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Relativistic many-body calculations
of excitation energies, line
strengths, transition rates, and
oscillator strengths in Pd-like ions

U.I. Safronova, T.E. Cowan, and W. R. Johnson

Abstract: Excitation energies, line strengths, oscillator strengths, and transition probabilities
are calculated for 4d−14f , 4d−15p, 4d−15f , and 4d−16p hole–particle states in Pd-like ions
with nuclear charges Z ranging from 49 to 100. Relativistic many-body perturbation theory
(MBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements
in length and velocity forms. The calculations start from a [Kr] 4d10 closed-shell Dirac–
Hartree–Fock (DHF) potential and include second- and third-order Coulomb corrections
and second-order Breit–Coulomb corrections. First-order perturbation theory is used to
obtain intermediate-coupling coefficients and second-order MBPT is used to determine
matrix elements. Contributions from negative-energy states are included in the second-order
electric-dipole matrix elements. The resulting transition energies, line strengths, and transition
rates are compared with experimental values and with other recent calculations. Trends of
oscillator strengths as functions of nuclear charge Z are shown graphically for all transitions
from the 4d−14f , 4d−15p, 4d−15f , and 4d−16p states to the ground state.

PACS Nos.: 31.15.Ar, 31.15.Md, 32.70.Cs, 32.30.Rj, 31.25.Jf

Résumé : Nous calculons les énergies d’excitation, les intensités de ligne, les forces
d’oscillateur et les probabilités de transition pour les états 4d−14f , 4d−15p, 4d−15f et
4d−16p dans les ions de type Pd avec charge nucléaire allant de Z = 49 à 100. Nous
utilisons une méthode relativiste de perturbations à N -corps (MBPT), incluant l’interaction de
Breit, afin d’évaluer les éléments de matrice E1 retardés sous les formes longueur et moment.
Le calcul démarre avec un potentiel de Dirac–Hartree–Fock pour couche 4d10 [Kr] fermée
et comprend les corrections de Coulomb aux deuxième et troisième ordres et les corrections
de Breit–Coulomb au deuxième ordre. La théorie des perturbations au premier ordre est
utilisée pour obtenir les coefficients de couplage intermédiaire et MBPT au deuxième ordre
sert à calculer les éléments de matrice. Nous incluons les contributions des états d’énergie
négative dans le calcul au deuxième ordre des éléments de matrice du dipôle électrique. Nous
comparons les énergies de transition, les intensités de ligne et les taux de transition avec
des valeurs expérimentales et avec d’autres calculs récents. Nous montrons graphiquement
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les tendances des forces d’oscillateur en fonction de la charge nucléaire pour toutes les
transitions des états 4d−14f , 4d−15p, 4d−15f et 4d−16p vers le fondamental.

[Traduit par la Rédaction]

1. Introduction

Relativistic many-body perturbation theory (MBPT) studies of hole–particle excitations of closed-
shell ions were performed by Avgoustoglou and co-workers [1–4] for Ne-like ions and by Safronova
and co-workers [5, 6] for Ne- and Ni-like ions. The ground states of Ne-like and Ni-like ions have
completely filled n = 1, 2 and n = 1, 2, 3 shells, respectively, whereas the ground states of Pd-like
ions have closed 4s, 4p, and 4d subshells and an open 4f subshell. In Fig. 1, we plot one-electron
Dirac–Hartree–Fock (DHF) energies of the 4f and 5p states as functions of Z. As one can see from
Fig. 1, the 5p orbitals are more tightly bound than the 4f orbitals at low stages of ionization while the
4f orbitals are more tightly bound for highly ionized cases. Competition between 4f and 5p orbitals
leads to problems for MBPT, making it difficult to obtain very accurate excitation energies and line
strengths for the transition between the low lying 4d94f , 4d95p, 4d95f , and 4d96p excited states and
the ground state.

Earlier line strength calculations for the 4d10 1S–4d94f 1P resonance transition along the palladium
isoelectronic sequence were performed [7] in three approximations: configuration-averaged Hartree–
Fock (HF), term-dependent HF, and MBPT. Numerical results are given in ref. 7 for three Pd-like ions,
Xe+8, Nd14+, and W+28. Relative magnitudes of the electric-multipole (E1, E2, E3) and magnetic-
multipole (M1, M2, M3) radiative decay rates, calculated using the multiconfiguration DHF approach,
are presented in ref. 8 for the 4d94f , 4d95s, and 4d95p states of highly ionized Pd-like ions.

Sugar and Kaufman [9] extended the identification of the resonance lines of 4d94f and 4d95p

configurations in the Pd I isoelectronic sequence from Nd+14 to Ho+21. Spectra were obtained with a
high-voltage spark and photographed with 10.7 m grazing incidence spectrograph. Calculations of the
energy levels and eigenvectors are also made in ref. 9, including the configuration interaction between
4d94f and 4d95p using scaled-HF values for the radial integrals.A review of all previous identifications
of resonance lines of the 4d94f and 4d95p configurations is also given in ref. 9. In ref. 10, the spectra of
highly ionized Er,Yb, Hf, W, and Pt are observed by injecting these elements into the plasma of the TEXT
tokamak at the University of Texas at Austin. Resonance lines of the 4d10–4d94f transition array in
Pd-like ions are identified in in ref. 10 by comparison with plots of observed-minus-calculated transition
energies. A detailed analysis of the various transitions in Pd-like ions was performed by Churlikov et
al. [11–15]. To predict the 4d10–4d9(np + n′f ) transitions in Cd III–Cs X, relativistic HF calculations
using the Cowan code with scaling are completed in ref. 11. The 4d95l–4d95l′ spectra in Pd-like ions
Sb VI, Te VII, and I VIII were investigated in the 400–900 Å region using vacuum spark sources [12].
Experimental results for 4d95s, 4d95d, and 4d95p states in CsX–Ce XIII ions are obtained in ref. 14
with the aid of high-resolution spectrographs supplemented by theoretical calculations made using the
Cowan code and by fitting with orthogonal operator techniques. It is emphasized in ref. 14 that ions of
the palladium isoelectronic sequence are currently of interest for the development of extreme-ultraviolet
(XUV) lasers.

High-resolution spectra of xenon ions from Xe IX to Xe XIV at 95–155 Å are presented in ref. 15.
In the region of importance for XUV lithography (near 134 Å) the strongest lines were identified as 4d8–
4d75p transitions in Xe XI. The most intense lines in Xe IX were found to be the 4d10 1S0 −4d94f 1P1
line at 120.135 Å and the 4d10 1S0 − 4d94f 3D1 line at 143.614 Å.

