P_{1 / 2} \end{aligned}$	$\begin{aligned} & 2 s 2 p\left({ }^{3} P\right) 1 s \\ & { }^{4} P_{3 / 2} \end{aligned}$	$\begin{aligned} & 2 s 2 p\left({ }^{3} P\right) 1 s \\ & { }_{4} P_{3 / 2} \end{aligned}$	$\begin{aligned} & 2 s 2 p\left({ }^{3} P\right) 1 s \\ & { }^{2} P_{1 / 2} \end{aligned}$	$\begin{aligned} & 2 s 2 p\left({ }^{3} P\right) 1 s \\ & { }^{2} P_{3 / 2} \end{aligned}$	$\begin{aligned} & 2 s 2 p\left({ }^{1} P\right) 1 s \\ & { }^{2} P_{1 / 2} \end{aligned}$	$\begin{aligned} & 2 s 2 p\left({ }^{1} P\right) 1 s \\ & { }^{2} P_{3 / 2} \end{aligned}$
$Z=12$	1064.74	1064.84	1065.11	1076.94	1077.16	1082.79	1082.86
Ref. 16	1064.63	1064.74		1077.12	1077.12	1082.90	1082.90
$Z=13$	1260.62	1260.77	1261.16	1274.13	1274.45	1280.51	1280.63
Ref. 17			1261.06	1274.06	1274.38	1280.43	1280.58
$Z=14$	1473.13	1473.34	1473.89	1487.96	1488.41	1494.90	1495.06
Ref. 18	1473.23	1473.44	1473.99	1488.09	1488.53	1495.00	1495.21
$Z=15$	1702.29	1702.60	1703.34	1718.47	1719.07	1725.98	1726.21
Ref. 19	1702.45	1702.75	1703.50	1718.66	1719.25	1726.13	1726.43
$Z=16$	1948.15	1948.56	1949.56	1965.69	1966.49	1973.80	1974.11
Ref. 20	1948.04	1948.45	1949.44	1965.61	1966.39	1973.68	1974.08
$Z=19$	2786.25	2787.12	2789.30	2807.97	2809.69	2818.17	2818.86
Ref. 21	2787.10	2787.10	2787.10	2807.90	2807.90	2818.20	2818.20
$Z=20$	3099.26	3100.34	3103.08	3122.41	3124.59	3133.44	3134.30
Ref. 21						3135.20	3135.20
$Z=21$	3429.16	3430.48	3433.91	3453.76	3456.49	3465.73	3466.78
Ref. 21						3466.40	3466.40
$Z=22$	3776.00	3777.59	3781.83	3802.08	3805.47	3815.09	3816.37
Ref. 21						3816.20	3816.20
$Z=23$	4139.83	4141.73	4146.93	4167.40	4171.58	4181.59	4183.12
Ref. 24				4167.90	4171.90	4182.00	4182.00
$Z=24$	4520.70	4522.94	4529.28	4549.77	4554.90	4565.31	4567.12
Ref. 25					4554.80	4564.80	
Z=26	5333.82	5336.81	5346.02	5365.93	5373.49	5384.75	5387.17
Ref. 27	5328.79	5339.00		5365.70	5375.20	5384.40	5390.30
$Z=28$	6215.83	6219.68	6232.72	6251.00	6261.91	6274.11	6277.24
Ref. 21	6219.80	6222.80		6251.60	6261.70	6275.50	
Z=29	6682.83	6687.14	6702.54	6719.55	6732.53	6745.25	6748.76
Ref. 29			6702.00				

Note: Ref. $16, \mathrm{Mg}^{9+}$; Ref. $17, \mathrm{Al}^{10+}$; Ref. $18, \mathrm{Si}^{11+}$; Ref. 19, P^{12+}; Ref. $20, \mathrm{~S}^{13+}$; Ref. 21, K^{16+}; Ref. $21, \mathrm{Ca}^{17+}$; Ref. 21, Sc^{18+}; Ref. 21, Ti^{19+}; Ref. 24, V^{20+}; Ref. $25, \mathrm{Cr}^{21+}$; Ref. 27, Fe^{23+}; Ref. 21, Ni^{25+}; and Ref. 29, Cu^{26+}.
are determined if all allowed transitions are observed [41, 42]. In Table 9, we show results for the fine-structure splitting of the $1 s 2 s 2 p^{4} P$ and the $1 s 2 p^{2}{ }^{4} P$ terms for Li-like ions with $Z=6-8$. Our RMBPT results are compared with experimental measurements from ref. 41 and the theoretical data obtained using the MZ code [2]. This code is based on the Z-expansion of nonreativistic energy matrix with the addition of the relativistic Breit correction (see refs. 1 and 2 for details).

The fine-structure intervals are quite regular throughout the isoelectronic sequence, as seen from Figs. 7 and 8. In Figs. 7 and 8, we present the fine-structure splitting divided by $(Z-0.8)^{3}$ for the doublet and quartet terms of the $1 s 2 l 2 l^{\prime}$ and $1 s 3 l 3 l^{\prime}$ states. It should be noted that energy splitting E was divided by $(Z-0.8)^{3}$ to provide a better presentation of the energy diagrams. The energy difference between the ${ }^{4} P_{3 / 2}$ and ${ }^{4} P_{1 / 2}$ levels in the $2 s 2 p\left({ }^{3} P\right) 1 s{ }^{4} P_{J}$ quartet term is very small, as shown in Fig. 7a; however, the energy difference between the ${ }^{4} P_{5 / 2}$ and ${ }^{4} P_{3 / 2}$ levels rapidly increases with increasing Z. Similar behavior is found for the $3 s 3 p\left({ }^{3} P\right) 1 s^{4} P_{J}$ quartet term shown in Fig. $8 a$.

