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Relativistic many-body calculations
of energies for doubly-excited
1s2l2l′ and 1s3l3l′ states in Li-like
ions

U.I. Safronova and M.S. Safronova

Abstract: Energies of 1s2l2l′ and 1s3l3l′ states for Li-like ions with Z = 6–100 are
evaluated to second order in relativistic many-body perturbation theory. Second-order
Coulomb and Breit–Coulomb interactions are included. The calculations start with a Dirac
potential and include all possible 1s2l2l′ and 1s3l3l′ configurations. Correction for the
frequency dependence of the Breit interaction is taken into account in lowest order. The
Lamb-shift correction to the energies is also included in lowest order. A detailed discussion
of the various contributions to the energy levels is given for Li-like iron (Z = 26). We
found that the three-electron corrections to the energy contribute about 10–20% of the total
second-order energy. Comparisons are made with available experimental data and excellent
agreement for term splitting is obtained even for low-Z ions. These calculations are presented
as a theoretical benchmark for comparison with experiment and theory.

PACS Nos.: 32.30.Rj, 32.70.Cs, 31.25.Jf, 31.15.Md

Résumé : Nous utilisons la théorie relativiste des perturbations au deuxième ordre pour
évaluer les énergies des états 1s2l2l′ et 1s3l3l′ des ions de type Li avec Z = 6–100. Nous
incluons les effets de Coulomb et de Breit–Coulomb au deuxième ordre. Le calcul démarre
avec un potentiel de Dirac et inclut toutes les configurations possibles 1s2l2l′ et 1s3l3l′.
Nous tenons compte à l’ordre le plus bas des corrections pour la dépendance en fréquence
de l’interaction de Breit. Nous analysons en détail les différentes contributions aux niveaux
d’énergie pour le cas Z = 26. Nous trouvons que les corrections à trois électrons contribuent
à peu près 10–20% du total des corrections de deuxième ordre. Nous comparons nos résultats
avec des données expérimentales et trouvons un excellent accord pour la séparation entre
états, même pour les ions de faible Z. Ces résultats seront utilisés comme barème pour
comparaison avec la théorie et l’expérience.
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1. Introduction

Excitation energies, nonradiative, and electric dipole (E1) radiative rates for 1s2lnl′ states along
the lithium isoelectronic sequence have been studied theoretically and experimentally during the past
30–40 years. Z-expansion [1–3], configuration interaction (CI) [4], multiconfiguration Hartree–Fock
(MCHF) [5–7], and multiconfiguration Dirac–Fock (MCDF) [8–10] methods have been used to calculate
these quantities for Li-like ions. Comparison of results for Li-like Fe, Ca, and S obtained by different
codes is presented by Kato et al. in ref. 11. It should be noted that doubly-excited 1snln′l′ states
give the simplest example of states to study the contribution of correlation energy. There are no filled
subshells and any codes based on the Hartree–Fock approximation are not applicable. The second-order
perturbation theory describes the correlation effects by including virtual excitations. This contribution
can be partly taken into account using the CI method. CI calculations give very accurate results for two-
electron systems. The importance of a three-electron interaction for a three-electron system is shown in
refs. 12 and 13 for boronlike and aluminumlike systems, respectively. Two-particle and three-particle
second-order contributions for 1s2l2l′ states are given in the nonrelativistic approximation in refs. 1
and 2.

In the present paper, relativistic many-body perturbation theory (RMBPT) is used to determine the
1s2l2l′–1s22l and 1s3l3l′–1s23l transition energies in Li-like ions with nuclear charges Z = 6–100.
We illustrate our calculation with detailed studies of the case of Li-like iron, Z = 26. Our calculations
are carried out to second order in perturbation theory and include the second-order Coulomb and Breit
interactions. Correction for the frequency-dependent Breit interaction is taken into account in the lowest
order. The screened self-energy and vacuum polarization data given by Johnson and Soff [14] are used
to determine the quantum-electrodynamic (QED) correction E(Lamb). Three-electron contributions to
the energy are compared with the two-electron contributions and are found to contribute about 20–30%
of the total second-order energy.

Our perturbation theory calculations are carried out using single-particle orbitals calculated in the
Dirac potential. As a first step, we determine and store the 28 1s2l and 2l2l′, and 171 1s3l and 3l3l′
two-particle matrix elements of the effective Hamiltonian, 〈nln′l′ J |H eff |nl′′n′l′′′ J 〉, calculated in the
first and second orders. It should be noted that these one- and two-particle matrix elements could be used
also to evaluate energies of the (nln′l′) levels for heliumlike ions. Finally, second-order three-particle
matrix elements are evaluated. Combining these data using the method described below, we calculate
the two- and three-particle contributions to the energies of Li-like ions.

The present calculations are compared with data recommended by the National Institute of Stan-
dards and Technology (NIST) from refs. 15–31. Comparisons of multiplet splitting for ions along the
isoelectronic sequence with available experimental data are also given.

2. Method

The evaluation of the second-order energies for doubly-excited states in Li-like ions follows the
pattern of the corresponding calculation for B-like ions given in ref. 12. In particular, we calculate
the second-order two-particle matrix elements for He-like ions, and recouple them as described in the
Appendix, to obtain the contributions from all diagrams of the type shown in Fig. 1b. We discuss in the
Appendix how these matrix elements are combined to obtain the two-particle contributions to energies
of Li-like ions. Intrinsically, three-particle diagrams of the type shown in Fig. 1c also contribute to the
second-order energy for Li-like ions. We discuss the evaluation of these three-particle diagrams in detail
in the Appendix. It should be noted that the three-particle matrix elements calculated here can also be
used in calculations of energies of ions with four or more valence electrons.

The model space for 1s2l2l′ states of Li-like ions includes seven odd-parity states consisting of
three J = 1/2 states, three J = 3/2 states, and one J = 5/2 state. There are nine 1s2l2l′ even-parity
states consisting of four J = 1/2 states, three J = 3/2 states, and two J = 5/2 states. The model space
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Fig. 1. First-order (1E) and second-order (2E and 2G) diagrams. The broken lines designate Coulomb +
Breit interactions and continuous lines are electrons in different states.
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for 1s3l3l′ states of Li-like ions includes thirty odd-parity states consisting of seven J = 1/2 states,
ten J = 3/2 states, eight J = 5/2 states, four J = 7/2 states, and one J = 9/2 state. There are thirty-
three 1s3l3l′ even-parity states consisting of eight J = 1/2 states, ten J = 3/2 states, nine J = 5/2
states, four J = 7/2 states, and two J = 9/2 states. The distribution of the sixteen 1s2l2l′ and sixty-
three 1s3l3l′ states in the model space is summarized in Table 1 where both jj and LS designations are
given.

2.1. Energy matrix elements
In Table 2, we give various contributions to the second-order energies for the special case of doubly-

excited 1s2l2l′ states in Li-like iron, Z = 26. In Table 2, we show the two-body and three-body
second-order Coulomb and Breit contributions to the energy matrix labeled E

(2)
2 , E(2)

3 and B
(2)
2 , B(2)

3 ,

respectively. The expressions forE(2)
2 andE(2)

3 are given by (A5), (A7), and (A11). The same expressions

for B(2)
2 and B

(2)
3 are obtained from the expressions for E(2)

2 and E
(2)
3 replacing one Coulomb matrix

element by a Breit matrix element (see (A12)). There are sixteen diagonal and twenty-four nondiagonal
matrix elements for 2l2l′(J1)1s[J ] three-particle states in jj coupling. It can be seen from Table 2 that
the Coulomb three-body contributions are almost half of the Coulomb two-body contributions. The
Breit B(2)

i matrix elements are smaller than the Coulomb E
(2)
i matrix elements by a factor of 100 for

many cases. The values of the nondiagonal contributions are smaller than the values of the diagonal
contributions by a factor of 3–10.

In Figs. 2a and 2b, we present two-particle (E(2)
2 and B

(2)
2 ) and three-particle (E(2)

3 and B
(2)
3 )

contributions for the 2s1/22p3/2(2)1s[5/2] diagonal matrix element as functions of Z. We see from

Fig. 2a that the ratio E
(2)
3 /E(2)

2 is equal to 1/2 and is almost constant for all Z; however, the ratio of

B
(2)
3 /B(2)

2 decreases with the increase in Z.

Reference 33 shows that the leading term for E(2)
2 is independent of Z and the leading term for B(2)

2
is proportional to (αZ)2.

E
(2)
2 = E20 + Z2α2E22 + Z4α4E24 + · · · (1)

B
(2)
2 = Z2α2B22 + Z4α4B24 + · · · (2)

The nonrelativistic second-order term E20 was given in refs. 1 and 2 for doubly-excited 1s2l2l′ states.
Comparing those values with E

(2)
2 , we can estimate the next term in (1). For example, for the diagonal

matrix element presented in Fig. 2a we obtain

E
(2)
2 (a, a) = −0.0148094 − 0.096Z2α2 + · · · (3)
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Table 1. Possible doubly excited 2l2l′1s and 3l3l′1s states of Li-like ions in
jj and LS coupling schemes.