In the present paper, relativistic many-body perturbation theory is used to determine energies of
Pd-like ions. Second-order MBPT calculations for Pd-like ions start from a [Kr] 4d10 DHF potential.
Third-order one-body Coulomb contributions are also included in the present calculation and found to
significantly improve the agreement between calculation and measurement. We consider 4d holes and
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Fig. 1. One-electron DHF energies (E/(Z − 35)2 in cm−1) of 4fj and 5pj states as functions of Z.
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4f , 5p, 5f , and 6p particles leading to 12 odd-parity 4d−1nl′[J ] states with J = 1. We calculate the
energies of these 12 states for ions with nuclear charge Z = 49–100.

Relativistic MBPT is also used to determine reduced matrix elements, line strengths, oscillator
strengths, and transition rates for electric dipole transitions from the 4d9nl′ states to the 4d10 1S0
ground state in Pd-like ions. Retarded E1 matrix elements are evaluated in both length and velocity
forms. The MBPT calculations start from a nonlocal [Kr] 4d10 DHF potential and consequently give
gauge-dependent transition matrix elements. Second-order correlation corrections compensate almost
exactly for the gauge dependence of the first-order matrix elements, leading to corrected matrix elements
that differ by less than 5% in length and velocity forms throughout the isoelectronic sequence.A detailed
breakdown of contributions to energies and transition matrix elements for the case of Xe+8 is given in
Appendices A and B, respectively.

2. Second-order MBPT calculations of energies of Pd-like ions

Details of the MBPT method are presented in refs. 1 and 6 for the calculation of energies of hole–
particle states, in ref. 16 for the calculation of energies of particle–particle states, in ref. 17 for the
calculation of radiative electric-dipole rates in two-particle states, and in ref. 5 for the calculation of
multipole radiative rates in hole–particle states. Here, we present only the model space for Pd-like
ions without repeating the detailed discussions given in refs. 1, 5, 6, 16, 17. Differences between the
calculations for Ni- and Pd-like ions arise because of the increased number of the core orbitals in the
DHF potential (1s22s22p63s23p63d104s24p64d10 instead of 1s22s22p63s23p63d10) and the strong
mixing between odd-parity states (4d−14f + 4d−15p). These differences lead to much more laborious
numerical calculations. The calculations are carried out using a finite basis set of DHF orbitals. The
orbitals used in the present calculation are obtained as linear combinations of B-splines. The B-spline
basis orbitals are calculated using the method described in ref. 18. We use 40 B-splines of order 7 for
each single-particle angular momentum state and we include all orbitals with orbital angular momentum
l ≤ 9 in our basis.
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Table 1. J = 1 hole–particle states in the 4djnl′j ′

complex for Pd-like ions in jj and LS coupling schemes.

jj LS jj LS

4d5/25p3/2 [1] 4d5p 3P1 4d5/26p3/2 [1] 4d6p 3P1

4d3/25p1/2 [1] 4d5p 1P1 4d3/26p1/2 [1] 4d6p 1P1

4d3/25p3/2 [1] 4d5p 3D1 4d3/26p3/2 [1] 4d6p 3D1

4d5/24f5/2 [1] 4d4f 3P1 4d5/25f5/2 [1] 4d5f 3P1

4d5/24f7/2 [1] 4d4f 3D1 4d5/25f7/2 [1] 4d5f 3D1

4d3/24f5/2 [1] 4d4f 1P1 4d3/25f5/2 [1] 4d5f 1P1

2.1. Model space

For atoms with one hole in closed shells and one particle above closed shells, the model space is
formed from hole–particle states of the type a†

vaa|0〉, where |0〉 is the [Kr] 4d4
3/24d6

5/2 ground state. The

operators aa and a†
v are core annihilation and particle creation operators, respectively. Particle indices

v range over states in the valence shell and hole indices and particle indices a range over the closed
core. In our study of low-lying 4d−1nl states of Pd-like ions, values of a are limited to 4d3/2 and 4d5/2,
while values of v are 4f5/2, 4f7/2, 5p1/2, 5p3/2, 5f5/2, 5f7/2, 6p1/2, and 6p3/2. The hole and particle
states can be combined to give 12 odd-parity states with J = 1. These states are listed in Table 1,
where both jj and LS designations are given. Note that LS labeling is used in all of the references
mentioned previously [9–15], even though the LS-coupling description is most appropriate for low
stages of ionization. For simplicity, we replace the 4d−1

j nlj ′ or 4d−1nl designations by 4djnlj ′ or 4dnl

in Table 1 and in all of the following tables and text.
We have already mentioned that there is strong mixing between the 4d4f and 4d5p states. In

Fig. 2, we illustrate the contribution of these states to the 4d5p 3P1 level in the interval Z = 49–100.
For Z = 49–53, the largest contribution to the 4d5p 3P1 level is from the 4d5/25p3/2 [1] state. The
4d3/25p1/2 [1] state dominates for Z = 54–55 and, for Z > 56, the 4d5/24f5/2 [1] state contributes
about 90% to the 4d5p 3P1 level. The same strong mixing affects the 4d5p 1P1 and 4d5p 3D1 levels.
From Fig. 2, it is obvious that the LS labeling 4d4p 3P1 given in Table 1 is meaningful only for low stages
of ionization; starting from Z = 58 the dominant contribution to this state is from the 4d5/25f5/2 [1]
configuration.

2.2. Z dependence of energies in Pd-like ions

In Fig. 3, we illustrate the Z dependence of the second-order energy corrections E(2) for
4d4f 3P1,

3D1,
1P1 and 4d5f 3P1,

3D1,
1P1 states in Pd-like ions. The second-order energy E(2)

is a smooth function of Z for 4d4f and 4d5p configurations, but exhibits a few sharp features for 4d5f

configurations. These very strong irregularities occur for the 4d5f 3P1 state (Z = 81, 89), 4d5f 3D1
state (Z = 64, 79, 81, 88), and 4d5f 1P1 state (Z = 81, 89) and are explained by vanishing energy
denominators in MBPT expressions for correlation corrections. We give some numerical details relevant
to this issue in Appendix C.