Table 7. Energies ($10^{4} \mathrm{~cm}^{-1}$) of the even-parity $2 l 2 l\left({ }^{1,3} L\right) 1 s^{2,4} L_{J}$ levels in Li-like ions given relative to the ground state, $1 s^{2} 2 s^{2} S_{1 / 2}$. Comparison of the RMBPT results with recommended NIST data.

	$\begin{aligned} & 2 s^{2}\left({ }^{1} S\right) 1 s \\ & { }^{2} S_{1} S \end{aligned}$	$\begin{aligned} & 2 p^{2}\left({ }^{3} P\right) \\ & { }_{4} P_{1 / 2} \end{aligned}$	$\begin{aligned} & 2 p^{2}\left({ }^{3} I\right. \\ & { }^{2} P_{1 / 2} \end{aligned}$	$2 p^{2}\left({ }^{1} S\right.$ ${ }^{2} S_{1 / 2}$	$2 p^{2}\left({ }^{3} P\right)$ ${ }_{4} P_{3 / 2}$	$\begin{aligned} & 2 p^{2}\left({ }^{1} D\right. \\ & { }^{2} D_{3 / 2} \end{aligned}$	$\begin{aligned} & 2 p^{2}\left({ }^{3} P\right. \\ & { }^{2} P_{3 / 2} \end{aligned}$	$\begin{aligned} & 2 p^{2}\left({ }^{3} P\right. \\ & { }_{4}^{4} P_{5 / 2} \end{aligned}$	$\begin{aligned} & 2 p^{2}\left({ }^{1} D\right) 1 s \\ & { }^{2} D_{5 / 2} \end{aligned}$
$Z=12$	1060.48	1081.84	1091.67	1100.88	1082.03	1089.58	1092.06	1082.23	1089.46
Ref. 16		1081.67		1100.80	1081.85	1089.40		1082.05	1089.40
$Z=13$	1256.00	1279.41	1290.35	1300.44	1279.67	1288.09	1290.91	1279.97	1287.99
Ref. 17		1279.25	1290.17	1300.29	1279.51	1287.96	1290.72	1279.80	1287.85
$Z=14$	1468.15	1493.65	1505.71	1516.72	1494.02	1503.32	1506.49	1494.44	1503.20
Ref. 18	1468.28	1493.68	1505.72	1516.76	1494.04	1503.38	1506.50	1494.45	1503.38
Z=15	1696.95	1724.61	1737.77	1749.76	1725.10	1735.28	1738.85	1725.67	1735.17
Ref. 19	1697.13	1724.70	1737.85	1749.85	1725.19	1735.31	1735.42	1725.75	1735.42
$Z=16$	1942.45	1972.31	1986.59	1999.61	1972.97	1984.03	1988.05	1973.73	1983.95
Ref. 20	1942.20	1972.13	1973.68	1999.42	1972.79	1983.82	1987.85	1973.53	1983.90
Z=19	2779.40	2816.33	2834.01	2850.62	2817.79	2831.52	2837.32	2819.35	2831.72
Ref. 21		2816.00	2838.40	2851.10	2816.00	2831.80	2838.40		2832.10
$Z=20$	3092.00	3131.45	3150.31	3168.34	3133.31	3147.92	3154.55	3135.24	3148.35
Ref. 21						3148.40	3155.10		3148.60
Z=21	3421.50	3463.56	3483.61	3503.22	3465.90	3481.38	3488.97	3468.22	3482.13
Ref. 21			3486.00	3504.70		3484.00	3486.00		3484.00
Z=22	3767.93	3812.69	3833.98	3855.33	3815.61	3831.95	3840.67	3818.38	3833.14
Ref. 21				3855.00		3831.90	3841.60		3832.90
Z=23	4131.34	4178.89	4201.48	4224.78	4182.53	4199.71	4209.76	4185.77	4201.48
Ref. 24	4131.70			4224.70		4199.70	4210.00	4185.80	4201.70
Z=24	4511.80	4562.22	4586.19	4611.66	4566.71	4584.72	4596.31	4570.46	4587.24
Ref. 25						4584.90			4587.00
Z=26	5324.07	5380.47	5407.55	5438.13	5387.21	5406.84	5422.25	5392.03	5411.48
Ref. 27	5323.56	5380.60	5407.70	5438.50	5387.70	5407.00	5424.40	5393.70	5412.60
Z=28	6205.18	6267.88	6298.76	6335.63	6277.78	6298.97	6319.35	6283.67	6306.806308.50
Ref. 21		6269.70	6299.70	6239.70	6278.30	6300.80	6321.00		

Note: Ref. $16, \mathrm{Mg}^{9+}$; Ref. $17, \mathrm{Al}^{10+}$; Ref. $18, \mathrm{Si}^{11+}$; Ref. 19, P^{12+}; Ref. 20, S^{13+}; Ref. 21, K^{16+}; Ref. 21, Ca^{17+}; Ref. 21, Sc^{18+}; Ref. 21, Ti^{19+}; Ref. 24, V^{20+}; Ref. 25, Cr^{21+}; Ref. 27, Fe^{23+}; and Ref. 21, Ni^{25+}.