Even-parity states Odd-parity states

jj coupling LS coupling jj coupling LS coupling

2s1/22s1/2(0)1s 2s2(1S)1s 2S1/2 2s1/22p1/2(0)1s 2s2p(3P)1s 4P1/2

2p1/22p1/2(0)1s 2p2(3P)1s 4P1/2 2s1/22p1/2(1)1s 2s2p(3P)1s 2P1/2

2p3/22p3/2(0)1s 2p2(3P)1s 2P1/2 2s1/22p3/2(1)1s 2s2p(1P)1s 2P1/2

2p1/22p3/2(1)1s 2p2(1S)1s 2S1/2

2s1/22p1/2(1)1s 2s2p(3P)1s 4P3/2

2p1/22p3/2(1)1s 2p2(3P)1s 4P3/2 2s1/22p3/2(1)1s 2s2p(3P)1s 2P3/2

2p1/22p3/2(2)1s 2p2(1D)1s 2D3/2 2s1/22p3/2(2)1s 2s2p(1P)1s 2P3/2

2p3/22p3/2(2)1s 2p2(3P)1s 2P3/2

2s1/22p3/2(2)1s 2s2p(1P)1s 4P5/2

2p1/22p3/2(2)1s 2p2(3P)1s 4P5/2

2p3/22p3/2(2)1s 2p2(3P)1s 2D5/2

3s1/23s1/2(0)1s 3s2(1S)1s 2S1/2 3s1/23p1/2(0)1s 3s3p(3P)1s 4P1/2

3s1/23d3/2(1)1s 3p2(3P)1s 4P1/2 3s1/23p1/2(1)1s 3s3p(3P)1s 2P1/2

3p1/23p1/2(0)1s 3s3d(3D)1s 4D1/2 3s1/23p3/2(1)1s 3s3p(1P)1s 2P1/2

3p1/23p3/2(1)1s 3p2(3P)1s 2P1/2 3p1/23d3/2(1)1s 3p3d(3D)1s 4D1/2

3p3/23p3/2(0)1s 3p2(1S)1s 2S1/2 3p3/23d3/2(0)1s 3p3d(3P)1s 4P1/2

3d3/23d3/2(0)1s 3d2(3P)1s 4P1/2 3p3/23d3/2(1)1s 3p3d(3P1s 2P1/2

3d3/23d5/2(1)1s 3d2(3P)1s 2P1/2 3p3/23d5/2(1)1s 3p3d(1P)1s 2P1/2

3d5/23d5/2(0)1s 3d2(1S)1s 2S1/2

3s1/23p1/2(1)1s 3s3p(3P)1s 4P3/2

3s1/23d3/2(1)1s 3s3d(3D)1s 2D3/2 3s1/23p3/2(1)1s 3s3p(3P)1s 2P3/2

3s1/23d3/2(2)1s 3p2(3P)1s 4P3/2 3s1/23p3/2(2)1s 3s3p(1P)1s 2P3/2

3s1/23d5/2(2)1s 3s3d(3D)1s 4D3/2 3p1/23d3/2(1)1s 3p3d(3F)1s 4F3/2

3p1/23p3/2(1)1s 3s3d(1D)1s 2D3/2 3p1/23d3/2(2)1s 3p3d(3D)1s 2D3/2

3p1/23p3/2(2)1s 3p2(3P)1s 2P3/2 3p1/23d5/2(2)1s 3p3d(3D)1s 4D3/2

3p3/23p3/2(2)1s 3p2(1D1s 2D3/2 3p3/23d3/2(1)1s 3p3d(3P)1s 4P3/2

3d3/23d3/2(2)1s 3d2(3F)1s 4F3/2 3p3/23d3/2(2)1s 3p3d(1D)1s 2D3/2

3d3/23d5/2(1)1s 3d2(3P)1s 4P3/2 3p3/23d5/2(1)1s 3p3d(3P1s 2P3/2

3d3/23d5/2(2)1s 3d2(3P)1s 2P3/2 3p3/23d5/2(2)1s 3p3d(1P)1s 2P3/2

3d5/23d5/2(2)1s 3d2(1D)1s 2D3/2

3s1/23p3/2(2)1s 3s3p(3P)1s 4P5/2

3s1/23d3/2(2)1s 3s3d(3D)1s 2D5/2 3p1/23d3/2(2)1s 3p3d(3F)1s 4F5/2

3s1/23d5/2(2)1s 3p2(3P)1s 4P5/2 3p1/23d5/2(2)1s 3p3d(3D)1s 2D5/2

3s1/23d5/2(3)1s 3s3d(3D)1s 4D5/2 3p1/23d5/2(3)1s 3p3d(3F)1s 2F5/2

3p1/23p3/2(2)1s 3s3d(1D)1s 2D5/2 3p3/23d3/2(2)1s 3p3d(3D)1s 4D5/2

3p3/23p3/2(2)1s 3p2(1D)1s 2D5/2 3p3/23d3/2(3)1s 3p3d(3P)1s 4P5/2

3d3/23d3/2(2)1s 3d2(3F)1s 4F5/2 3p3/23d5/2(2)1s 3p3d(1D)1s 2D5/2

3d3/23d5/2(2)1s 3d2(3F)1s 2F5/2 3p3/23d5/2(3)1s 3p3d(1F)1s 2F5/2

3d3/23d5/2(3)1s 3d2(3P)1s 4P5/2

3d5/23d5/2(2)1s 3d2(1D)1s 2D5/2 3p1/23d5/2(3)1s 3p3d(3F1s 4F7/2

3p3/23d3/2(3)1s 3p3d(3F)1s 2F7/2

3s1/23d5/2(3)1s 3s3d(3D)1s 4D7/2 3p3/23d5/2(3)1s 3p3d(3D)1s 4D7/2

3d3/23d5/2(4)1s 3d2(3F)1s 2F7/2 3p3/23d5/2(4)1s 3p3d(1F)1s 2F7/2

3d3/23d5/2(3)1s 3d2(3F)1s 4F7/2

3d5/23d5/2(4)1s 3d2(1G)1s 2G7/2 3p3/23d5/2(4)1s 3p3d(3F)1s 4F9/2

3d3/23d5/2(4)1s 3d2(3F)1s 4F9/2

3d5/23d5/2(4)1s 3d2(1G)1s 2G9/2
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Table 2. Second-order contributions to the energy matrices (a.u.) in the case of Li-like iron,
Z = 26. Two-particle and three-particle second-order Coulomb contributions are given in columns
labelled E

(2)
2 and E

(2)
3 , respectively.

2l1j12l2j2(J12)1s 2l3j32l4j4(J34)1s E
(2)
2 E

(2)
3 B

(2)
2 B

(2)
3

Odd-parity states, J = 1/2
2s1/22p1/2(0)1s 2s1/22p1/2(0)1s −0.193825 −0.106398 −0.003731 −0.001018
2s1/22p1/2(1)1s 2s1/22p1/2(1)1s −0.237561 −0.124665 −0.009566 −0.001935
2s1/22p3/2(1)1s 2s1/22p3/2(1)1s −0.253589 −0.119031 −0.003277 −0.000774
2s1/22p1/2(0)1s 2s1/22p1/2(1)1s −0.042755 −0.012340 0.000541 −0.000041
2s1/22p1/2(1)1s 2s1/22p1/2(0)1s −0.042755 −0.012340 0.000541 0.000182
2s1/22p1/2(0)1s 2s1/22p3/2(1)1s −0.034748 −0.004426 0.001354 0.000526
2s1/22p3/2(1)1s 2s1/22p1/2(0)1s −0.034403 −0.004524 0.001338 0.000219
2s1/22p1/2(1)1s 2s1/22p3/2(1)1s 0.012480 0.008471 0.001165 0.000217
2s1/22p3/2(1)1s 2s1/22p1/2(1)1s 0.012331 0.008551 0.001154 0.000131

Odd-parity states, J = 3/2
2s1/22p1/2(1)1s 2s1/22p1/2(1)1s −0.206146 −0.108680 −0.000779 0.000136
2s1/22p3/2(1)1s 2s1/22p3/2(1)1s −0.227394 −0.121216 −0.003354 −0.000897
2s1/22p3/2(2)1s 2s1/22p3/2(2)1s −0.248060 −0.117944 −0.005786 −0.001151
2s1/22p1/2(1)1s 2s1/22p3/2(1)1s 0.042573 0.012163 −0.000008 −0.000136
2s1/22p3/2(1)1s 2s1/22p1/2(1)1s 0.042124 0.012327 −0.000005 0.000214
2s1/22p1/2(1)1s 2s1/22p3/2(2)1s −0.038850 −0.004963 0.001514 0.000243
2s1/22p3/2(2)1s 2s1/22p1/2(1)1s −0.038463 −0.005073 0.001495 0.000615
2s1/22p3/2(1)1s 2s1/22p3/2(2)1s −0.020468 −0.010156 −0.002047 −0.000310
2s1/22p3/2(2)1s 2s1/22p3/2(1)1s −0.020468 −0.010156 −0.002047 −0.000753

Odd-parity states, J = 5/2
2s1/22p3/2(2)1s 2s1/22p3/2(2)1s −0.151553 −0.095671 −0.000630 0.000043

Even-parity states, J = 1/2
2s1/22s1/2(0)1s 2s1/22s1/2(0)1s −0.170297 −0.096618 −0.003247 −0.000927
2p1/22p1/2(0)1s 2p1/22p1/2(0)1s −0.262073 −0.160578 −0.005715 −0.001918
2p3/22p3/2(0)1s 2p3/22p3/2(0)1s −0.277998 −0.171339 −0.005030 −0.002463
2p1/22p3/2(1)1s 2p1/22p3/2(1)1s −0.276600 −0.155257 −0.003743 −0.001676
2s1/22s1/2(0)1s 2p1/22p1/2(0)1s 0.017788 0.011430 0.000579 0.000415
2p1/22p1/2(0)1s 2s1/22s1/2(0)1s 0.017788 0.011430 0.000579 0.000071
2s1/22s1/2(0)1s 2p3/22p3/2(0)1s 0.025993 0.016993 0.001037 0.000584
2p3/22p3/2(0)1s 2s1/22s1/2(0)1s 0.025628 0.017438 0.001022 0.000509
2s1/22s1/2(0)1s 2p1/22p3/2(1)1s 0.000000 −0.000064 0.000000 0.000188
2p1/22p3/2(1)1s 2s1/22s1/2(0)1s 0.000000 −0.000065 0.000000 −0.000078
2p1/22p1/2(0)1s 2p3/22p3/2(0)1s −0.033784 −0.021423 −0.001274 −0.000570
2p3/22p3/2(0)1s 2p1/22p1/2(0)1s −0.033135 −0.022070 −0.001256 −0.000628
2p1/22p1/2(0)1s 2p1/22p3/2(1)1s −0.049142 −0.014321 0.001915 0.000436
2p1/22p3/2(1)1s 2p1/22p1/2(0)1s −0.048652 −0.014509 0.001892 0.000372
2p3/22p3/2(0)1s 2p1/22p3/2(1)1s 0.034403 0.010135 −0.001338 −0.000251
2p1/22p3/2(1)1s 2p3/22p3/2(0)1s 0.034748 0.010005 −0.001354 −0.000305

Even-parity states, J = 3/2
2p1/22p3/2(1)1s 2p1/22p3/2(1)1s −0.213379 −0.136514 −0.004289 −0.001621
2p1/22p3/2(2)1s 2p1/22p3/2(2)1s −0.285911 −0.161537 −0.007264 −0.001454
2p3/22p3/2(2)1s 2p3/22p3/2(2)1s −0.287856 −0.158846 −0.004584 −0.001365
2p1/22p3/2(1)1s 2p1/22p3/2(2)1s 0.027333 0.007988 −0.002652 −0.000689
2p1/22p3/2(2)1s 2p1/22p3/2(1)1s 0.027333 0.007988 −0.002652 −0.000781
————————
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Table 2. (concluded).