Energies of the J = 1 4d4f and 4d5p states relative to the ground state are shown in Fig. 4. We
plot the six energy levels within the odd-parity J = 1 complex that are involved in the mixing of states
illustrated in Fig. 2. It was already shown that the largest mixing coefficient contributing to the 4d5p 3P1
level is different for Z ≤ 54 and Z ≥ 55. This change can also be observed in Fig. 4. The first (4d5p 3P1)
and fourth (4d4f 3P1) level curves cross for Z = 55. The difference E[4d5p 3P1] − E[4d4f 3P1] at
Z = 55 is just 4% of the energy E[4d5p 3P1]. A similar Z dependence and strong mixing for these
levels was found by the authors of ref. 9.
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Fig. 2. Mixing coefficients as functions of Z for odd-parity states with J = 1 in Pd-like ions.
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Fig. 3. Second-order Coulomb energies as functions of Z for 4d4f and 4d5f states with J=1 in Pd-like
ions.
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3. Third-order MBPT contribution to energies of Pd-like ions

The importance of third-order contributions in obtaining precise energies for Li-, Na-, Cu-, and
Ag-like ions is established in refs. 19–22. Moreover, large third-order contributions for 4f5/2 and 4f7/2
states in Ce IV and Pr V were found recently in ref. 23 where third-order energies for 4f states were
found to be about 35% of second-order energies.

Results of the present third-order calculations for energies of 4f and 5p particle states, which are
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Fig. 4. Excitation energies (E/(Z −35)2) in cm−1 for 4d4f and 4d5p states with J = 1 as functions of Z.
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Fig. 5. Second- and third-order particle contributions to energies in Pd-like ions.
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evaluated as described in ref. 22, are shown in Fig. 5, where we compare second- and third-order con-
tributions. We compare E(3) and E(2) for 4d hole states in Fig. 6. We see from these figures that E(3)

and E(2) have different signs; consequently, third-order contributions substantially decrease the mag-
nitude of the correlation correction. Values of E(3)(4f ) and E(3)(5p) slowly increase with increasing
Z, whereas the value of E(3)(4d) decreases with increasing Z.

We include both the one- and two-body contributions to the second-order energy, but only the one-
body contribution to the third-order energy in the present work. Indeed, we find that the two-body
contribution to E(2) is smaller in magnitude than the one-body contribution by a factor of 2–5. In
Fig. 7, the second-order energy is compared with the combined second- and third-order energy. The
data presented in Fig. 7 are obtained by diagonalizing the energy matrix within the 4d4f model space.
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Fig. 6. Second- and third-order hole contributions to energies in Pd-like ions.
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Fig. 7. Coulomb contributions to the energies as functions of Z for 4d4f states with J = 1 in Pd-like ions.

C
ou

lo
m

b
co

n
tr

ib
u

tio
n

s
to

 e
ne

rg
ie

s
(a

.u
.)

Differences between second-order values and second-order + third-order values are seen to be almost
constant and equal to 0.03–0.04 a.u.

Results of our relativistic many-body perturbation theory in second- and third-order MBPT (labeled
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MBPT2 and MBPT3) are given in Table 2. In Table 2, we compare our results for energy levels of
the three hole–particle 4d4f states of interest in Pd-like ions with the experimental measurements
given in refs. 9–11, 13. Although our results are generally in good agreement with experimental data,
discrepancies were found. One cause for these discrepancies is the omission of two-body third-order
correlation corrections. However, we have no explanation for the increasing discrepancy found in the
4d4f 1P1 level with the increasing Z; 680 cm−1 for Z = 65, 1400 cm−1 for Z = 66, and 17 900 cm−1

for Z = 78.

4. Electric-dipole matrix elements

In the following paragraphs, we present electric-dipole (E1) matrix elements for transitions between
the odd-parity J = 1 states belonging to the 4dj 4fj ′ [1], 4dj 5fj ′ [1], 4dj 5p1/2[1], and 4dj 6pj ′ [1]
configurations and the ground state for Pd-like ions. Analytical expressions for E1 matrix elements
in second-order MBPT are given in ref. 6 and will not be repeated here. The first- and second-order
Coulomb–Breit corrections to E1 matrix elements are referred to as Z(1), Z(2), and B(2), respectively,
in the text below. These contributions are calculated in both length and velocity forms, and include
contributions from negative energy states.

5. Oscillator strengths, transition rates, and line strengths

Oscillator strengths for the 12 E1 lines from (4d4f 3P1,
3D1,

1P1), (4d5f 3P1,
3D1,

1P1),
(4d5p 3P1,

1P1,
3D1), and (4d6p 3P1,

1P1,
3D1) levels to the ground state are plotted in Fig. 8.

The sharp features in the curves shown in Fig. 8 are explained in many cases by strong mixing of states
inside of the odd-parity complex with J = 1.

The deep minimum in the curves labeled 4d4f 3P1, (Z = 88), 4d5f 3P1, (Z = 92), and 4d5p 3P1
(Z = 56) are due to mixing of the [4d5/24f5/2 [1] + 4d5/24f7/2 [1]], [4d5/25f5/2 [1] + 4d5/25f7/2 [1]],
and [4d3/25p1/2 [1] + 4d5/25p3/2 [1]] states, respectively. It should be noted that the mixing of those
states is not very large (about 15–20%) in the first two cases; however, the ratios of dipole-matrix
elements, Z(1+2)(0 − 4d5/24f7/2 [1]) and Z(1+2)(0 − 4d5/24f5/2 [1]) as well as matrix elements,
Z(1+2)(0 − 4d5/25f7/2 [1]) and Z(1+2)(0 − 4d5/25f5/2 [1]) are equal to 4–5 (see Table B.1) and the
sign of these ratios is different from the sign of the corresponding ratio of mixing coefficients. This
leads to cancellation since the coupled matrix elements are a product of matrix elements and mixing
coefficients. As a result, deep minima occur in the curves 4d4f 3P1 at Z = 88 and 4d5f 3P1 at Z = 92.

Singularities in the curves labeled 4d6p 3P1,
1P1

3D1 have a different origin. We found a sharp
increase in the second-order RPA contributions for Z = 57 (4d3/26p1/2) and for Z = 61, 67, and 79
(4d5/26p3/2) resulting from very small energy denominators. As a result, the second-order contribu-
tion becomes very large, leading to deviations from the smooth curves in Fig. 8. Details are given in
Appendix D.