The range of energies plotted in Figs. $7 a$ and $8 a$ differs by a factor of 4. The decrease in the energy range for the fine-structure splitting of $1 s 3 l 3 l^{\prime}$ states in comparison with $1 s 2 l 2 l^{\prime}$ states is also observed for the doublet terms (compare Figs. $7 b$ and $8 b$). The energy difference between the ${ }^{2} P_{3 / 2}$ and ${ }^{2} P_{1 / 2}$ levels in the $n \operatorname{snp}\left({ }^{1} P\right) 1 s^{2} P_{J}$ doublet term is very small but the energy difference between the ${ }^{2} P_{3 / 2}$ and ${ }^{2} P_{1 / 2}$ levels in the $n s n p\left({ }^{3} P\right) 1 s^{2} P_{J}$ doublet term rapidly increases with increasing Z. The energy difference between the ${ }^{4} P_{5 / 2}$ and ${ }^{4} P_{3 / 2}$ levels in the $2 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{J}$ quartet term is again very small, as shown in Fig. $7 c$; however, the energy difference between the ${ }^{4} P_{3 / 2}$ and ${ }^{4} P_{1 / 2}$ levels rapidly increases with increasing Z, which is the opposite to the behavior of the $2 s 2 p\left({ }^{3} P\right) 1 s{ }^{4} P_{J}$ quartet term. Similar behavior of the fine-structure splitting is found for the $3 p^{2}\left({ }^{3} P\right) 1 s^{4} P_{J}$ quartet term shown in Fig. $8 e$. The unusual splittings are due principally to changes from LS to $j j$ coupling, with mixing from other triplet and singlet states. States with different J complexes mix differently. Further, experimental confirmation would be very helpful in verifying the correctness of these occasionally sensitive mixing parameters.

Table 8. Wavelengths λ in \AA for $3 l 3 l\left({ }^{1,3} L\right) 1 s^{2} L_{J}-1 s^{2} 3 l_{j}$ transitions in Ar^{15+}. Comparison with theoretical (HULLAC code) and experimental (Expt.) results from ref. 37.

LS - designations					$j j$-designations		
$3 l 3 l\left({ }^{1,3} L\right) 1 s^{2} L_{J}$	$1 s^{2} 3 l^{2} L_{J}$	RMBPT	HULLAC $[37]$	Expt. $[37]$	$3 l_{j} 3 l_{j^{\prime}}\left(J_{12}\right) 1 s$	$3 l_{j}$	
$3 p 3 d\left({ }^{1} P\right) 1 s^{2} P_{3 / 2}$	$1 s^{2} 3 d^{2} D_{5 / 2}$	3.3700	3.3692		$3 p_{3 / 2} 3 d_{5 / 2}(2) 1 s$	$3 d_{5 / 2}$	
$3 p 3 d\left({ }^{1} F\right) 1 s^{2} F_{5 / 2}$	$1 s^{2} 3 d^{2} D_{3 / 2}$	3.3751	3.3751		$3 p_{3 / 2} 3 d_{5 / 2}(3) 1 s$	$3 d_{3 / 2}$	
$3 p 3 d\left({ }^{1} F\right) 1 s^{2}{ }^{2} F_{7 / 2}$	$1 s^{2} 3 d^{2} D_{5 / 2}$	3.3756	3.3755		$3 p_{3 / 2} 3 d_{5 / 2}(4) 1 s$	$3 d_{5 / 2}$	
$3 s 3 p\left({ }^{3} P\right) 1 s^{2} P_{3 / 2}$	$1 s^{2} 3 s^{2} S_{1 / 2}$	3.3827	3.3845	3.3856		$3 s_{1 / 2} 3 p_{3 / 2}(1) 1 s$	$3 s_{1 / 2}$
$3 s 3 p\left({ }^{3} P\right) 1 s^{2} P_{1 / 2}$	$1 s^{2} 3 s^{2} S_{1 / 2}$	3.3831	3.3849	3.3856	$3 s_{1 / 2} 3 p_{1 / 2}(1) 1 s$	$3 s_{1 / 2}$	
$3 p 3 d\left({ }^{3} F\right) 1 s^{2} F_{7 / 2}$	$1 s^{2} 3 d^{2} D_{5 / 2}$	3.3847	3.3858	3.3856		$3 p_{3 / 2} 3 d_{3 / 2}(3) 1 s$	$3 d_{5 / 2}$
$3 p 3 d\left({ }^{3} F\right) 1 s^{2} F_{5 / 2}$	$1 s^{2} 3 d^{2} D_{3 / 2}$	3.3852	3.3863	3.3856	$3 p_{1 / 2} 3 d_{5 / 2}(3) 1 s$	$3 d_{3 / 2}$	
$3 p 3 d\left({ }^{3} F\right) 1 s^{2} F_{5 / 2}$	$1 s^{2} 3 d^{2} D_{5 / 2}$	3.3855	3.3866	3.3856	$3 p_{1 / 2} 3 d_{5 / 2}(3) 1 s$	$3 d_{5 / 2}$	
$3 s 3 d\left({ }^{3} D\right) 1 s^{2} D_{3 / 2}$	$1 s^{2} 3 p^{2} P_{1 / 2}$	3.3896	3.3920		$3 s_{1 / 2} 3 d_{3 / 2}(1) 1 s$	$3 p_{1 / 2}$	
$3 s 3 d\left({ }^{3} D\right) 1 s^{2} D_{5 / 2}$	$1 s^{2} 3 p^{2} P_{3 / 2}$	3.3907	3.3939		$3 s_{1 / 2} 3 d_{3 / 2}(2) 1 s$	$3 p_{3 / 2}$	
$3 s^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	$1 s^{2} 3 p^{2} P_{1 / 2}$	3.3986	3.4009		$3 s_{1 / 2} 3 s_{1 / 2}(0) 1 s$	$3 p_{1 / 2}$	
$3 s^{2}\left({ }^{1} S\right) 1 s^{2} S_{1 / 2}$	$1 s^{2} 3 p^{2} P_{3 / 2}$	3.3995	3.4017			$3 s_{1 / 2} 3 s_{1 / 2}(0) 1 s$	$3 p_{3 / 2}$

Table 9. Fine-structure splitting of the $1 s 2 s 2 p{ }^{4} P$ and the $1 s 2 p^{2}{ }^{4} P$ terms in cm^{-1} for Li-like ions. Comparison with theoretical results obtained using the MZ code [2] and with experimental measurements from ref. 41.