2l1j12l2j2(J12)1s 2l3j32l4j4(J34)1s E
(2)
2 E

(2)
3 B

(2)
2 B

(2)
3

Even-parity states, J = 3/2
2p1/22p3/2(1)1s 2p3/22p3/2(2)1s −0.038850 −0.011127 0.001514 0.000329
2p3/22p3/2(2)1s 2p1/22p3/2(1)1s −0.038463 −0.011273 0.001495 0.000339

2p1/22p3/2(2)1s 2p3/22p3/2(2)1s 0.008210 −0.000165 −0.001651 −0.000593
2p3/22p3/2(2)1s 2p1/22p3/2(2)1s 0.008166 −0.000177 −0.001634 −0.000564

Even-parity states, J = 5/2
2p1/22p3/2(2)1s 2p1/22p3/2(2)1s −0.251115 −0.150760 −0.001327 0.000520
2p3/22p3/2(2)1s 2p3/22p3/2(2)1s −0.217774 −0.138230 −0.002071 −0.000382
2p1/22p3/2(2)1s 2p3/22p3/2(2)1s −0.041945 −0.014365 0.000303 −0.000008
2p3/22p3/2(2)1s 2p1/22p3/2(2)1s −0.041490 −0.014565 0.000296 −0.000047

Fig. 2. (a) Second-order Coulomb and (b) Breit energy contributions to diagonal matrix elements in Li-like
ions.
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Similarly, for the three-particle contribution we obtain

E
(2)
3 (a, a) = −0.093573 − 0.058Z2α2 + · · · (4)

Additional values for terms proportional to (αZ)2 are found from (2). For example, for the diagonal
matrix element presented in Fig. 2b we obtain

B
(2)
2 (a, a) = −0.018Z2α2 + · · · (5)

B
(2)
3 (a, a) = 0.0012Z2α2 + · · · (6)

As a result, we can find for the second-order correction

E
(2)
2 (a, a) + E

(2)
3 (a, a) + B

(2)
2 (a, a) + B

(2)
3 (a, a) = −0.243667 − 0.170Z2α2 + · · · (7)

for a = 2s1/22p3/2(2)1s[5/2]. The second term in (7) is defined as the second-order relativistic correc-
tion and has not previously been calculated.

In Figs. 3a and 3b, we illustrate the Coulomb E
(2)
2 and E

(2)
3 contributions together with the Breit

B
(2)
2 and B

(2)
3 contributions for the two nondiagonal elements E(2)

i (a, b), B(2)
i (a, b) and E

(i)
2 (b, a),
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Fig. 3. (a) Second-order Coulomb and (b) Breit energy contributions to nondiagonal matrix elements in
Li-like ions.
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B
(i)
2 (b, a) for a = 2p3/22p3/2(0)1s[1/2] and b = 2s1/22s1/2(0)1s[1/2]. We see from Figs. 3a and 3b,

that the ratio of E(2)
3 to E

(2)
2 is about 50% , but the ratio of B(2)

3 to B
(2)
2 is about 20% for both matrix

elements. Figure 3b illustrates the asymmetry of the nondiagonal matrix elements. The asymmetry of
the energy matrix elements in RMBPT calculation is discussed in ref. 12.

In Table 3, we show results for the zeroth-, first-, and second-order Coulomb contributions, E(0),
E(1), and E(2) and the first- and second-order Breit–Coulomb corrections, B(1) and B(2). Similar to
Table 2, we present the results for the doubly-excited 1s2l2l′ states for the special case of Li-like iron,
Z = 26.As one can see from Table 3, the second-order Breit–Coulomb correctionsB(2) are smaller than
the first-order Breit corrections B(1) by a factor of 10; however, the B(1) is smaller than the first- and
second-order Coulomb corrections, E(1) and E(2), by factors 50–100 and 4–7, respectively. It should be
noted that the value of the first-order Breit correction B(1) calculated with Dirac functions is different
from value of the first-order Breit correction B(1)

NR calculated with Coulomb functions (see, for example
ref. 32). To clarify this result, let us represent E(1) and B(1) in an αZ expansion form (see, for example
ref. 33)

E(1) = ZE10 + Z3α2E′
12 + Z5α4E′

14 + · · · (8)

B(1) = Z3α2B12 + Z5α4B14 + · · · (9)

The sum of E′
12 and B12 in (8) and (9) gives us B(1)

NR calculated with Coulomb functions (or E12 in
Table 4 of ref. 33).

The ratio of nondiagonal and diagonal matrix elements is smaller for the first-order contributions than
for the second-order contributions. Another difference between the first- and second-order contributions
is the symmetry properties: the first-order nondiagonal matrix elements are symmetric and the second-
order nondiagonal matrix elements are not symmetric. The values ofB(2)[v′w′(J ′

12)u
′[J ], vw(J12)u[J ]]

and B(2)[vw(J12)u[J ], v′w′(J ′
12)u

′[J ]] matrix elements differ by 30–50%.

2.2. Eigenvalues and eigenvectors for doubly-excited states in Li-like ions

After evaluating the energy matrices, we calculate eigenvalues and eigenvectors for states with
given values of J and parity. There are two possible methods to carry out the diagonalization: (a)
diagonalize the sum of zeroth- and first-order matrices, then calculate the second-order contributions
using the resulting eigenvectors; or (b) diagonalize the sum of the zeroth-, first-, and second-order
matrices together. We choose the first method here.
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Table 3. Contributions to energy matrices (a.u.) before diagonalization in the case of Li-like iron, Z = 26.

2l1j12l2j2(J12)1s 2l3j32l4j4(J34)1s E(0) E(1) B(1) E(2) B(2)

Odd-parity states, J = 1/2
2s1/22p1/2(0)1s 2s1/22p1/2(0)1s −171.080643 14.979799 0.042307 −0.300223 −0.004749
2s1/22p1/2(1)1s 2s1/22p1/2(1)1s −171.080643 15.933970 0.101898 −0.362226 −0.011501
2s1/22p3/2(1)1s 2s1/22p3/2(1)1s −170.302660 15.963091 0.025948 −0.372619 −0.004051
2s1/22p1/2(0)1s 2s1/22p1/2(1)1s 0.000000 0.641018 −0.016443 −0.055095 0.000499
2s1/22p1/2(1)1s 2s1/22p1/2(0)1s 0.000000 0.641018 −0.016443 −0.055095 0.000723
2s1/22p1/2(0)1s 2s1/22p3/2(1)1s 0.000000 0.362020 −0.020392 −0.039174 0.001880
2s1/22p3/2(1)1s 2s1/22p1/2(0)1s 0.000000 0.362020 −0.020392 −0.038927 0.001556
2s1/22p1/2(1)1s 2s1/22p3/2(1)1s 0.000000 −0.516178 −0.012372 0.020951 0.001382
2s1/22p3/2(1)1s 2s1/22p1/2(1)1s 0.000000 −0.516178 −0.012372 0.020882 0.001284

Odd-parity states, J = 3/2
2s1/22p1/2(1)1s 2s1/22p1/2(1)1s −171.080643 15.269847 0.002745 −0.314825 −0.000643
2s1/22p3/2(1)1s 2s1/22p3/2(1)1s −170.302660 15.855894 0.028212 −0.348610 −0.004251
2s1/22p3/2(2)1s 2s1/22p3/2(2)1s −170.302660 15.637351 0.050910 −0.366003 −0.006937
2s1/22p1/2(1)1s 2s1/22p3/2(1)1s 0.000000 −0.829696 0.005288 0.054736 −0.000143
2s1/22p3/2(1)1s 2s1/22p1/2(1)1s 0.000000 −0.829696 0.005288 0.054451 0.000209
2s1/22p1/2(1)1s 2s1/22p3/2(2)1s 0.000000 0.404751 −0.022798 −0.043813 0.001756
2s1/22p3/2(2)1s 2s1/22p1/2(1)1s 0.000000 0.404751 −0.022798 −0.043536 0.002111
2s1/22p3/2(1)1s 2s1/22p3/2(2)1s 0.000000 0.430469 0.018832 −0.030625 −0.002357
2s1/22p3/2(2)1s 2s1/22p3/2(1)1s 0.000000 0.430469 0.018832 −0.030625 −0.002800

Odd-parity states, J = 5/2
2s1/22p3/2(2)1s 2s1/22p3/2(2)1s −170.302660 14.347223 0.006059 −0.247224 −0.000587