In Table 3, we compare our MBPT values of E1 transition rates with theoretical results of ref. 8.
We list results for transitions between 4d4f and 4d5p excited states and the ground state for selected
ions (Z = 92, 90, 80, and 70). The differences between our results and those from ref. 8 range from
0–10% for 4d5p 3P1,

1P1 levels and 30–40% for 4d4f 3P1,
3D1,

1P1 and 4d5p 3D1 levels. These
differences are the result of the different computational methods used; the present results are from
second-order MBPT calculations while results in ref. 8 were obtained using the MCDF approximation.
Second-order contributions to matrix elements, which are relatively large, are illustrated for Xe+8

in Table B.2 of Appendix B where we compare first- and second-order MBPT values. The fact that
correlation corrections to matrix elements in Pd-like ions are large was also noted in ref. 7.

In Table 4, we compare our MBPT results for line strengths S(1) and S(1+2) with theoretical results
SHF and SMBPT from ref. 7. In particular, we list results for the transition between the 4d4f 1P1 excited
state and the ground state for nine ions from Z = 50 to 74 presented in ref. 7. It should be noted that
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Table 2. Excitation energies (in cm−1) for 4d4f states in Pd-like ions calculated in MBPT2 and MBPT3
approximation.

Z Ion 3P1
3D1

1P1 Z Ion 3P1
3D1

1P1

49 MBPT2 329 175 330 205 338 330 64 MBPT2 1 122 793 1 200 753 1 472 547
MBPT3 339 295 340 331 348 834 MBPT3 1 130 887 1 208 834 1 480 606
Expt. 328 552

a
333 968

a
343 006

a
Expt. 1 200 200

c
1 478 500

c

50 MBPT2 417 464 419 175 440 551 65 MBPT2 1 165 730 1 248 112 1 528 313
MBPT3 425 733 427 500 449 023 MBPT3 1 173 718 1 256 082 1 536 262
Expt. 412 316

a
423 372

a
446 348

a
Expt. 1 183 500

c
1 246 900

c
1 535 580

c

51 MBPT2 488 162 492 090 538 076 66 MBPT2 1 208 368 1 295 305 1 583 669
MBPT3 495 775 499 774 545 783 MBPT3 1 217 240 1 303 164 1 591 509
Expt. 485 458

a
502 840

a
547 063

a
Expt. 1 294 600

c
1 592 900

c

52 MBPT2 548 489 560 104 636 538 67 MBPT2 1 250 745 1 342 393 1 638 735
MBPT3 556 247 567 918 644 346 MBPT3 1 258 520 1 350 141 1 646 465
Expt. 550 113

a
573 155

a
649 003

a
Expt. 1 649 500

c

53 MBPT2 605 122 626 451 734 487 68 MBPT2 1 292 892 1 389 426 1 693 611
MBPT3 613 232 634 606 742 624 MBPT3 1 300 563 1 397 065 1 701 232

Expt. 609 143
a

636 983
a

744 596
a

Expt. 1 388 100
d

1 706 200
d

54 MBPT2 659 075 688 918 825 331 69 MBPT2 1 334 839 1 436 454 1 748 384
MBPT3 667 463 697 343 833 731 MBPT3 1 342 407 1 443 984 1 755 897

Expt. 665 450
b

696 310
b

832 410
b

Expt.
55 MBPT2 710 670 747 434 907 529 70 MBPT2 1 376 609 1 483 514 1 803 129

MBPT3 719 227 756 021 916 089 MBPT3 1 384 076 1 490 938 1 810 537

Expt. 716 673
a

752 513
a

912 500
a

Expt. 1 818 300
d

56 MBPT2 760 405 802 939 982 632 71 MBPT2 1 418 222 1 530 645 1 857 916
MBPT3 768 786 811 345 991 010 MBPT3 1 425 590 1 537 965 1 865 220
Expt. 806 445

c
986 280

c
Expt.

57 MBPT2 808 685 856 225 1 052 467 72 MBPT2 1 459 699 1 577 880 1 912 804
MBPT3 817 330 864 890 1 061 104 MBPT3 1 466 970 1 585 097 1 920 007

Expt. 856 201
c

1 055 253
b

Expt. 1 930 400
d

58 MBPT2 855 552 907 801 1 117 388 73 MBPT2 1 501 053 1 625 249 1 967 851
MBPT3 864 167 916 432 1 125 991 MBPT3 1 508 229 1 632 365 1 974 954
Expt. 909 512

c
1 120 610

c
Expt.

59 MBPT2 901 636 958 429 1 180 977 74 MBPT2 1 542 300 1 672 779 2 023 109
MBPT3 910 195 966 999 1 189 519 MBPT3 1 549 385 1 679 798 2 030 115
Expt. 959 462

c
1 183 540

c
Expt. 1 670 800 2 043 000

60 MBPT2 946 988 1 008 024 1 241 899 75 MBPT2 1 583 452 1 720 497 2 078 627
MBPT3 955 472 1 016 514 1 250 362 MBPT3 1 590 447 1 727 420 2 085 537
Expt. 1 008 580

c
1 242 950

c
Expt.

61 MBPT2 991 684 1 056 908 1 301 162 76 MBPT2 1 624 521 1 768 425 2 134 452
MBPT3 1 000 090 1 065 315 1 309 544 MBPT3 1 631 428 1 775 255 2 141 269
Expt. Expt.

62 MBPT2 1 035 830 1 105 244 1 359 173 77 MBPT2 1 665 517 1 816 587 2 190 629
MBPT3 1 044 130 1 113 540 1 367 445 MBPT3 1 672 339 1 823 326 2 197 355
Expt. 1 105 100

c
1 361 200

c
Expt.

63 MBPT2 1 079 511 1 153 158 1 416 226 78 MBPT2 1 706 448 1 865 001 2 247 202
MBPT3 1 087 710 1 161 348 1 424 393 MBPT3 1 713 187 1 871 651 2 253 839

Expt. 1 096 700
c

1 152 800 1 420 370
c

Expt. 2 271 700
d

aExperimental measurements performed in ref. 11.
bExperimental measurements performed in ref. 13.
cExperimental measurements performed in ref. 9.
dExperimental measurements performed in ref. 10.
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Fig. 8. Oscillator strengths for transitions between the ground state and 4d4f , 4d5f , 4d5p, and 4d6p

states as functions of Z.
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Table 3. Transition rates (Ar in s−1) in Pd-like ions for transitions
between excited 4d4f 3P1,

3D1,
1P1, 4d5p 3P1,

1P1,
3D1, states

and the ground state. Comparison of (a) the present MBPT results
with (b) the theoretical results from ref. 8.