		$1 s 2 s 2 p^{4} P$		$1 s 2 p^{24} P$	
		${ }^{4} P_{5 / 2}-{ }^{4} P_{3 / 2}$	${ }^{4} P_{3 / 2}-{ }^{4} P_{1 / 2}$	${ }^{4} P_{5 / 2}-{ }^{4} P_{3 / 2}$	${ }^{4} P_{3 / 2}-{ }^{4} P_{1 / 2}$
$Z=8$	Expt.	418 ± 4	102 ± 5	252 ± 4	295 ± 5
	RMBPT	407	102	261	297
	MZ	410	103	242	295
$Z=7$	Expt.	212 ± 3	35 ± 4	115 ± 3	160 ± 4
	RMBPT	211	39	124	161
	MZ	214	37	109	159
$Z=6$	Expt.	100 ± 5	0 ± 7	41 ± 5	83 ± 7
	RMBPT	98	8	50	77
	MZ	96	6	37	77

3.3. Excitation energies of singly-excited states in Li-like ions

The energies of $1 s^{2} 2 l$ states are not the subject of this paper as those energies have been studied experimentally and theoretically in numerous publications. For example, the energies of the $1 s^{2} 2 l$ states were calculated using the RMBPT method and all-order method by Johnson et al. in refs. 43-45. The Hylleraas-type variational method was used in ref. 46 to calculate the energies of the lithium $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ isoelectronic sequences up to $Z=20$. There was no previous RMBPT calculation for the energies of the $1 s^{2} 3 l$ states in Li-like ions. We need these data since they are important for the calculation of the $1 s 3 l 3 l^{\prime}-1 s^{2} 3 l^{\prime \prime}$ transition energies. These transitions are important for obtaining satellite spectra for the $1 s 3 l-1 s^{2}$ lines $[37,38]$.

We calculate the energies of $1 s^{2} 3 l$ states using two methods. First, we calculate these energies as described above, treating the $1 s^{2} 3 l$ states as a three-electron system. Next, we treat the $1 s^{2} 3 l$ states as a system with one valence electron above the $1 s^{2}$ core as was done in refs. 43-45. As a result, we obtain the energy counted from the energy of the $1 s^{2}$ core, $E(C)$. The sum of the core $E(C)$ energy and the valence $E(n l)$ energies gives us the absolute energy of the three-electron $1 s^{2} 3 l$ system. Comparison

Fig. 7. Energy splittings $E /(Z-0.8)^{3}$ of $1 s 2 l 2 l^{\prime}$ states in cm^{-1} as functions of Z.

of the results of the $1 s^{2} 3 l$ energy obtained by two approaches shows that the difference decreases, as $1 / Z$, with increase in Z. It is reasonable, since we include additional high-order $1 / Z^{n}$ contributions in RMBPT calculations with the Dirac-Fock functions obtained with the $1 s^{2}$ potential, which are not included in RMBPT calculations with the hydrogenic potential when the $1 s^{2} 3 l$ system is treated as a three-electron system.

In Table 10, our theoretical results for the fine-structure splitting of $1 s^{2} n l^{2} L$ terms obtained by two methods (with and without $1 s^{2}$ core functions) are compared with available recommended NIST data from refs. 15-31 for Li-like ions with $Z=6-42$. We can see from Table 10 that our results obtained with the $1 s^{2}$ core functions (hf) are in better agreement with the recommended NIST data than the results obtained with the hydrogenic potential (cl). We use the first set of data in Tables 6 and 7 to present $2 l 2 l^{\prime}\left({ }^{1,3} L\right) 1 s^{2,4} L_{J}$ energies counted from the $1 s^{2} 2 s^{2} S_{1 / 2}$ ground state. The wavelengths for $3 l 3 l^{\prime}\left({ }^{1,3} L\right) 1 s^{2,4} L_{J}-1 s^{2} 3 l^{2} l_{J^{\prime}}$ transitions are given in Table 8.

4. Conclusion

In conclusion, a systematic second-order RMBPT study of the energies of the doubly-excited states of Li-like ions has been presented. We find that RMBPT gives results in good agreement with experimental and predicted data. It would be beneficial if experimental data for other highly charged Li-like ions were available. At the present time, there are almost no experimental data between $Z=30$ and 100 for the lithium isoelectronic sequence. Availability of such data could lead to an improved understanding of the

Table 10. Splittings of $1 s^{2} n l^{2} L$ terms in cm^{-1}. Comparison of RMBPT data with recommended NIST data. The RMBPT data are calculated with $1 s^{2}$ core (label hf) and without core, as three-electron system (label cl).