Even-parity states, J = 1/2
2s1/22s1/2(0)1s 2s1/22s1/2(0)1s −171.080395 14.474443 0.028248 −0.266915 −0.004174
2p1/22p1/2(0)1s 2p1/22p1/2(0)1s −171.080891 17.229558 0.059070 −0.422651 −0.007633
2p3/22p3/2(0)1s 2p3/22p3/2(0)1s −169.524926 17.443735 0.042133 −0.449337 −0.007493
2p1/22p3/2(1)1s 2p1/22p3/2(1)1s −170.302909 17.091768 0.034729 −0.431857 −0.005419
2s1/22s1/2(0)1s 2p1/22p1/2(0)1s 0.000000 −0.767134 −0.002828 0.029218 0.000995
2p1/22p1/2(0)1s 2s1/22s1/2(0)1s 0.000000 −0.767134 −0.002828 0.029218 0.000650
2s1/22s1/2(0)1s 2p3/22p3/2(0)1s 0.000000 −1.090732 −0.007774 0.042985 0.001620
2p3/22p3/2(0)1s 2s1/22s1/2(0)1s 0.000000 −1.090732 −0.007774 0.043065 0.001531
2s1/22s1/2(0)1s 2p1/22p3/2(1)1s 0.000000 0.000000 0.000000 −0.000064 0.000188
2p1/22p3/2(1)1s 2s1/22s1/2(0)1s 0.000000 0.000000 0.000000 −0.000065 −0.000078
2p1/22p1/2(0)1s 2p3/22p3/2(0)1s 0.000000 0.646169 0.005458 −0.055207 −0.001844
2p3/22p3/2(0)1s 2p1/22p1/2(0)1s 0.000000 0.646169 0.005458 −0.055205 −0.001884
2p1/22p1/2(0)1s 2p1/22p3/2(1)1s 0.000000 0.511974 −0.028838 −0.063462 0.002351
2p1/22p3/2(1)1s 2p1/22p1/2(0)1s 0.000000 0.511974 −0.028838 −0.063161 0.002263
2p3/22p3/2(0)1s 2p1/22p3/2(1)1s 0.000000 −0.362020 0.020392 0.044538 −0.001588
2p1/22p3/2(1)1s 2p3/22p3/2(0)1s 0.000000 −0.362020 0.020392 0.044753 −0.001659

Even-parity states, J = 3/2
2p1/22p3/2(1)1s 2p1/22p3/2(1)1s −170.302909 16.429434 0.051234 −0.349893 −0.005911
2p1/22p3/2(2)1s 2p1/22p3/2(2)1s −170.302909 17.234680 0.072831 −0.447449 −0.008718
2p3/22p3/2(2)1s 2p3/22p3/2(2)1s −169.524926 17.151116 0.037997 −0.446703 −0.005949
2p1/22p3/2(1)1s 2p1/22p3/2(2)1s 0.000000 −0.286210 0.037216 0.035321 −0.003341
2p1/22p3/2(2)1s 2p1/22p3/2(1)1s 0.000000 −0.286210 0.037216 0.035321 −0.003432
2p1/22p3/2(1)1s 2p3/22p3/2(2)1s 0.000000 0.404751 −0.022798 −0.049977 0.001843
2p3/22p3/2(2)1s 2p1/22p3/2(1)1s 0.000000 0.404751 −0.022798 −0.049736 0.001834
2p1/22p3/2(2)1s 2p3/22p3/2(2)1s 0.000000 −0.054668 0.019897 0.008045 −0.002245
2p3/22p3/2(2)1s 2p1/22p3/2(2)1s 0.000000 −0.054668 0.019897 0.007988 −0.002198
————————
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Table 3. (concluded).

2l1j12l2j2(J12)1s 2l3j32l4j4(J34)1s E(0) E(1) B(1) E(2) B(2)

Even-parity states, J = 3/2
2p1/22p3/2(2)1s 2p3/22p3/2(2)1s 0.000000 −0.054668 0.019897 0.008045 −0.002245
2p3/22p3/2(2)1s 2p1/22p3/2(2)1s 0.000000 −0.054668 0.019897 0.007988 −0.002198

Even-parity states, J = 5/2
2p1/22p3/2(2)1s 2p1/22p3/2(2)1s −170.302909 16.869780 0.004247 −0.401875 −0.000808
2p3/22p3/2(2)1s 2p3/22p3/2(2)1s −169.524926 16.416721 0.017458 −0.356004 −0.002453
2p1/22p3/2(2)1s 2p3/22p3/2(2)1s 0.000000 0.467863 −0.009536 −0.056310 0.000295
2p3/22p3/2(2)1s 2p1/22p3/2(2)1s 0.000000 0.467863 −0.009536 −0.056055 0.000250

Fig. 4. Contribution to the energies of (a) the 2s2p(3P)1s 4P5/2 and (b) the 2p2(3P)2p 4P5/2 levels of
Li-like ions.
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In Table 4, we list the following contributions to the energies of sixteen doubly-excited 1s2l2l′
states and the ground state in Fe23+: E(0+1) = E(0) +E(1) + B(1); the second-order Coulomb energy,
E(2); the QED correction, ELAMB; and the total theoretical energy, Etot, relative to the 1s state. The
QED correction is approximated as the sum of the one-electron self energy and the first-order vacuum-
polarization energy. The screened self-energy and vacuum polarization data given by Johnson and
Soff [14] are used to determine the QED correction ELAMB. Both jj and LS designations are given
in Table 4; however, neither jj nor LS coupling describes the physical states properly, except for the
single-configuration state 2s1/22p3/2(2)1s[5/2] ≡ 2s2p(3P)1s 4P5/2. We find that the second-order
contribution is the largest contribution among the corrections to the E(0+1) value and is equal to about
0.2% of the total energy.

The importance of the second-order contribution to the energies is illustrated in Figs. 4a and 4b.
In these figures, the second-order energy, E(2); the first-order Breit energy, B(1); and the QED contri-
bution, ELAMB, are plotted as functions of Z for the doubly-excited 2s2p(3P)1s 4P5/2 (Fig. 4a) and
2p2(3P)1s 4P5/2 (Fig. 4b) states in Li-like ions. We can see from Figs. 4a and 4b that E(2) is the
dominant contribution up to Z = 54 and Z = 42 for those levels, respectively. In the case of high Z,
the ELAMB contribution becomes the largest contribution for the 2s2p(3P)1s 4P5/2 level and the B(1)

contribution becomes the largest one for the 2p2(3P)1s 4P5/2 level. The ELAMB value is smaller than
the E(2) value up to Z = 85 for the level shown in Fig. 4b.
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Fig. 5. Energies E/(Z − 0.8)2 in 104 cm−1 of the 1s2l2l′ levels as functions of Z in Li-like ions.
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Fig. 6. Energies E/(Z − 0.8)2 of 1s3l3l′ states in 104 cm−1 as functions of Z in Li-like ions.
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Energies of the 1s2l2l′ and 1s3l3l′ states relative to the energy of the 1s state and divided by
(Z − 0.8)2 are plotted in Figs. 5 and 6. It should be noted that Z was decreased by 0.8 to provide
better presentation of the energy diagrams. TheZ dependence of the odd-parity 2s2p(3P)1s 4P5/2 level
and the three even-parity 2p2(1,3L)1s 2,4L3/2 levels is shown in Figs. 5a and 5b, respectively. The Z
dependence of the eight odd-parity 3l3l′(1,3L)1s 2,4L3/2 levels is shown in Fig. 6a. We use LS labels
for low-Z ions and jj labels for high-Z ions. We see that the energy of all these levels increases sharply
with Z for low Z up to Z = 20 and then increases slowly for high Z (it is almost constant with Z for
2p3/22p3/2(2)1s[3/2]). Comparison of Z dependencies presented in Figs. 5 and 6 shows that energies
of the 1s2l2l′ levels are in the range of 4.8–6.4 in units of 104 × (Z−0.8)2 cm−1; however, the energies
of the 1s3l3l′ levels are in the range of 1.9–2.7 in units of 104 × (Z − 0.8)2 cm−1.

Strong mixing between states inside of the 1s2l2l′ odd-parity complex with J = 1/2 and 3/2 is
discussed in refs. 1 and 2. The 2s1/22p1/2(1)1s[3/2], 2s1/22p3/2(1)1s[3/2], and 2s1/22p3/2(1)1s[3/2]
states are mixed with mixing coefficients equal to 0.4–0.7 for the entire isoelectronic sequence. Similar
strong mixing is found inside the 1s3l3l′ odd-parity complex with J = 1/2 and 3/2. In addition to
the 3s1/23pj (J12)1s[3/2], the complex with J = 3/2 includes the 3pj3dj ′(J12)1s[3/2] states. We
found that for the second level of this complex (level labelled 3s3p(3P)1s 2P3/2), the contributions
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Table 4. Energy levels of Li-like iron, Z = 26 in a.u., E(0+1) ≡ E0 + E1 + B1.