Ar (s−1)

Level Z = 92 Z = 90 Z = 80 Z = 70

4d4f 3P1 (a) 1.30 [08] 3.18 [07] 2.43 [08] 5.02 [08]
4d4f 3D1 (a) 3.31 [11] 2.70 [11] 8.54 [10] 2.10 [10]

(b) 4.47 [11] 3.66 [11] 1.18 [11] 2.92 [10]
4d4f 1P1 (a) 7.11 [12] 6.80 [12] 5.41 [12] 4.24 [12]

(b) 9.47 [12] 9.09 [12] 7.32 [12] 5.74 [12]
4d5p 3P1 (a) 5.16 [12] 4.37 [12] 1.70 [12] 4.68 [11]

(b) 5.50 [12] 4.66 [12] 1.81 [12] 5.01 [11]
4d5p 1P1 (a) 7.42 [12] 6.37 [12] 2.80 [12] 1.01 [12]

(b) 6.75 [12] 5.87 [12] 2.69 [12] 1.01 [12]
4d5p 3D1 (a) 5.91 [11] 5.50 [11] 3.12 [11] 1.36 [11]

(b) 7.78 [11] 6.90 [11] 3.54 [11] 1.28 [11]

the results for nine ions in ref. 7 were obtained only in the HF approximation SHF. The MBPT results in
ref. 7 were given only for three ions, Z = 54, 60, and 74. Our MBPT results, S(1+2) and those from [7]
SMBPT agree surprisingly well (1%, and 2% for ions with Z = 60, and 74, respectively.
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Table 4. Line strengths (S in a.u.) in Pd-like
ions for transitions between excited 4d4f 1P1

states and the ground state. Comparison of our
first-order S(1) and second-order S(1+2) line
strengths with theoretical results (a) from ref. 7.

Ion S(1) S(1+2) Sa
HF Sa

MBPT

Sn VII 1.611 1.129 1.445
Te VII 3.167 1.843 2.599
I VIII 3.574 2.504 3.180
Xe IX 3.803 2.853 3.579 2.36
Cs X 3.804 2.920 3.701
Ba XI 3.648 2.803 3.593
Nd XV 2.683 2.063 2.606 2.079
Ho XXII 1.575 1.182 1.514
W XXIX 1.022 0.766 0.9834 0.7512

6. Conclusion

In summary, a systematic second-order MBPT study of excitation energies of the 12 4d−14f ,
4d−15p, 4d−15f , and 4d−16p hole–particle states of Pd-like ions has been presented. Theoretical
excitation energies of Pd-like ions In3+–Pt32+ differ from existing experimental wavelengths data at
the level of 0.01–2.0%.

We also presented a systematic second-order relativistic MBPT study of reduced matrix elements,
line strengths, oscillator strengths, and transition rates for electric-dipole transitions into the ground
state in Pd-like ions with nuclear charges ranging from Z = 49 to 100. The reduced dipole matrix
elements include correlation corrections from Coulomb and Breit interactions. Both length and velocity
forms of the matrix elements were evaluated, and small differences, caused by the nonlocality of the
starting DHF potential, were found between the two forms. Second-order MBPT transition energies
were used to evaluate oscillator strengths and transition rates. We believe that our results will be useful
in analyzing existing experimental data and in planning new experiments.

Acknowledgments

The work of W.R.J. was supported in part by the National Science Foundation Grant No. PHY-
01-39928. The work of T.E.C. and U.I.S. was supported by DOE/NNSA under UNR grant DE-FC52-
01NV14050. U.I.S. would like to thank M.S. Safronova for helpful discussions.

References

1. E. Avgoustoglou, W.R. Johnson, D.R. Plante, J. Sapirstein, S. Sheinerman, and S.A. Blundell. Phys. Rev.
A, 46, 5478 (1992).

2. E. Avgoustoglou, W.R. Johnson, and J. Sapirstein. Phys. Rev. A, 51, 1196 (1995).
3. E. Avgoustoglou and Z.W. Liu. Phys. Rev. A, 54, 1351 (1996).
4. E.N. Avgoustoglou and D.R. Beck. Phys. Rev. A, 57, 4286 (1998).
5. U.I. Safronova, C. Namba, I. Murakami, W.R. Johnson, and M.S. Safronova. Phys. Rev. A, 64, 012517

(2001).
6. U.I. Safronova, W.R. Johnson, and J. Albritton. Phys. Rev. A, 62, 052505 (2000).
7. S.M. Younger. Phys. Rev. A, 22, 2682 (1980).
8. E. Biémont. J. Phys. B, 30, 4207 (1997).
9. J. Sugar and V. Kaufman. Phys. Scr. 26, 419 (1982).

© 2005 NRC Canada



824 Can. J. Phys. Vol. 83, 2005

10. J. Sugar and V. Kaufman. J. Opt. Soc. Am. B, 10, 799 (1993).
11. S.S. Churilov, Y.N. Joshi, and A.N. Ryabtsev. J. Phys. B, 27, 5485 (1994).
12. S.S. Churilov, V.A. Azarov, A.N. Ryabtsev, W.-Ü.L. Tchang-Brillet, and J.-F. Wyart. Phys. Scr. 61, 420

(2000).
13. S.S. Churilov, A.N. Ryabtsev, W.-Ü.L. Tchang-Brillet, and J.-F. Wyart. Phys. Scr. 65, 40 (2002).
14. S.S. Churilov and Y.N. Joshi. Phys. Scr. T, 100, 98 (2002).
15. S. Churilov, Y.N. Joshi, and J. Reader. Opt. Lett. 28, 1478 (2003).
16. M.S. Safronova, W.R. Johnson, and U.I. Safronova. Phys. Rev. A, 53, 4036 (1996).
17. U.I. Safronova, W.R. Johnson, M.S. Safronova, and A. Derevianko. Phys. Scr. 59, 286 (1999).
18. W.R. Johnson, S.A. Blundell, and J. Sapirstein. Phys. Rev. A, 37, 2764 (1988).
19. W.R. Johnson, S.A. Blundell, and J. Sapirstein. Phys. Rev. A, 37, 2794 (1988).
20. W.R. Johnson, S.A. Blundell, and J. Sapirstein. Phys. Rev. A, 38, 2699 (1988).
21. W.R. Johnson, S.A. Blundell, and J. Sapirstein. Phys. Rev. A, 42, 1087 (1990).
22. U.I. Safronova, I.M. Savukov, M.S. Safronova, and W.R. Johnson. Phys. Rev. A, 68, 062505 (2003).
23. I.M. Savukov, W.R. Johnson, U.I. Safronova, and M.S. Safronova. Phys. Rev. A, 67, 042504 (2003).
24. M.H. Chen, K.T. Cheng, and W.R. Johnson. Phys. Rev. A, 47, 3692 (1993).