	$2 p^{2} P$	$3 p^{2} P$	$3 d^{2}$ D		$2 p^{2} P$	$3 p^{2} P$	$3 d^{2} \mathrm{D}$
	3/2-1/2	3/2-1/2	5/2-3/2		3/2-1/2	3/2-1/2	5/2-3/2
$Z=6$				$Z=21$			
hf	108	32	9	hf	50671	14982	4710
cl	116	35	16	cl	50542	14959	4741
Ref. 15	107	31	11	Ref. 23	50700	15000	4000
$Z=7$				Z $=22$			
hf	260	76	23	hf	62166	18385	5785
cl	266	80	30	cl	62016	18356	5819
Ref. 15	258	74	24	Ref. 21	62146	18000	6000
$Z=8$				$Z=23$			
hf	532	156	46	hf	75527	22342	7034
cl	536	161	56	cl	75354	22305	7072
Ref. 15	533	157	51	Ref. 24	75550	22000	6600
$Z=9$				$Z=24$			
hf	976	287	86	hf	90952	26909	8477
cl	977	291	97	cl	90752	26866	8517
Ref. 15	975	282	90	Ref. 25	90920	26000	9000
$Z=10$				$Z=25$			
hf	1651	487	148	hf	108646	32150	10132
cl	1648	490	159	cl	108417	32098	10175
Ref. 15	1649			Ref. 21	108620	30000	17000
$Z=12$				$Z=26$			
hf	3981	1174	360	hf	128828	38129	12017
cl	3966	1176	375	cl	128568	38068	12065
Ref. 16	3975	1310	390	Ref. 27	128720	39000	13000
$Z=13$				$Z=27$			
hf	5799	1712	528	hf	151729	44915	14156
cl	5777	1712	544	cl	151433	44843	14207
Ref. 17	5789	1750	430	Ref. 28	151660	44000	14000
$Z=14$				$Z=28$			
hf	8181	2415	747	hf	177589	52579	16569
cl	8150	2413	765	cl	177254	52495	16624
Ref. 18	8176	2390	690	Ref. 22	177530	60000	10000
$Z=15$				$Z=29$			
hf	11229	3315	1030	hf	206663	61197	19279
cl	11188	3313	1049	cl	206284	61100	19339
Ref. 19	11226	3330	990	Ref. 29	206533	62000	20000
$Z=164$				$Z=36$			
hf	15060	4448	1386	hf	524081	155363	48683
cl	15009	4443	1407	cl	523168	155115	48785
Ref. 20	15063	4530	1420	Ref. 30	523850		
$Z=19$				$Z=42$			
hf	32547	9620	3016	hf	1016044	301485	93663
cl	32455	9605	3043	cl	1014337	300995	93820
Ref. 21	32520	14900	3200	Ref. 31	1014010	300400	93850
$Z=20$							
hf	40857	12078	3792				
cl	40746	12059	3821				
Ref. 21	40861	11700	3000				

Fig. 8. Energy splittings $E /(Z-0.8)^{3}$ of $1 s 3 l 3 l^{\prime}$ states in cm^{-1} as functions of Z.

relative importance of different contributions to the energies of highly charged ions. These calculations are presented as a theoretical benchmark for comparison with experiment and theory. The results could be further improved by including third-order correlation corrections.

Acknowledgments

The work of U.I. Safronova was supported by DOE/NNSA under UNR grant DE-FC52-01NV14050.

References

1. U.I. Safronova and V.N. Kharitonova. Opt. Spectr. 27, 300 (1969).
2. L.A. Vainshtein and U.I. Safronova. Atomic Data Nucl. Data Tables, 21, 49 (1978); 25, 311 (1980).
3. U.I. Safronova, M.S. Safronova, R. Bruch, and L.A. Vainshtein. Phys. Scripta, 51, 471 (1995).
4. P. Faucher and J. Dubau. Phys. Rev. A, 31, 3672 (1985).
5. C.P. Bhalla, A.N. Gabriel, and L.P. Presnyakov. Month. Not. R. Astr. Soc. 172, 359 (1975).
6. F. Bely-Dubau, A.N. Gabriel, and S. Volonte. Month. Not. R. Astr. Soc. 186, 405 (1979).
7. M. Bitter, K.W. Hill, M. Zarnstorff, S. von Goeler, R. Hulse, L.C. Johnson, N.R. Sauthoff, S. Sesnic, K.M. Young, M. Tavernier, F. Bely-Dubau, P. Faucher, M. Cornille, and J. Dubau. Phys. Rev. A, 32, 3011 (1985).
8. M.H. Chen, B. Crasemann, M, Aoyagi, K.N. Huang, and H. Mark. Atomic Data Nucl. Data Tables, 26, 561 (1981).
9. M.H. Chen. Atomic Data Nucl. Data Tables, 34, 301 (1986).
10. J. Nilsen. Atomic Data Nucl. Data Tables, 38, 339 (1988).
11. T. Kato, U.I. Safronova, A.S Shlyaptseva, M. Cornille, J. Dubau, and J. Nilsen. Atomic Data Nucl. Data Tables, 67, 225 (1997).
12. M.S. Safronova, W.R. Johnson, and U.I. Safronova. Phys. Rev. A, 54, 2850 (1996).
13. U.I. Safronova, C. Namba, J.R. Albritton, W.R. Johnson, and M.S. Safronova. Phys. Rev. A, 65, 022507 (2002).
14. W.R. Johnon and G. Soff. At. Data Nucl. Data Tables, 33, 405 (1985).
15. W.L. Wiese, M.W. Smith, and B.M. Glenon. Atomic Trans. Probabilities, V.1, NSRDS-NBS 4 (1996).
16. V. Kaufman and W.C. Martin. Phys. Chem. Ref. Data, 20, 83 (1991).
17. V. Kaufman and W.C. Martin. Phys. Chem. Ref. Data, 20, 775 (1991).
18. W.C. Martin and R. Zalubas. J. Phys. Chem. Ref. Data, 12, 323 (1983).
19. W.C. Martin, R. Zalubas, and A. Musgrove. J. Phys. Chem. Ref. Data, 14, 751 (1985).
20. W.C. Martin, R. Zalubas, and A. Musgrove. J. Phys. Chem. Ref. Data, 19, 821 (1990).
21. J. Shugar and Ch. Corliss. J. Phys. Chem. Ref. Data, 14, Suppl. 2 (1985).
22. J.R. Fuhr, J.R. Martin, and W.L. Wiese. Corliss, J. Phys. Chem. Ref. Data, 17, Suppl. 4 (1988).
23. V. Kaufman and J. Sugar. Phys. Chem. Ref. Data, 17, 1679 (1988).
24. T. Shirai, T. Nakagaki, J. Sugar, and W.L. Wiese. J. Phys. Chem. Ref. Data, 21, 273 (1992).
25. T. Shirai, Y. Nakai, T. Nakagaki, J. Sugar, and W.L. Wiese. J. Phys. Chem. Ref. Data, 22, 1279 (1993).
26. T. Shirai, T. Nakagaki, K. Okazaki, J. Sugar, and W.L. Wiese. J. Phys. Chem. Ref. Data, 23, 179 (1994).
27. T. Shirai, Y. Funatake, K. Mori, J. Sugar, W.L. Wiese, and Y. Nakai. J. Phys. Chem. Ref. Data, 19, 127 (1990).
28. T. Shirai, A. Mengoni, Y. Nakai, K. Mori, J. Sugar, W.L. Wiese, K. Mori, and N. Sakai. J. Phys. Chem. Ref. Data, 21, 23 (1992).
29. J. Sugar and A. Musgrove. J. Phys. Chem. Ref. Data, 19, 527 (1990).
30. T. Shirai, K. Okazaki, and J. Sugar. J. Phys. Chem. Ref. Data, 24, 1577 (1995).
31. J. Sugar, and A. Musgrove. J. Phys. Chem. Ref. Data, 17, 155 (1988).
32. V.G. Palchikov and U.I. Safronova. Opt. Spectros. 68, 281 (1990).
33. U.I. Safronova, W.R. Johnson, and M.S. Safronova. Phys. Scr. A, 58, 348 (1998).
34. U.I. Safronova, W.R. Johnson, and H.G. Berry. Phys. Rev. A, 61, 052503 (2000).
35. V.P. Boiko, S.A. Pikuz, U.I. Safronova, and A.Ya. Faenov. Month. Not. R. Astr. Soc. 185, 789 (1978).
36. F. Bely-Dubau, J. Dubau, P. Faucher, and A.N. Gabriel. Month. Not. R. Astr. Soc. 198, 239 (1982).
37. P. Beiersdorfer, A. Osterheld, T.W. Phillips, M. Bitter, K.W. Hill, and S. von Goeler. Phys. Rev. E, 52, 1980 (1995).
38. A.J. Smith, M. Bitter, H. Hsuan, K.W. Hill, S. von Goeler, J. Timberlake, P. Beiersdorfer, and A. Osterheld. Phys. Rev. A, 47, 3073 (1993).
39. P. Beiersdorfer, T.W. Phillips, V.L. Jacobs, K.W. Hill, M. Bitter, H. Hsuan, S. von Goeler, and S.M. Kahn. ApJ 409, 846 (1993).
40. K. Widmann, P. Beiersdorfer, V. Descaux, and M. Bitter. Phys. Rev. A, 53, 2200 (1996).
41. A.E. Livingston, J.E. Hardis, L.J. Curtis, R.L. Brooks, and H.G. Berry. Phys. Rev. A, 30, 2089 (1984).
42. E.J. Knystautas and M. Druetta. Phys. Rev. A, 31, 2279 (1985).
43. W.R. Johnson, M. Idrees, and J. Sapirstein. Phys. Rev. A, 35, 3218 (1987).
44. W.R. Johnson, A. Blundell, and J. Sapirstein. Phys. Rev. A, 37, 2764 (1988).
45. A. Blundell, W.R. Johnson, Z.W. Liu, and J. Sapirstein. Phys. Rev. A, 40, 2233 (1988).
46. Z.-C. Yan, M. Tambasco, and G.W.F. Drake. Phys. Rev. A, 57, 1652 (1998).
47. M.S. Safronova, W.R. Johnson, and U.I. Safronova. Phys. Rev. A, 53, 4036 (1996).
48. M.H. Chen, K.T. Cheng, and W.R. Johnson. Phys. Rev. A, 47, 3692 (1993).
49. U.I. Safronova. Phys. Scr. T, 26, 59 (1989).