jj -coupling E(0+1) E2 B2 ELAMB Etot jj - coupling

1s2(1S)2s 2S1/2 −399.323466 −0.420482 −0.021942 0.160383 −399.605505 1s1/21s1/2(0)2s
2s2p(3P)1s 4P1/2 −156.348260 −0.253226 −0.007109 0.017003 −156.591592 2s1/22p1/2(0)1s
2s2p(3P)1s 2P1/2 −154.744513 −0.394425 −0.006850 0.017085 −155.128702 2s1/22p1/2(1)1s
2s2p(1P)1s 2P1/2 −153.895227 −0.387417 −0.006342 0.018066 −154.270922 2s1/22p3/2(1)1s
2s2p(3P)1s 4P3/2 −156.215283 −0.255029 −0.002214 0.017313 −156.455214 2s1/22p1/2(1)1s
2s2p(3P)1s 2P3/2 −154.411471 −0.387204 −0.003294 0.018064 −154.783905 2s1/22p3/2(1)1s
2s2p(1P)1s 2P3/2 −153.785316 −0.387206 −0.006323 0.018178 −154.160667 2s1/22p3/2(2)1s
2s2p(1P)1s 4P5/2 −155.806401 −0.247224 −0.000587 0.018318 −156.035893 2s1/22p3/2(2)1s
2s2(1S)1s 2S1/2 −156.807514 −0.256840 −0.003688 0.032236 −157.035806 2s1/22s1/2(0)1s
2p2(3P)1s 4P1/2 −154.123778 −0.333900 −0.008340 0.000054 −154.465965 2p1/22p1/2(0)1s
2p2(3P)1s 2P1/2 −152.743760 −0.485003 −0.003675 0.000306 −153.232131 2p3/22p3/2(0)1s
2p2(1S)1s 2S1/2 −151.338472 −0.495017 −0.009018 0.003490 −151.839017 2p1/22p3/2(1)1s
2p2(3P)1s 4P3/2 −153.827071 −0.324243 −0.008277 0.000492 −154.159100 2p1/22p3/2(1)1s
2p2(1D)1s 2D3/2 −152.807675 −0.449407 −0.008157 0.000490 −153.264749 2p1/22p3/2(2)1s
2p2(3P)1s 2P3/2 −152.089772 −0.470393 −0.004143 0.001692 −152.562616 2p3/22p3/2(2)1s
2p2(3P)1s 4P5/2 −153.605262 −0.333390 −0.001618 0.000895 −153.939374 2p1/22p3/2(2)1s
2p2(3P)1s 2D5/2 −152.628410 −0.424490 −0.001643 0.001355 −153.053188 2p3/22p3/2(2)1s

from the 3p1/23d3/2(2)1s[3/2] and 3p3/23d5/2(2)1s[3/2] states are important. The odd-parity complex
with J = 5/2 includes eight states shown in Fig. 6. The first level of this complex 3s3p(3P)1s 4P5/2
is defined by the 3s1/23p3/2(2)1s[5/2] state with a small contribution from the 3p3/23d3/2(3)1s[5/2]
state for low-Z ions. Two states 3p1/23d3/2(2)1s[5/2] and 3p1/23d3/2(3)1s[5/2] give almost equal
contributions to the third, 3p3d(3D)1s 2D5/2, and fourth, 3p3d(3F)1s 2F5/2, levels of this complex.
Mixing between 3s1/23dj and 3pj3pj ′ states inside of the even-parity complex for Mg-like ions is
discussed in ref. 34. We find similar mixing between 3s1/23dj (J12)1s and 3pj3pj ′(J12)1s states inside
of the even-parity complex with J = 1/2 − 5/2 in Li-like ions.

3. Comparison of results with theory and experiment

We calculated the energies of the 16 doubly-excited 1s2l2l′ states, the 63 doubly-excited 1s3l3l′
states, and the 1s22p and 1s23l singly-excited states together with the ground 1s22s state for Li-like
ions with nuclear charges Z = 6–100. In Table 5, we illustrate our theoretical results for energies of the
1s22p, 1s23l, and the 79 doubly-excited 1s2l2l′ and 1s3l3l′ states counted from the ground 1s22s state
for Li-like Ar, Fe, Kr, and Mo. These ions are most frequently studied experimentally and theoretically
(see, for example, refs. 11, 35–40).

3.1. Excitation energies of doubly-excited states in Li-like ions

Comparisons of our RMBPT energies with other theoretical and experimental data are too volumi-
nous to include here; therefore, we present several examples of comparisons for selected levels and ions.
In Table 6, our theoretical results for the 2s2p(1,3P)1s 4PJ and 2s2p(1,3P)1s 2PJ levels are compared
with available recommended NIST data for Mg9+ [16], Al10+ [17], Si11+ [18], P12+ [19], S13+ [20],
K16+ [21], Ca17+ [21], Sc18+ [21], Ti19+ [21], V20+ [24], Cr21+ [25], Fe23+ [27], Ni25+ [21], and
Cu26+ [29]. We see from Table 6 that the difference between our RMBPT results and recommended
NIST data is 0.001–0.01%. In Table 7, our theoretical results for the 2s2(1S)1s 2S1/2 level and the
eight 2p2(1,3L)1s 2,4LJ levels are compared with NIST data. Table 7 is organized in a similar way
to Table 6. We can see that our RMBPT results are in excellent agreement with recommended NIST
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Table 5. Energies (104 cm−1) for the 1s2nl 2LJ , 2l2l(1,3L)1s 2,4LJ , and
3l3l(1,3L)1s 2,4LJ levels in Li-like ions given relative to the ground state,
1s22s 2S1/2.

Z = 18 Z = 26 Z = 36 Z = 42

1s22p 2P1/2 25.72 39.23 57.53 69.55
1s22p 2P3/2 28.28 52.11 109.94 171.15
1s23s 2S1/2 417.57 926.91 1859.84 2586.65
1s23p 2P1/2 424.68 937.80 1875.80 2605.92
1s23p 2P3/2 425.44 941.61 1891.33 2636.06
1s23d 2D3/2 428.12 945.74 1897.18 2642.86
1s23d 2D5/2 428.35 946.94 1902.05 2652.23
2s2(1S)1s 2S1/2 2483.63 5324.07 10429.62 14352.12
2s2p(3P)1s 4P1/2 2490.09 5333.82 10444.22 14370.19
2s2p(3P)1s 4P3/2 2490.78 5336.81 10451.87 14380.13
2s2p(1P)1s 4P5/2 2492.49 5346.02 10495.05 14469.94
2s2p(3P)1s 2P1/2 2510.40 5365.93 10491.85 14427.51
2s2p(3P)1s 2P3/2 2511.75 5373.49 10530.14 14509.27
2s2p(1P)1s 2P1/2 2519.84 5384.75 10547.06 14530.29
2s2p(1P)1s 2P3/2 2520.39 5387.17 10553.86 14540.74
2p2(3P)1s 4P1/2 2518.12 5380.47 10518.97 14461.80
2p2(3P)1s 4P3/2 2519.26 5387.21 10556.68 14545.31
2p2(3P)1s 4P5/2 2520.51 5392.03 10565.81 14555.39
2p2(1D)1s 2D3/2 2532.09 5406.84 10583.63 14576.12
2p2(3P)1s 2D5/2 2532.16 5411.48 10620.35 14659.16
2p2(3P)1s 2P1/2 2534.66 5407.55 10579.03 14568.56
2p2(3P)1s 2P3/2 2537.22 5422.25 10639.83 14683.48
2p2(1S)1s 2S1/2 2549.98 5438.13 10657.03 14701.22
3s2(1S)1s 2S1/2 3367.07 7248.87 14249.66 19644.39
3s3p(3P)1s 4P1/2 3368.10 7250.40 14251.95 19647.21
3s3p(3P)1s 4P3/2 3368.30 7251.28 14254.40 19650.73
3s3p(3P)1s 4P5/2 3368.78 7253.89 14266.69 19676.44
3s3p(3P)1s 2P1/2 3373.45 7258.91 14264.91 19663.22
3s3p(3P)1s 2P3/2 3373.83 7261.20 14276.60 19688.02
3s3d(3D)1s 2D3/2 3374.86 7263.62 14281.80 19694.84
3s3d(3D)1s 2D5/2 3374.70 7262.95 14279.82 19691.97
3s3p(1P)1s 2P1/2 3376.29 7265.05 14282.95 19696.01
3s3p(1P)1s 2P3/2 3376.45 7265.58 14284.03 19697.54
3p2(3P)1s 4P1/2 3376.08 7263.90 14274.39 19675.37
3p2(3P)1s 4P3/2 3376.41 7265.78 14284.53 19698.09
3p2(3P)1s 4P5/2 3376.85 7266.62 14286.39 19701.32
3s3d(3D)1s 4D1/2 3376.87 7265.98 14283.74 19696.45
3s3d(3D)1s 4D3/2 3376.92 7266.25 14285.45 19700.01
3s3d(3D)1s 4D5/2 3377.00 7268.11 14292.80 19711.36
3s3d(3D)1s 4D7/2 3377.12 7267.21 14288.71 19705.99
3p3d(3F)1s 4F3/2 3379.66 7270.52 14291.00 19705.54
3p3d(3F)1s 4F5/2 3379.83 7271.00 14291.36 19705.46
3p3d(3F)1s 4F7/2 3380.18 7273.06 14299.92 19721.05
3p3d(3F)1s 4F9/2 3380.61 7275.47 14311.48 19745.49
3s3d(1D)1s 2D3/2 3380.15 7271.25 14292.35 19707.98
3s3d(1D)1s 2D5/2 3380.35 7272.32 14298.08 19719.93
3p3d(3D)1s 2D3/2 3380.89 7274.60 14302.57 19721.44
3p3d(3D)1s 2D5/2 3380.80 7273.98 14300.96 19722.21

————————
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Table 5. (concluded).