Appendix A. Energy matrix for Xe+8

In Table A.1, we list contributions to the second-order energies for the special case of Pd-like xenon,
Z = 54. In the table, we give the one-body and two-body second-order Coulomb contributions to the
energy matrix labeled E

(2)
1 and E

(2)
2 , respectively. The corresponding Breit–Coulomb contributions are

listed in columns headed B
(2)
1 and B

(2)
2 . The one-body second-order energy is a sum of the valence and

hole energies; the later being the dominant contribution [6]. The values of E
(2)
1 and B

(2)
1 are nonzero only

for diagonal matrix elements. There are 12 diagonal and 60 nondiagonal matrix elements for 4djnlj ′ [1]
hole–particle states but we list only a small subset of the nondiagonal matrix elements in Table A.1.
The second-order Breit–Coulomb corrections are relatively large and, therefore, must be included in
accurate calculations. The nondiagonal matrix elements listed in the columns headed E

(2)
2 and B

(2)
2

are comparable with diagonal two-body matrix elements. However, the one-body contributions, E
(2)
1

and B
(2)
1 , are larger than the corresponding two-body contributions, E

(2)
2 and B

(2)
2 . As a result, the net

second-order diagonal matrix elements are larger than the nondiagonal matrix elements in Table A.2.
In Table A.2, we present results for the Coulomb contributions, E(0), E(1), and E(2), and the Breit–

Coulomb corrections, B(1) and B(2) obtained before diagonalization. Corrections for the frequency
dependence of the Breit interaction [24] are included in the first order only. The difference between
first-order Breit–Coulomb corrections calculated with and without frequency dependence is less than
1%. As one sees from Table A.2, the ratio of nondiagonal and diagonal matrix elements is larger for first-
order contributions than for second-order contributions. Another difference in first- and second-order
contributions is symmetry properties: first-order nondiagonal matrix elements are symmetric while the
second-order nondiagonal matrix elements are not. E(2)(a′v′[J ], av[J ]) and E(2)(av[J ], a′v′[J ]) differ
in some cases by factors of 2–3 and occasionally have opposite signs.

To determine the first-order energies of the states under consideration, we diagonalize the symmetric
first-order effective Hamiltonian, including both the Coulomb and Breit interactions. The first-order
expansion coefficient CN(av[J ]) is the N th eigenvector of the first-order effective Hamiltonian and
E(1)[N ] is the corresponding eigenvalue. The resulting eigenvectors are used to evaluate the second-
order Coulomb correction E(2)[N ] as well as the second-order Breit–Coulomb correction B(2)[N ].

In Table A.3, we list the following contributions to the energies of 15 excited states in Xe+8: the sum
of the zeroth and first-order energies E(0+1) = E(0) + E(1) + B

(1)
hf , the second-order Coulomb energy

E(2), the second-order Breit–Coulomb correction B(2), and the sum of the above contributions Etot.
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Table A.1. Second-order contributions to energy matrices (a.u.) for odd-parity
states with J = 1 in Pd-like xenon, Z = 54. One-body and two-body second-order
Coulomb and Breit–Coulomb contributions are given in columns labeled E

(2)
1 , E

(2)
2 ,

B
(2)
1 , and B

(2)
2 , respectively.

4dj1 nl2j2 4l3j3 n′l4j4 E
(2)
1 E

(2)
2 B

(2)
1 B

(2)
2

4dj 4fj ′ [1] + 4dj 5fj ′ [1] states
4d5/24f5/2 4d5/24f5/2 −0.112 309 0.073 927 0.007 163 0.000 856
4d5/24f7/2 4d5/24f7/2 −0.110 820 −0.024 173 0.007 267 0.000 255
4d3/24f5/2 4d3/24f5/2 −0.114 133 0.006 638 0.007272 0.000 509
4d5/25f5/2 4d5/25f5/2 −0.054 365 −0.032 374 0.010 636 0.000 140
4d5/25f7/2 4d5/25f7/2 −0.054 092 −0.017 309 0.010 650 0.000 085
4d3/25f5/2 4d3/25f5/2 −0.056 189 −0.020 837 0.010 745 0.000 144
4d5/24f7/2 4d3/24f5/2 0 0.086 037 0 0.000 462
4d3/24f5/2 4d5/24f7/2 0 0.086 871 0 0.000 441
4d5/24f5/2 4d5/25f7/2 0 0.022 362 0 0.000 307
4d5/25f7/2 4d5/24f5/2 0 −0.040 251 0 −0.000 422

4dj 5pj ′ [1]+4dj 6pj ′ [1] states
4d3/25p3/2 4d3/25p3/2 −0.090 867 0.023 576 0.010 131 0.000 597
4d3/25p1/2 4d3/25p1/2 −0.095 575 0.025 054 0.010 004 0.000 727
4d5/25p3/2 4d5/25p3/2 −0.089 043 0.022 102 0.010 022 0.000 531
4d3/26p3/2 4d3/26p3/2 −0.048 985 −0.012 761 0.011 453 0.000 256
4d3/26p1/2 4d3/26p1/2 −0.050 015 −0.008 980 0.011 427 0.000 323
4d5/26p3/2 4d5/26p3/2 −0.047 160 −0.010 888 0.011 345 0.000 235
4d3/25p3/2 4d3/26p3/2 0 0.008 101 0 0.000 037
4d3/26p3/2 4d3/25p3/2 0 −0.000 260 0 0.000 491
4d5/26p3/2 4d3/25p3/2 0 −0.004 177 0 0.000 085
4d3/25p1/2 4d5/25p3/2 0 0.000 672 0 0.000 050

Table A.2. Diagonal and nondiagonal contributions to the energy matrix (a.u.). These
contributions are listed for a odd-parity hole–particle states with J = 1 in Pd-like xenon,
Z = 54.