Appendix A. First- and second-order contributions to energy matrix for 1snIn'I' states

The model space state vector for a system with three valence electrons can be represented as [12]
$\Psi_{0}\left(v_{1} w_{1}\left[J_{12}\right] u_{1} J M\right)=\sum_{v w u} \sum_{K_{12}^{\prime \prime}}\left\langle v w \mid K_{12}^{\prime \prime}\right\rangle\left\langle K_{12}^{\prime \prime} u \mid K\right\rangle C_{v v_{1} w w_{1} u u_{1}}\left(J_{12}, J_{12}^{\prime \prime}, J\right) a_{v}^{\dagger} a_{w}^{\dagger} a_{u}^{\dagger}$
where we use the notation $K_{i}=\left\{J_{i}, M_{i}\right\}$. The quantity $\left\langle K_{1} K_{2} \mid K_{3}\right\rangle$ is a Clebsch-Gordan coefficient
$\left\langle K_{1} K_{2} \mid K_{3}\right\rangle=(-1)^{J_{1}-J_{2}+M_{3}} \sqrt{\left[J_{3}\right]}\left(\begin{array}{ccc}J_{1} & J_{2} & J_{3} \\ M_{1} & M_{2} & -M_{3}\end{array}\right)$
with $[J]=2 J+1$. The quantity $C_{v v_{1} w w_{1} u u_{1}}\left(J_{12}, J_{12}^{\prime \prime}, J\right)$ is a symmetry coefficient defined in ref. 12 ,

$$
\begin{align*}
& C_{v v_{1} w w_{1} u u_{1}}\left(J_{12}, J_{12}^{\prime \prime}, J\right)= N\left(v_{1} w_{1}\left[J_{12}\right] u_{1}\right)\left[\delta\left(u, u_{1}\right) \delta\left(J_{12}, J_{12}^{\prime \prime}\right) P_{J_{12}}\left(v v_{1}, w w_{1}\right)\right. \\
&+\delta\left(u, v_{1}\right) P_{J_{12}^{\prime \prime}}\left(v u_{1}, w w_{1}\right) \sqrt{\left[J_{12}\right]\left[J_{12}^{\prime \prime}\right]}\left\{\begin{array}{ccc}
u_{1} & w_{1} & J_{12}^{\prime \prime} \\
v_{1} & J & J_{12}
\end{array}\right\} \\
&\left.+(-1)^{v_{1}+w_{1}+1+J_{12}} \delta\left(u, w_{1}\right) P_{J_{12}^{\prime \prime}}\left(v u_{1}, w v_{1}\right) \sqrt{\left[J_{12}\right]\left[J_{12}^{\prime \prime}\right]}\left\{\begin{array}{ccc}
u_{1} & v_{1} & J_{12}^{\prime \prime} \\
w_{1} & J & J_{12}
\end{array}\right\}\right] \tag{A3}
\end{align*}
$$