Z = 18 Z = 26 Z = 36 Z = 42

3p2(3P)1s 2P1/2 3380.34 7270.97 14290.54 19704.61
3p2(3P)1s 2P3/2 3380.96 7274.09 14300.74 19720.46
3p3d(3F)1s 2F5/2 3382.11 7275.78 14303.10 19723.59
3p3d(3F)1s 2F7/2 3382.80 7278.62 14314.65 19745.75
3p2(1S)1s 2S1/2 3382.02 7278.79 14312.21 19742.57
3p3d(3D)1s 4D1/2 3383.51 7277.25 14303.09 19721.19
3p3d(3D)1s 4D3/2 3383.59 7277.52 14303.55 19723.54
3p3d(3D)1s 4D5/2 3383.73 7278.24 14310.72 19740.81
3p3d(3D)1s 4D7/2 3383.96 7279.72 14315.91 19750.75
3p3p(1D)1s 2D5/2 3384.48 7279.39 14310.08 19737.19
3p2(1D)1s 2D3/2 3384.48 7279.49 14311.81 19741.35
3p3d(3P)1s 4P1/2 3385.05 7280.99 14315.68 19746.56
3p3d(3P)1s 4P3/2 3385.00 7280.81 14313.92 19744.13
3p3d(3P)1s 4P5/2 3384.95 7280.94 14317.42 19750.45
3p3d(1D)1s 2D3/2 3386.19 7281.86 14316.79 19748.37
3p3d(1D)1s 2D5/2 3386.55 7283.69 14320.89 19754.64
3p3d(3P)1s 2P1/2 3387.46 7284.60 14320.66 19752.31
3p3d(3P)1s 2P3/2 3387.33 7284.34 14321.49 19755.88
3d3d(3F)1s 2F5/2 3387.75 7286.18 14326.80 19763.65
3d3d(3F)1s 2F7/2 3387.65 7285.97 14326.32 19762.91
3d2(3F)1s 4F3/2 3387.49 7285.24 14323.01 19755.84
3d2(3F)1s 4F5/2 3387.53 7285.25 14322.76 19755.28
3d2(3F)1s 4F7/2 3388.01 7287.28 14330.37 19769.26
3d2(3F)1s 4F9/2 3387.83 7286.91 14329.65 19768.23
3p3d(1F)1s 2F7/2 3390.81 7289.71 14328.76 19764.00
3p3d(1F)1s 2F5/2 3390.96 7290.26 14330.41 19766.59
3d2(1G)1s 2G7/2 3391.71 7292.48 14337.14 19778.24
3d2(1G)1s 2G9/2 3391.65 7292.28 14336.60 19777.40
3d2(3P)1s 4P1/2 3391.82 7291.77 14332.52 19767.49
3d2(3P)1s 4P3/2 3391.89 7292.16 14334.71 19772.09
3d2(3P)1s 4P5/2 3391.97 7292.44 14334.38 19771.32
3d2(3P)1s 2P1/2 3392.36 7292.65 14335.10 19772.95
3d2(3P)1s 2P3/2 3392.51 7293.12 14335.01 19772.52
3d2(1D)1s 2D5/2 3394.36 7295.58 14340.97 19783.08
3d2(1D)1s 2D3/2 3394.42 7295.80 14341.59 19783.84
3p3d(1P)1s 2P1/2 3395.61 7296.24 14336.34 19771.99
3p3d(1P)1s 2P3/2 3395.70 7296.69 14337.91 19774.41
3d2(1S)1s 2S1/2 3404.61 7310.95 14361.13 19804.84

data. The 1s3l3l′ doubly-excited states have received much less attention in the literature than the
1s2l2l′ states discussed above. A limited number of 1s3l1j13l2j2 − 1s23l3j3 transitions was presented
by Beiersdorfer et al. in ref. 37. In Table 8, we compare the RMBPT results with theoretical results and
experimental measurements from ref. 37. The theoretical results in ref. 37 were obtained by using the
Hebrew University Lawrence Livermore Atomic Code (HULLAC). The difference between RMBPT
and HULLAC results is 0.02–0.06%.

3.2. Fine structure of the 2L and 4L terms in doubly-excited states of Li-like ions
No direct measurement of fine-structure intervals was made by observing the wavelength differences

between transitions within the doublet or quartet states. The intervals of both upper and lower states
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Table 6. Energies (104 cm−1) of the odd-parity 2l2l(1,3L)1s 2,4LJ levels in Li-like ions given relative to
the ground state, 1s22s 2S1/2. Comparison of the RMBPT results with recommended NIST data.

2s2p(3P)1s 2s2p(3P)1s 2s2p(3P)1s 2s2p(3P)1s 2s2p(3P)1s 2s2p(1P)1s 2s2p(1P)1s
4P1/2

4P3/2
4P3/2

2P1/2
2P3/2

2P1/2
2P3/2

Z=12 1064.74 1064.84 1065.11 1076.94 1077.16 1082.79 1082.86
Ref. 16 1064.63 1064.74 1077.12 1077.12 1082.90 1082.90

Z=13 1260.62 1260.77 1261.16 1274.13 1274.45 1280.51 1280.63
Ref. 17 1261.06 1274.06 1274.38 1280.43 1280.58

Z=14 1473.13 1473.34 1473.89 1487.96 1488.41 1494.90 1495.06
Ref. 18 1473.23 1473.44 1473.99 1488.09 1488.53 1495.00 1495.21

Z=15 1702.29 1702.60 1703.34 1718.47 1719.07 1725.98 1726.21
Ref. 19 1702.45 1702.75 1703.50 1718.66 1719.25 1726.13 1726.43

Z=16 1948.15 1948.56 1949.56 1965.69 1966.49 1973.80 1974.11
Ref. 20 1948.04 1948.45 1949.44 1965.61 1966.39 1973.68 1974.08

Z=19 2786.25 2787.12 2789.30 2807.97 2809.69 2818.17 2818.86
Ref. 21 2787.10 2787.10 2787.10 2807.90 2807.90 2818.20 2818.20

Z=20 3099.26 3100.34 3103.08 3122.41 3124.59 3133.44 3134.30
Ref. 21 3135.20 3135.20

Z=21 3429.16 3430.48 3433.91 3453.76 3456.49 3465.73 3466.78
Ref. 21 3466.40 3466.40

Z=22 3776.00 3777.59 3781.83 3802.08 3805.47 3815.09 3816.37
Ref. 21 3816.20 3816.20

Z=23 4139.83 4141.73 4146.93 4167.40 4171.58 4181.59 4183.12
Ref. 24 4167.90 4171.90 4182.00 4182.00

Z=24 4520.70 4522.94 4529.28 4549.77 4554.90 4565.31 4567.12
Ref. 25 4554.80 4564.80

Z=26 5333.82 5336.81 5346.02 5365.93 5373.49 5384.75 5387.17
Ref. 27 5328.79 5339.00 5365.70 5375.20 5384.40 5390.30

Z=28 6215.83 6219.68 6232.72 6251.00 6261.91 6274.11 6277.24
Ref. 21 6219.80 6222.80 6251.60 6261.70 6275.50

Z=29 6682.83 6687.14 6702.54 6719.55 6732.53 6745.25 6748.76
Ref. 29 6702.00

Note: Ref. 16, Mg9+; Ref. 17, Al10+; Ref. 18, Si11+; Ref. 19, P12+; Ref. 20, S13+; Ref. 21, K16+; Ref. 21, Ca17+;
Ref. 21, Sc18+; Ref. 21, Ti19+; Ref. 24, V20+; Ref. 25, Cr21+; Ref. 27, Fe23+; Ref. 21, Ni25+; and Ref. 29, Cu26+.

are determined if all allowed transitions are observed [41, 42]. In Table 9, we show results for the
fine-structure splitting of the 1s2s2p 4P and the 1s2p2 4P terms for Li-like ions with Z = 6–8. Our
RMBPT results are compared with experimental measurements from ref. 41 and the theoretical data
obtained using the MZ code [2]. This code is based on the Z-expansion of nonreativistic energy matrix
with the addition of the relativistic Breit correction (see refs. 1 and 2 for details).

The fine-structure intervals are quite regular throughout the isoelectronic sequence, as seen from
Figs. 7 and 8. In Figs. 7 and 8, we present the fine-structure splitting divided by (Z − 0.8)3 for the
doublet and quartet terms of the 1s2l2l′ and 1s3l3l′ states. It should be noted that energy splitting
E was divided by (Z − 0.8)3 to provide a better presentation of the energy diagrams. The energy
difference between the 4P3/2 and 4P1/2 levels in the 2s2p(3P)1s 4PJ quartet term is very small, as
shown in Fig. 7a; however, the energy difference between the 4P5/2 and 4P3/2 levels rapidly increases
with increasing Z. Similar behavior is found for the 3s3p(3P)1s 4PJ quartet term shown in Fig. 8a.
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Table 7. Energies (104 cm−1) of the even-parity 2l2l(1,3L)1s 2,4LJ levels in Li-like ions given relative to the
ground state, 1s22s 2S1/2. Comparison of the RMBPT results with recommended NIST data.

2s2(1S)1s 2p2(3P)1s 2p2(3P)1s 2p2(1S)1s 2p2(3P)1s 2p2(1D)1s 2p2(3P)1s 2p2(3P)1s 2p2(1D)1s
2S1/2

4P1/2
2P1/2

2S1/2
4P3/2

2D3/2
2P3/2

4P5/2
2D5/2

Z=12 1060.48 1081.84 1091.67 1100.88 1082.03 1089.58 1092.06 1082.23 1089.46
Ref. 16 1081.67 1100.80 1081.85 1089.40 1082.05 1089.40

Z=13 1256.00 1279.41 1290.35 1300.44 1279.67 1288.09 1290.91 1279.97 1287.99
Ref. 17 1279.25 1290.17 1300.29 1279.51 1287.96 1290.72 1279.80 1287.85

Z=14 1468.15 1493.65 1505.71 1516.72 1494.02 1503.32 1506.49 1494.44 1503.20
Ref. 18 1468.28 1493.68 1505.72 1516.76 1494.04 1503.38 1506.50 1494.45 1503.38

Z=15 1696.95 1724.61 1737.77 1749.76 1725.10 1735.28 1738.85 1725.67 1735.17
Ref. 19 1697.13 1724.70 1737.85 1749.85 1725.19 1735.31 1735.42 1725.75 1735.42

Z=16 1942.45 1972.31 1986.59 1999.61 1972.97 1984.03 1988.05 1973.73 1983.95
Ref. 20 1942.20 1972.13 1973.68 1999.42 1972.79 1983.82 1987.85 1973.53 1983.90

Z=19 2779.40 2816.33 2834.01 2850.62 2817.79 2831.52 2837.32 2819.35 2831.72
Ref. 21 2816.00 2838.40 2851.10 2816.00 2831.80 2838.40 2832.10