E(0) E(1) B
(1)
hf E(2) B(2)

4dj 4fj ′ [1]+4dj 5fj ′ [1] states
4d5/24f5/2 4d5/24f5/2 4.002 727 −0.851 736 −0.005 658 −0.038 381 0.008 019
4d5/24f7/2 4d5/24f7/2 4.004 396 −0.411 782 −0.006 227 −0.134 993 0.007 522
4d3/24f5/2 4d3/24f5/2 4.082 366 −0.535 663 −0.008 069 −0.107 495 0.007 781
4d5/25f5/2 4d5/25f5/2 5.011 411 −0.441 221 −0.006 660 −0.086 739 0.010 777
4d5/25f7/2 4d5/25f7/2 5.010 231 −0.352 094 −0.006 814 −0.071 401 0.010 734
4d3/25f5/2 4d3/25f5/2 5.091 050 −0.375 533 −0.008 909 −0.077 026 0.010 889
4d5/24f7/2 4d3/24f5/2 0 −0.390 363 0.000 198 0.086 037 0.000 462
4d3/24f5/2 4d5/24f7/2 0 −0.390 363 0.000 198 0.086 871 0.000 441
4d5/24f5/2 4d5/25f5/2 0 0.196 436 −0.000 054 −0.020 582 0.000 553
4d5/25f5/2 4d5/24f5/2 0 0.196 436 −0.000 054 0.000 836 −0.001 032
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Table A.2. (Concluded.)

E(0) E(1) B
(1)
hf E(2) B(2)

4dj 5pj ′ [1]+4dj 6pj ′ [1] states
4d3/25p3/2 4d3/25p3/2 3.465 775 −0.606 582 −0.006 781 −0.067 291 0.010 728
4d3/25p1/2 4d3/25p1/2 3.383 917 −0.591 982 −0.005 648 −0.070 521 0.010 731
4d5/25p3/2 4d5/25p3/2 3.386 136 −0.588 964 −0.004 578 −0.066 941 0.010 553
4d3/26p3/2 4d3/26p3/2 4.870 283 −0.369 668 −0.008 334 −0.061 745 0.011 710
4d3/26p1/2 4d3/26p1/2 4.836 995 −0.366 928 −0.007 893 −0.058 995 0.011 750
4d5/26p3/2 4d5/26p3/2 4.790 643 −0.365 499 −0.006 115 −0.058 048 0.011 580
4d3/25p3/2 4d3/26p3/2 0 −0.122 309 0.000 006 0.008 101 0.000 037
4d3/26p3/2 4d3/25p3/2 0 −0.122 309 0.000 006 −0.000 260 0.000 491
4d5/26p3/2 4d3/25p3/2 0 0.013 930 0.000 007 −0.004 177 0.000 085
4d3/25p1/2 4d5/25p3/2 0 −0.016 847 0.000 038 0.000 672 0.000 050

Table A.3. Energies (cm−1) of odd-parity states with J = 1
relative to the ground state in the case of Pd-like xenon, Z = 54.
E(0+1) ≡ E(0) + E(1) + B

(1)
hf .

Level-jj Level-LS E(0+1) E(2) B(2) Etot

4d5/24f5/2 4d4f 3P1 667 834 −10 251 1 775 659 358
4d5/24f7/2 4d4f 3D1 701 081 −7 805 1 799 695 075
4d3/24f5/2 4d4f 1P1 865 559 −40 484 1 633 826 708
4d5/25f5/2 4d5f 3P1 1 005 954 −17 983 2 338 990 309
4d5/25f7/2 4d5f 3D1 1 016 961 −20 794 2 340 998 506
4d3/25f5/2 4d5f 1P1 1 052 759 −15 939 2 344 1 039 164
4d3/25p3/2 4d5p 3P1 603 083 −14 790 2 352 590 645
4d3/25p1/2 4d5p 1P1 614 480 −15 022 2 333 601 792
4d5/25p3/2 4d5p 3D1 627 641 −14 591 2 368 615 418
4d3/26p3/2 4d6p 3P1 971 260 −12 843 2 534 960 950
4d3/26p1/2 4d6p 1P1 980 603 −13 000 2 568 970 171
4d5/26p3/2 4d6p 3D1 988 529 −13 931 2 561 977 159

Appendix B. E1 matrix elements for Xe+8

In Table B.1, we list values of uncoupled first- and second-order E1 matrix elements Z(1), Z(2),
B(2), together with derivative terms P (deriv) for the 12 E1 transitions between odd-parity J = 1 states
with and the ground state in Pd-like xenon, Z = 54. Matrix elements are given in both length (L) and
velocity (V ) forms. We see that the first-order matrix elements, Z

(1)
L and Z

(1)
V , differ by 20–30% and

the L−V differences between second-order matrix elements are much larger for some transitions. The
large differences in first- plus second-order matrix elements disappear after coupling.

Values of coupled E1 matrix elements in length and velocity forms are given in Table B.2 for the
transitions considered in Table B.1. The first two columns in Table B.2 show the L and V values of the
reduced matrix elements calculated in first order. The L − V difference is about 20–25%. If we include
the second-order contributions (columns headed First + Second order in Table B.2) the L−V difference
decreases to 3–4%. This large L−V difference in the lowest order calculation arises because we start our
MBPT calculations using a nonlocal DHF potential. If we were to replace the DHF potential by a local
potential, the differences would disappear completely. It should be emphasized that we include negative
energy state (NES) contributions to sums over intermediate states (see ref. 17 for details). Neglecting
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Table B.1. Uncoupled reduced matrix elements in length L and velocity V forms for transitions from
odd-parity states with J = 1 into the ground state in Xe+8.

av[J ] Z
(1)

L Z
(1)

V Z
(2)

L Z
(2)

V B
(2)

L B
(2)

V P
(deriv)

L P
(deriv)

V

4d5/24f5/2[1] −0.355 034 −0.276 197 0.046 114 −0.023 046 −0.000 152 0.000 407 −0.355 039 −0.000 125
4d5/24f7/2[1] 1.587 063 1.236 167 −0.215 121 0.094 093 0.001 007 −0.001 359 1.586 495 −0.000 624
4d3/24f5/2[1] 1.311 071 1.024 024 −0.181 366 0.074 495 0.001 042 −0.001 473 1.310 734 −0.000 241
4d5/25f5/2[1] −0.084 623 −0.063 932 0.016 209 −0.007 417 −0.000 108 0.000 059 −0.084 661 −0.000 053
4d5/25f7/2[1] 0.381 899 0.289 004 −0.073 331 0.032 624 0.000 189 −0.000 396 0.381 889 −0.000 119
4d3/25f5/2[1] 0.323 203 0.245 750 −0.062 910 0.026 535 0.000 361 −0.000 330 0.323 232 −0.000 017
4d3/25p3/2[1] −0.602 369 −0.459 228 0.031 482 −0.003 936 −0.000 571 0.000 312 −0.602 254 −0.000 063
4d3/25p1/2[1] 0.471 485 0.360 397 −0.072 135 −0.035 844 0.000 278 −0.000 523 0.471 361 −0.000 033
4d5/25p3/2[1] −0.192 146 −0.147 879 0.004 731 −0.004 808 −0.000 226 0.000 154 −0.192 062 0.000 069
4d3/26p3/2[1] −0.214 308 −0.167 094 −0.074 938 −0.073 807 0.000 059 0.000 359 −0.214 288 −0.000 049
4d3/26p1/2[1] −0.163 207 −0.127 896 −0.059 201 −0.057 414 −0.000 052 0.000 263 −0.163 176 0.000 002
4d5/26p3/2[1] −0.069 267 −0.054 494 −0.021 644 −0.021 551 −0.000 065 0.000 072 −0.069 237 0.000 029

Table B.2. Coupled reduced matrix elements in length L and velocity
V forms for transitions from odd-parity states with J = 1 to the
ground state in Xe+8.