where $N\left(v_{1} w_{1}\left[J_{12}\right] u_{1}\right)$ is a normalization constant and
$P_{J_{12}}\left(v_{1} w_{1}, v w\right)=\delta_{v_{1} v} \delta_{w_{1} w}+(-1)^{j_{v}+j_{w}+J+1} \delta_{w_{1} v} \delta_{v_{1} w}$
Using this representation, it is possible to express the contributions from first-order (see Fig. 1a) and second-order (see Fig. 1b) RMBPT diagrams to energies of three-electron systems in terms of the contributions of these diagrams to energies of two-electron (heliumlike) ions

$$
\begin{align*}
E_{2}^{(n)}\left(v_{1} w_{1}\left[J_{12}\right] u_{1} J, v_{1}^{\prime} w_{1}^{\prime}\left[J_{12}^{\prime}\right] u_{1}^{\prime} J\right) & =\sum_{v w v^{\prime} w^{\prime}} \sum_{J_{12}^{\prime \prime}} E_{2}^{(n)}\left(v w, v^{\prime} w^{\prime}, J\right) \eta(v w) \eta\left(v^{\prime} w^{\prime}\right) \\
& \times \sum_{u} C_{v v_{1} w w_{1} u u_{1}}\left(J_{12}, J_{12}^{\prime \prime}, J\right) C_{v^{\prime} v_{1}^{\prime} w^{\prime} w_{1}^{\prime} u u_{1}^{\prime}}\left(J_{12}^{\prime}, J_{12}^{\prime \prime}, J\right) \tag{A5}
\end{align*}
$$

where $E_{2}^{(n)}\left(v w, v^{\prime} w^{\prime}, J\right)$ is the two-particle contribution to the $n_{v} \kappa_{v} n_{w} \kappa_{w} n_{v}^{\prime} \kappa_{v}^{\prime} n_{w}^{\prime} \kappa_{w}^{\prime} J$ matrix element for heliumlike ions. Here, $\eta(v w)=1 / \sqrt{2}$ if electrons v and w are equivalent and $1 / 2$ they are not equivalent. This choice accounts for the fact that $E^{(n)}\left(v w, v^{\prime} w^{\prime}, J\right)$ contains both direct and exchange contributions.

The expressions for the two-particle first- and second-order diagram contributions were given in ref. 47
$E_{2}^{(1)}\left(v w, v^{\prime} w^{\prime}, J\right)=Y_{J}\left(v^{\prime} w^{\prime} v w\right)$
$E_{2}^{(2)}\left(v w, v^{\prime} w^{\prime}, J\right)=-\sum_{m n} \sum_{k}(-1)^{j_{w^{\prime}}+j_{m}+k+J}\left\{\begin{array}{ccc}j_{v^{\prime}} & j_{w^{\prime}} & J \\ j_{n} & j_{m} & k\end{array}\right\} \frac{X_{k}\left(v^{\prime} w^{\prime} m n\right) Y_{J}(m n v w)}{\varepsilon_{v w}-\varepsilon_{m n}}$
Here $\varepsilon_{v w}=\varepsilon_{v}+\varepsilon_{w}$, and

$$
\begin{align*}
& Y_{J}\left(v^{\prime} w^{\prime} v w\right)=\sum_{k}(-1)^{j_{w^{\prime}}+j_{v}+k+J}\left\{\begin{array}{ccc}
j_{v^{\prime}} & j_{w^{\prime}} & J \\
j_{w} & j_{v} & k
\end{array}\right\} X_{k}\left(v^{\prime} w^{\prime} v w\right) \\
&+\sum_{k}(-1)^{j_{w^{\prime}}+j_{v}+k}\left\{\begin{array}{ccc}
j_{v^{\prime}} & j_{w^{\prime}} & J \\
j_{v} & j_{w} & k
\end{array}\right\} X_{k}\left(v^{\prime} w^{\prime} w v\right) \tag{A8}
\end{align*}
$$

where

$$
\begin{equation*}
X_{k}(a b c d)=(-1)^{k}\left\langle a\left\|C_{k}\right\| c\right\rangle\left\langle b\left\|C_{k}\right\| d\right\rangle R_{k}(a b c d) \tag{A9}
\end{equation*}
$$

The radial integral in the above expression is
$R_{k}(a b c d)=\int_{0}^{\infty} r_{1}^{2} \mathrm{~d} r_{1} \int_{0}^{\infty} r_{2}^{2} \mathrm{~d} r_{2} \frac{r_{<}^{k}}{r_{>}^{k+1}} R_{a}\left(r_{1}\right) R_{b}\left(r_{2}\right) R_{d}\left(r_{2}\right) R_{c}\left(r_{1}\right)$
where $R_{a}\left(r_{1}\right)$ is a relativistic Dirac-Fock or hydrogenic wave function.
The expressions for the three-particle second-order diagram contributions (Fig. 1c) are given in ref. 12