Z=20 3092.00 3131.45 3150.31 3168.34 3133.31 3147.92 3154.55 3135.24 3148.35
Ref. 21 3148.40 3155.10 3148.60

Z=21 3421.50 3463.56 3483.61 3503.22 3465.90 3481.38 3488.97 3468.22 3482.13
Ref. 21 3486.00 3504.70 3484.00 3486.00 3484.00

Z=22 3767.93 3812.69 3833.98 3855.33 3815.61 3831.95 3840.67 3818.38 3833.14
Ref. 21 3855.00 3831.90 3841.60 3832.90

Z=23 4131.34 4178.89 4201.48 4224.78 4182.53 4199.71 4209.76 4185.77 4201.48
Ref. 24 4131.70 4224.70 4199.70 4210.00 4185.80 4201.70

Z=24 4511.80 4562.22 4586.19 4611.66 4566.71 4584.72 4596.31 4570.46 4587.24
Ref. 25 4584.90 4587.00

Z=26 5324.07 5380.47 5407.55 5438.13 5387.21 5406.84 5422.25 5392.03 5411.48
Ref. 27 5323.56 5380.60 5407.70 5438.50 5387.70 5407.00 5424.40 5393.70 5412.60

Z=28 6205.18 6267.88 6298.76 6335.63 6277.78 6298.97 6319.35 6283.67 6306.80
Ref. 21 6269.70 6299.70 6239.70 6278.30 6300.80 6321.00 6308.50

Note: Ref. 16, Mg9+; Ref. 17, Al10+; Ref. 18, Si11+; Ref. 19, P12+; Ref. 20, S13+; Ref. 21, K16+; Ref. 21, Ca17+;
Ref. 21, Sc18+; Ref. 21, Ti19+; Ref. 24, V20+; Ref. 25, Cr21+; Ref. 27, Fe23+; and Ref. 21, Ni25+.

The range of energies plotted in Figs. 7a and 8a differs by a factor of 4. The decrease in the energy
range for the fine-structure splitting of 1s3l3l′ states in comparison with 1s2l2l′ states is also observed
for the doublet terms (compare Figs. 7b and 8b). The energy difference between the 2P3/2 and 2P1/2
levels in the nsnp(1P)1s 2PJ doublet term is very small but the energy difference between the 2P3/2
and 2P1/2 levels in the nsnp(3P)1s 2PJ doublet term rapidly increases with increasing Z. The energy
difference between the 4P5/2 and 4P3/2 levels in the 2p2(3P)1s 4PJ quartet term is again very small, as
shown in Fig. 7c; however, the energy difference between the 4P3/2 and 4P1/2 levels rapidly increases
with increasing Z, which is the opposite to the behavior of the 2s2p(3P)1s 4PJ quartet term. Similar
behavior of the fine-structure splitting is found for the 3p2(3P)1s 4PJ quartet term shown in Fig. 8e.
The unusual splittings are due principally to changes from LS to jj coupling, with mixing from other
triplet and singlet states. States with different J complexes mix differently. Further, experimental con-
firmation would be very helpful in verifying the correctness of these occasionally sensitive mixing
parameters.
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Table 8. Wavelengths λ in Å for 3l3l(1,3L)1s 2LJ - 1s23lj transitions in Ar15+. Comparison with
theoretical (HULLAC code) and experimental (Expt.) results from ref. 37.

LS - designations jj - designations

3l3l(1,3L)1s 2LJ 1s23l 2LJ RMBPT HULLAC [37] Expt. [37] 3lj3l′
j ′(J12)1s 3lj

3p3d(1P)1s 2P3/2 1s23d 2D5/2 3.3700 3.3692 3p3/23d5/2(2)1s 3d5/2

3p3d(1F)1s 2F5/2 1s23d 2D3/2 3.3751 3.3751 3p3/23d5/2(3)1s 3d3/2

3p3d(1F)1s 2F7/2 1s23d 2D5/2 3.3756 3.3755 3p3/23d5/2(4)1s 3d5/2

3s3p(3P)1s 2P3/2 1s23s 2S1/2 3.3827 3.3845 3.3856 3s1/23p3/2(1)1s 3s1/2

3s3p(3P)1s 2P1/2 1s23s 2S1/2 3.3831 3.3849 3.3856 3s1/23p1/2(1)1s 3s1/2

3p3d(3F)1s 2F7/2 1s23d 2D5/2 3.3847 3.3858 3.3856 3p3/23d3/2(3)1s 3d5/2

3p3d(3F)1s 2F5/2 1s23d 2D3/2 3.3852 3.3863 3.3856 3p1/23d5/2(3)1s 3d3/2

3p3d(3F)1s 2F5/2 1s23d 2D5/2 3.3855 3.3866 3.3856 3p1/23d5/2(3)1s 3d5/2

3s3d(3D)1s 2D3/2 1s23p 2P1/2 3.3896 3.3920 3s1/23d3/2(1)1s 3p1/2

3s3d(3D)1s 2D5/2 1s23p 2P3/2 3.3907 3.3939 3s1/23d3/2(2)1s 3p3/2

3s2(1S)1s 2S1/2 1s23p 2P1/2 3.3986 3.4009 3s1/23s1/2(0)1s 3p1/2

3s2(1S)1s 2S1/2 1s23p 2P3/2 3.3995 3.4017 3s1/23s1/2(0)1s 3p3/2

Table 9. Fine-structure splitting of the 1s2s2p 4P and the 1s2p2 4P terms in cm−1

for Li-like ions. Comparison with theoretical results obtained using the MZ code [2]
and with experimental measurements from ref. 41.

1s2s2p 4P 1s2p2 4P

4P5/2 −4 P3/2
4P3/2 −4 P1/2

4P5/2 −4 P3/2
4P3/2 −4 P1/2

Z = 8 Expt. 418±4 102±5 252±4 295±5
RMBPT 407 102 261 297
MZ 410 103 242 295

Z = 7 Expt. 212±3 35±4 115±3 160±4
RMBPT 211 39 124 161
MZ 214 37 109 159

Z = 6 Expt. 100±5 0±7 41±5 83±7
RMBPT 98 8 50 77
MZ 96 6 37 77

3.3. Excitation energies of singly-excited states in Li-like ions

The energies of 1s22l states are not the subject of this paper as those energies have been studied
experimentally and theoretically in numerous publications. For example, the energies of the 1s22l states
were calculated using the RMBPT method and all-order method by Johnson et al. in refs. 43–45. The
Hylleraas-type variational method was used in ref. 46 to calculate the energies of the lithium 1s22s 2S

and 1s22p 2P isoelectronic sequences up toZ = 20. There was no previous RMBPT calculation for the
energies of the 1s23l states in Li-like ions. We need these data since they are important for the calculation
of the 1s3l3l′–1s23l′′ transition energies. These transitions are important for obtaining satellite spectra
for the 1s3l–1s2 lines [37, 38].

We calculate the energies of 1s23l states using two methods. First, we calculate these energies as
described above, treating the 1s23l states as a three-electron system. Next, we treat the 1s23l states as a
system with one valence electron above the 1s2 core as was done in refs. 43–45. As a result, we obtain
the energy counted from the energy of the 1s2 core, E(C). The sum of the core E(C) energy and the
valence E(nl) energies gives us the absolute energy of the three-electron 1s23l system. Comparison
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Fig. 7. Energy splittings E/(Z − 0.8)3 of 1s2l2l′ states in cm−1 as functions of Z.

40

∆E
/(

Z
-0

.8
)3

(c
m

-1
) 40

∆E
/(

Z
-0

.8
)3

(c
m

-1
)

40

∆E
/(

Z
-0

.8
)3

(c
m

-1
)

∆E
/(

Z
-0

.8
)3

(c
m

-1
)

of the results of the 1s23l energy obtained by two approaches shows that the difference decreases, as
1/Z, with increase in Z. It is reasonable, since we include additional high-order 1/Zn contributions
in RMBPT calculations with the Dirac–Fock functions obtained with the 1s2 potential, which are not
included in RMBPT calculations with the hydrogenic potential when the 1s23l system is treated as a
three-electron system.

In Table 10, our theoretical results for the fine-structure splitting of 1s2nl 2L terms obtained by two
methods (with and without 1s2 core functions) are compared with available recommended NIST data
from refs. 15–31 for Li-like ions with Z = 6–42. We can see from Table 10 that our results obtained
with the 1s2 core functions (hf) are in better agreement with the recommended NIST data than the
results obtained with the hydrogenic potential (cl). We use the first set of data in Tables 6 and 7 to
present 2l2l′(1,3L)1s 2,4LJ energies counted from the 1s22s 2S1/2 ground state. The wavelengths for
3l3l′(1,3L)1s 2,4LJ - 1s23l 2lJ ′ transitions are given in Table 8.

4. Conclusion

In conclusion, a systematic second-order RMBPT study of the energies of the doubly-excited states of
Li-like ions has been presented. We find that RMBPT gives results in good agreement with experimental
and predicted data. It would be beneficial if experimental data for other highly charged Li-like ions were
available. At the present time, there are almost no experimental data between Z = 30 and 100 for the
lithium isoelectronic sequence. Availability of such data could lead to an improved understanding of the
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Table 10. Splittings of 1s2nl 2L terms in cm−1. Comparison of RMBPT data with
recommended NIST data. The RMBPT data are calculated with 1s2 core (label hf) and
without core, as three-electron system (label cl).