First order First + Second order

av[J ] L V L V

4d4f 3P1 −0.040 259 −0.030 620 −0.034 381 −0.033 315
4d4f 3D1 0.094 469 0.071 445 0.086 029 0.082 300
4d4f 1P1 1.950 059 1.522 731 1.689 214 1.649 958
4d5f 3P1 0.034 392 0.026 473 0.029 157 0.027 995
4d5f 3D1 −0.221 525 −0.169 910 −0.186 553 −0.179 215
4d5f 1P1 0.870 436 0.668 357 0.727 942 0.701 366
4d5p 3P1 −0.001 250 0.000 244 −0.037 850 −0.028 815
4d5p 1P1 0.748 234 0.571 264 0.670 136 0.676 280
4d5p 3D1 −0.293 622 −0.225 074 −0.296 226 −0.291 124
4d6p 3P1 −0.159 274 −0.124 664 −0.232 483 −0.213 014
4d6p 1P1 0.161 649 0.127 249 0.240 488 0.220 414
4d6p 3D1 −0.043 139 −0.034 031 −0.059 278 −0.054 801

the NES contributions leads to small changes in the L-form matrix elements but to substantial changes
in some of the V -form matrix elements with a consequent loss of form independence.

Appendix C. The second-order hole–particle contribution

To understand the irregularities in Fig. 3, we consider the second-order hole–particle contribution to
the valence energy E

(2)
v (eq. (2.6) in ref. 6) and to the interaction energy ER3(a′v′[J ], av[J ]) (eq. (2.10)

in ref. 6). A typical double-excitation contribution to the valence energy has the form [6]

A(v) ∝
∑

mnc

∑

l

Xl(vcmn)Xl(mncv)

εv + εc − εm − εn

(C.1)

where Xl(vwmn) is the product of a Slater integral and angular momentum coefficients, εm and εn are
zeroth-order one-particle energies, εc is a zeroth-order core orbital energy, and εv is the zeroth-order
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valence orbital energy.
We found a sharp increase in the values of the second-order valence energy for 5f7/2 states (Z = 79)

and 5f5/2 states (Z = 89). The denominator of one term in (C.1) ε5f7/2 + ε4d5/2 − ε5s1/2 − ε4f5/2 =
−0.0076 occurs for Z = 79. Moreover, the denominator of another term ε5f5/2 +ε4d3/2 −ε4f7/2 −ε5s1/2 =
−0.0099 occurs for Z = 89. These small denominators lead to the increases in A(5f7/2) and A(5f5/2)

by factors of 3–5, leading in turn to sharp deviations from smooth curves in Fig. 3 for Z = 79 and 89.
Two terms in ER3(a′v′[J ], av[J ]) are responsible for sharp features in the curves shown in Fig. 3

for Z = 64 and Z = 81. The first term is [6]

E
R3
1 (a′v′[J ], av[J ]) ∝

∑

nc

ZJ (vcan)ZJ (a′nv′c)
εv + εc − εn − εa

(C.2)

where ZJ (vcan) is a symmetrized Coulomb integral (see ref. 6).We found an increase (by a factor of 2) in
the contribution from (C.2) forZ = 64. In this case, the denominator is ε5f7/2 + ε4p3/2 − ε5s1/2 − ε4d5/2 =
−0.00746, leading to the sharp feature at Z = 64 in Fig. 3 The second term is [6]

E
R3
2 (a′v′[J ], av[J ]) ∝

∑

nc

ZJ (vcv′n)ZJ (a′nac)

εv + εc − εn − εv′
(C.3)

We also found a factor 2 increase in the contribution from (C.3) for Z = 81. In this case, the denominator
is ε5f7/2 + ε4p3/2 − ε4f7/2 − ε4f7/2 = 0.0069, leading to the sharp feature in Fig. 3 at Z = 81.

Appendix D. The second-order dipole matrix element

A typical contribution from one of the second-order reduced matrix elements Z
(RPA)
1 [0−av[1]] has

the form [6]

Z
(RPA)
1 (0 − av[1]) ∝

∑

b,i

Z1(bi)Z1(aivb)

εb + εv − εi − εa

(D.1)

The one-electron electric-dipole matrix element Z1(bi), defined in ref. 17 includes retardation and
is calculated in length and velocity forms. In the sum over i, only terms with vanishing denominators
are excluded. We found the sharp increase (by a factor of 2–5) in values of the Z

(RPA)
1 (0 − av[1])

contributions for Z = 57 (av = 4d3/26p1/2) and for Z = 61, 67, and 79 (av = 4d5/26p3/2) by
resulting from very small values of the denominator D in (D.1).

(i) av = 4d3/26p1/2, Z = 57

D = ε4d5/2 + ε6p1/2 − ε5f7/2 − ε4d3/2 = −10.1802 − 3.1639 + 3.0443 + 10.2988 = −0.0010

(ii) av = 4d5/26p3/2, Z = 61

D = ε4p3/2 + ε6p3/2 − ε5s1/2 − ε4d5/2 = −20.4963 − 5.2512 + 9.8620 + 15.8751 = −0.0104

(iii) av = 4d5/26p3/2, Z = 67

D = ε4p1/2 + ε6p3/2 − ε5s1/2 − ε4d5/2 = −33.8633 − 9.3802 + 16.8595 + 26.3713 = −0.0127

(iv) av = 4d5/26p3/2, Z = 79

D = ε4p3/2 + ε6p3/2 − ε5d5/2 − ε4d5/2 = −62.6012 − 20.8374 + 29.1876 + 54.2837 = 0.0327
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