$$
\begin{align*}
E_{3}^{(2)}\left(v_{1} w_{1}\left[J_{12}\right] u_{1} J, v_{1}^{\prime} w_{1}^{\prime}\left[J_{12}^{\prime}\right] u_{1}^{\prime} J\right)= & \sum_{v w u} \sum_{v^{\prime} w^{\prime} u^{\prime}} \sum_{J_{12}^{\prime \prime}} \sum_{J_{12}^{\prime \prime \prime}} \sum_{k k^{\prime}}(-1)^{j_{w}+j_{w}^{\prime}-j_{u}-j_{u}^{\prime}+J_{12}^{\prime \prime}+J_{12}^{\prime \prime \prime}+k+k^{\prime}} \\
& \times \sum_{n} \frac{X_{k}\left(v w u^{\prime} n\right) X_{k}\left(v^{\prime} w^{\prime} u n\right)}{\epsilon_{n}+\epsilon_{u^{\prime}}-\epsilon_{v}-\epsilon_{w}} \sqrt{\left(2 J_{12}^{\prime \prime}+1\right)\left(2 J_{12}^{\prime \prime \prime}+1\right)} \\
& \times\left\{\begin{array}{ccc}
j_{n} & j_{u}^{\prime} & J_{12}^{\prime \prime} \\
j_{v} & j_{w} & k
\end{array}\right\}\left\{\begin{array}{ccc}
j_{n} & j_{u} & J \\
j_{v}^{\prime} & j_{w}^{\prime} & k^{\prime}
\end{array}\right\}\left\{\begin{array}{ccc}
J_{12}^{\prime \prime \prime} & j_{u}^{\prime} & J \\
J_{12}^{\prime \prime} & j_{u} & j_{n}
\end{array}\right\} \\
& \times C_{v v_{1} w w_{1} u u_{1}}\left(J_{12}, J_{12}^{\prime \prime}, J\right) C_{v^{\prime} v_{1}^{\prime} w^{\prime} w_{1}^{\prime} u^{\prime} u_{1}^{\prime}}\left(J_{12}^{\prime}, J_{12}^{\prime \prime}, J\right) \tag{A11}
\end{align*}
$$

We see that the contribution of the G diagram is determined by a sum n over the single-particle spectrum (with restrictions for states when a denominator is equal to zero).

All of the above expressions were defined for the Coulomb interaction. When we include the Breit interaction in the calculation, the Coulomb matrix element $X_{k}(a b, c d)$ is modified according to the rule
$X_{k}(a b c d) \Rightarrow X_{k}(a b c d)+M_{k}(a b c d)+N_{k}(a b c d)$
The magnetic radial integrals M and N are defined by (A.4) and (A.5) of ref. 48.
Let us explain a little more about the difference in calculations of the $1 s 2 l 2 l^{\prime}$ and $1 s 3 l 3 l^{\prime}$ doubly excited states, also called autoionizing states. The most important difference between autoionization states and other excited states is an additional broadening of levels caused by the decay of these states (e.g., $\left.1 s 2 l 2 l^{\prime} \Rightarrow 1 s^{2} k l^{\prime \prime}, 1 s 3 l 3 l^{\prime} \Rightarrow 1 s^{2} k l^{\prime \prime}, 1 s 2 l k l^{\prime \prime}\right)$. We can rewrite (A7), $E_{2}^{(2)}\left(v w, v^{\prime} w^{\prime}, J\right)$ in the following way:

$$
E_{2}^{(2)}\left(v w, v^{\prime} w^{\prime}, J\right)=\lim _{\gamma \rightarrow 0} \sum_{m n} \sum_{k}(-1)^{j_{w^{\prime}}+j_{m}+k+J}\left\{\begin{array}{ccc}
j_{v^{\prime}} & j_{w^{\prime}} & J \tag{A13}\\
j_{n} & j_{m} & k
\end{array}\right\} \frac{X_{k}\left(v^{\prime} w^{\prime} m n\right) Y_{J}(m n v w)}{\varepsilon_{m}+\varepsilon_{n}-\varepsilon_{v}-\varepsilon_{w}-i \gamma}
$$

We note that for $1 s 2 l 2 l^{\prime}$ states indexes v and w in (A13) can be $v=2 l j, w=2 l^{\prime} j^{\prime}$, and $n=1 s$ or $m=1 s$. Indexes m or n can include both discrete and continuous excited states. In the case of continuous states, we obtain the same expression as (A13) in ref. 49

$$
\begin{align*}
& \lim _{\gamma \rightarrow 0} \int_{0}^{\infty} \mathrm{d} k \frac{f\left(2 l j 2 l^{\prime} j^{\prime} ; 1 s k l^{\prime \prime} j^{\prime \prime}\right)}{\varepsilon_{k l^{\prime \prime} j^{\prime \prime}}+\varepsilon_{1 s}-\varepsilon_{2 l j}-\varepsilon_{2 l^{\prime} j^{\prime}}-i \gamma} \\
&=P \int_{0}^{\infty} \mathrm{d} k \frac{f\left(2 l j 2 l^{\prime} j^{\prime} ; 1 s k l^{\prime \prime} j^{\prime \prime}\right)}{\varepsilon_{k}+\varepsilon_{1 s}-\varepsilon_{2 l j}-\varepsilon_{2 l^{\prime} j^{\prime}}}+\frac{i \pi}{k_{0}} f\left(2 l j 2 l^{\prime} j^{\prime} ; 1 s k_{0} l^{\prime \prime} j^{\prime \prime}\right) \tag{A14}
\end{align*}
$$

where P means that the integral must be calculated in the sense of the principal value avoiding the value $\varepsilon_{k_{0}}+\varepsilon_{1 s}-\varepsilon_{2 l j}-\varepsilon_{2 l^{\prime} j^{\prime}}=0$. It should be noted that $k_{0}=\sqrt{\frac{1}{2}}$ in the hydrogenic approximation.

[^0]: Received 30 April 2004. Accepted 7 July 2004. Published on the NRC Research Press Web site at http://cjp.nrc.ca/ on 23 August 2004.
 U.I. Safronova. ${ }^{1}$ Physics Department, University of Nevada, Reno, NV 89557, USA.
 M.S. Safronova. Department of Physics and Astronomy, 223 Sharp Laboratory, University of Delaware, Newark, DE 19716, USA.
 ${ }^{1}$ Corresponding author (e-mail: usafrono@nd.edu).