2p 2P 3p 2P 3d 2D 2p 2P 3p 2P 3d 2D

3/2-1/2 3/2-1/2 5/2-3/2 3/2-1/2 3/2-1/2 5/2-3/2

Z = 6 Z = 21
hf 108 32 9 hf 50671 14982 4710
cl 116 35 16 cl 50542 14959 4741
Ref. 15 107 31 11 Ref. 23 50700 15000 4000
Z = 7 Z = 22
hf 260 76 23 hf 62166 18385 5785
cl 266 80 30 cl 62016 18356 5819
Ref. 15 258 74 24 Ref. 21 62146 18000 6000
Z = 8 Z = 23
hf 532 156 46 hf 75527 22342 7034
cl 536 161 56 cl 75354 22305 7072
Ref. 15 533 157 51 Ref. 24 75550 22000 6600
Z = 9 Z = 24
hf 976 287 86 hf 90952 26909 8477
cl 977 291 97 cl 90752 26866 8517
Ref. 15 975 282 90 Ref. 25 90920 26000 9000
Z = 10 Z = 25
hf 1651 487 148 hf 108646 32150 10132
cl 1648 490 159 cl 108417 32098 10175
Ref. 15 1649 Ref. 21 108620 30000 17000
Z = 12 Z = 26
hf 3981 1174 360 hf 128828 38129 12017
cl 3966 1176 375 cl 128568 38068 12065
Ref. 16 3975 1310 390 Ref. 27 128720 39000 13000
Z = 13 Z = 27
hf 5799 1712 528 hf 151729 44915 14156
cl 5777 1712 544 cl 151433 44843 14207
Ref. 17 5789 1750 430 Ref. 28 151660 44000 14000
Z = 14 Z = 28
hf 8181 2415 747 hf 177589 52579 16569
cl 8150 2413 765 cl 177254 52495 16624
Ref. 18 8176 2390 690 Ref. 22 177530 60000 10000
Z = 15 Z = 29
hf 11229 3315 1030 hf 206663 61197 19279
cl 11188 3313 1049 cl 206284 61100 19339
Ref. 19 11226 3330 990 Ref. 29 206533 62000 20000
Z = 164 Z = 36
hf 15060 4448 1386 hf 524081 155363 48683
cl 15009 4443 1407 cl 523168 155115 48785
Ref. 20 15063 4530 1420 Ref. 30 523850
Z = 19 Z = 42
hf 32547 9620 3016 hf 1016044 301485 93663
cl 32455 9605 3043 cl 1014337 300995 93820
Ref. 21 32520 14900 3200 Ref. 31 1014010 300400 93850
Z = 20
hf 40857 12078 3792
cl 40746 12059 3821
Ref. 21 40861 11700 3000
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Fig. 8. Energy splittings E/(Z − 0.8)3 of 1s3l3l′ states in cm−1 as functions of Z.
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relative importance of different contributions to the energies of highly charged ions. These calculations
are presented as a theoretical benchmark for comparison with experiment and theory. The results could
be further improved by including third-order correlation corrections.
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Appendix A. First- and second-order contributions to energy matrix for
1snln′l′ states

The model space state vector for a system with three valence electrons can be represented as [12]

"0 (v1w1 [J12] u1JM) =
∑
vwu

∑
K ′′

12

〈vw|K ′′
12〉〈K ′′

12u|K〉Cvv1ww1uu1

(
J12, J

′′
12, J

)
a†
va

†
wa

†
u (A1)

where we use the notation Ki = {Ji,Mi}. The quantity 〈K1K2|K3〉 is a Clebsch–Gordan coefficient

〈K1K2|K3〉 = (−1)J1−J2+M3
√[J3]

(
J1 J2 J3
M1 M2 −M3

)
(A2)

with [J ] = 2J + 1. The quantity Cvv1ww1uu1
(J12, J

′′
12, J ) is a symmetry coefficient defined in ref. 12,

Cvv1ww1uu1

(
J12, J

′′
12, J

) = N (v1w1 [J12] u1)

[
δ (u, u1) δ

(
J12, J

′′
12

)
PJ12 (vv1, ww1)

+ δ (u, v1) PJ ′′
12
(vu1, ww1)

√
[J12]

[
J ′′

12

] {
u1 w1 J ′′

12
v1 J J12

}

+ (−1)v1+w1+1+J12δ (u,w1) PJ ′′
12
(vu1, wv1)

√
[J12]

[
J ′′

12

] {
u1 v1 J ′′

12
w1 J J12

} ]
(A3)

where N(v1w1[J12]u1) is a normalization constant and

PJ12 (v1w1, vw) = δv1v
δw1w

+ (−1)jv+jw+J+1 δw1v
δv1w

(A4)

Using this representation, it is possible to express the contributions from first-order (see Fig. 1a)
and second-order (see Fig. 1b) RMBPT diagrams to energies of three-electron systems in terms of the
contributions of these diagrams to energies of two-electron (heliumlike) ions

E
(n)
2

(
v1w1[J12]u1J, v

′
1w

′
1[J ′

12]u′
1J

) =
∑

vwv′w′

∑
J ′′

12

E
(n)
2

(
vw, v′w′, J

)
η(vw)η

(
v′w′)

×
∑
u

Cvv1ww1uu1

(
J12, J

′′
12, J

)
Cv′v′

1
w′w′

1
uu′

1

(
J ′

12, J
′′
12, J

)
(A5)

where E(n)
2 (vw, v′w′, J ) is the two-particle contribution to the nvκvnwκwn′

vκ
′
vn

′
wκ

′
w J matrix element

for heliumlike ions. Here, η(vw) = 1/
√

2 if electrons v and w are equivalent and 1/2 they are not
equivalent. This choice accounts for the fact that E(n)(vw, v′w′, J ) contains both direct and exchange
contributions.

The expressions for the two-particle first- and second-order diagram contributions were given in
ref. 47

E
(1)
2

(
vw, v′w′, J

) = YJ
(
v′w′vw

)
(A6)
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E
(2)
2

(
vw, v′w′, J

) = −
∑
mn

∑
k

(−1)jw′+jm+k+J

{
jv′ jw′ J

jn jm k

}
Xk(v

′w′mn)YJ (mnvw)
εvw − εmn

(A7)

Here εvw = εv + εw, and

YJ (v
′w′vw) =

∑
k

(−1)jw′+jv+k+J

{
jv′ jw′ J

jw jv k

}
Xk(v

′w′vw)

+
∑
k

(−1)jw′+jv+k

{
jv′ jw′ J

jv jw k

}
Xk(v

′w′wv) (A8)

where

Xk(abcd) = (−1)k 〈a ‖Ck‖ c〉 〈b ‖Ck‖ d〉Rk(abcd) (A9)

The radial integral in the above expression is

Rk(abcd) =
∫ ∞

0
r2

1 dr1

∫ ∞

0
r2

2 dr2
rk<

rk+1
>

Ra(r1)Rb(r2)Rd(r2)Rc(r1) (A10)

where Ra(r1) is a relativistic Dirac–Fock or hydrogenic wave function.
The expressions for the three-particle second-order diagram contributions (Fig. 1c) are given in

ref. 12

E
(2)
3

(
v1w1[J12]u1J, v

′
1w

′
1[J ′

12]u′
1J

) =
∑
vwu

∑
v′w′u′

∑
J ′′

12

∑
J ′′′

12

∑
kk′

(−1)jw+j ′
w−ju−j ′

u+J ′′
12+J ′′′

12+k+k′

×
∑
n

Xk(vwu
′n)Xk(v

′w′un)
εn + εu′ − εv − εw

√(
2J ′′

12 + 1
) (

2J ′′′
12 + 1

)

×
{

jn j ′
u J ′′

12
jv jw k

} {
jn ju J

j ′
v j ′

w k′
} {

J ′′′
12 j ′

u J

J ′′
12 ju jn

}

× Cvv1ww1uu1

(
J12, J

′′
12, J

)
Cv′v′

1
w′w′

1
u′u′

1

(
J ′

12, J
′′
12, J

)
(A11)

We see that the contribution of theG diagram is determined by a sum n over the single-particle spectrum
(with restrictions for states when a denominator is equal to zero).

All of the above expressions were defined for the Coulomb interaction. When we include the Breit
interaction in the calculation, the Coulomb matrix element Xk(ab, cd) is modified according to the rule

Xk(abcd) ⇒ Xk(abcd) + Mk(abcd) + Nk(abcd) (A12)

The magnetic radial integrals M and N are defined by (A.4) and (A.5) of ref. 48.
Let us explain a little more about the difference in calculations of the 1s2l2l′ and 1s3l3l′ doubly

excited states, also called autoionizing states. The most important difference between autoionization
states and other excited states is an additional broadening of levels caused by the decay of these states
(e.g., 1s2l2l′ ⇒ 1s2kl′′, 1s3l3l′ ⇒ 1s2kl′′, 1s2lkl′′). We can rewrite (A7), E(2)

2 (vw, v′w′, J ) in the
following way:

E
(2)
2 (vw, v′w′, J ) = lim

γ→0

∑
mn

∑
k

(−1)jw′+jm+k+J

{
jv′ jw′ J

jn jm k

}
Xk(v

′w′mn)YJ (mnvw)
εm + εn − εv − εw − iγ

(A13)
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We note that for 1s2l2l′ states indexes v and w in (A13) can be v = 2lj , w = 2l′j ′, and n = 1s
or m = 1s. Indexes m or n can include both discrete and continuous excited states. In the case of
continuous states, we obtain the same expression as (A13) in ref. 49

lim
γ→0

∫ ∞

0
dk

f (2lj2l′j ′; 1skl′′j ′′)
εkl′′j ′′ + ε1s − ε2lj − ε2l′j ′ − iγ

= P

∫ ∞

0
dk

f (2lj2l′j ′; 1skl′′j ′′)
εk + ε1s − ε2lj − ε2l′j ′

+ iπ

k0
f (2lj2l′j ′; 1sk0l

′′j ′′) (A14)

where P means that the integral must be calculated in the sense of the principal value avoiding the value

εk0 + ε1s − ε2lj − ε2l′j ′ = 0. It should be noted that k0 =
√

1
2 in the hydrogenic approximation.
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