

Charge-Exchange Measurements and Astrophysical Applications

Brad Wargelin *Chandra* X-Ray Center Smithsonian Astrophysical Observatory

Outline

- Charge exchange (CX) basics
- Astrophysical examples--solar wind CX
- Key features and examples of CX spectra
- Future work

What is Charge Exchange?

 $A^{q+} + X - > *A^{(q-1)+} + X^+$

Semi-resonant collisional electron transfer

"Projectile" + "Target" ⇔ Ion + Atom/Molecule

Large $q \rightarrow \text{high } n \rightarrow X\text{-ray}$

$$n_{\rm max} \sim q^{3/4}$$

Katsonis, Maynard, Janev Physica Scripta (1991)

General behavior \neq f(target):

- $E_{\rm crit} \approx 25\sqrt{q}$ keV/amu
- $\sigma_{CX} \approx q \times 10^{-15} \text{ cm}^2$
- $n_{\max} \approx q^{3/4} \sqrt{(I_H/I_n)}$

Collision energy regimes:

- EBIT -- 1-10 eV/amu
- 10⁷ K ⇔ 46 eV/amu (Fe)
 162 eV/amu (O)
- Solar wind
 - 300 km/s ⇔ 0.5 keV/amu
 - 800 km/s ⇔ 3.3 keV/amu
- Cosmic rays -- ≥1 GeV/amu

Solar Wind Charge Exchange (SWCX)

C/1999 S4 (LINEAR), Chandra/Lisse 2000

Observed from:

- Comets
- Planets (including Earth)
- Heliosphere

HCIs from solar corona

- 300-800 km/s (~1 keV/amu)
- C, N, O + Ne, Mg, Fe... (higher charge states during CMEs)

Neutral gas:

- Comets-- H_2O , CO_2
- Planetary exospheres--H
- Heliosphere (H, He)

Comets

Planets

- Mars (*Chandra*, *XMM*, including grating spectra)
- Venus? (Fluor » CX)
- Jupiter/Io Plasma Torus?

Mars, *Chandra* Dennerl 2001. First detection of planetary CX.

Earth--Geocoronal CX

Chandra 2001

Chandra Geocoronal/Moon Observation

Predicted CX emission, based on measured SW params (n, v, O/H, $\langle q \rangle$), matches observation.

Wargelin et al, ApJ (2004)

Heliospheric Charge Exchange

Model heliospheric CX emission. Axis units in AU. LIC is moving to the right. Robertson et al. AIP Proc. 719 (2004).

XMM HDF-N. Snowden et al, ApJ (2004)

Astrospheric Charge Exchange

CX must also occur around other stars with highly ionized winds (G,K,M) residing inside clouds with neutral gas (LIC, G).

Imaging + spectra yields:

- Mass-loss rate
- Local n_{neutral}
- Wind velocity and composition
- Astrosphere geometry

CX emission weak, coronal emission $\sim 10^4$ x brighter.

Need very large collecting area, good spatial and spectra res---not quite doable yet...

Non-EBIT Experiments

Tokamaks with neutral beam injection (10's keV/amu)

Penning traps

Merged beams = ion beam + gas jet (storage ring, ECR, EBIS/T)

- Measure σ (total, state-selective) and charges (SEC vs DEC)
- Usually ≥ 1 keV/amu
- Often no photon spectra (metastables always a complication)

EBIT Measurements

Beiersdorfer et al, PRL (2000)

Key features:

- Magnetic trapping mode
- Unpolarized emission
- from ion cloud (⇒ nondispersive detector)

$$R_{DE} = V_e n_i n_e \sigma_{DE} v_e$$
$$R_{CX} = V_i n_i n_n \sigma_{CX} v_i$$

EBIT Measurements

Beiersdorfer et al, PRL (2000)

Key features:

- Magnetic trapping mode
- Unpolarized emission
- from ion cloud (⇒ nondispersive detector)

 $10^{12} \ 10^{-20} \ 10^{10}$ $R_{DE} = V_e n_i n_e \ \sigma_{DE} \ v_e$ $R_{CX} = V_i n_i n_n \ \sigma_{CX} \ v_i$ $10^6 \ 10^{-14} \ 10^6$

 $\Rightarrow R_{DE}/R_{CX} \approx 10^4$

n and l Distributions

Perez, Olson, Beiersdorfer , J Phys B (2001)

 σ_{total} ~constant as f(E) n_{max} ~constant as f(E)

 I_{max} small (~1) at low energy Statistical distrib for $E \ge 1$ keV/amu

H-like Spectra (Low E_{coll})

$\Delta I = \pm 1$, $\Delta n = \max$

Large population of I = 1 \Rightarrow strong high-*n* emission

H-like Spectra (Low E_{coll})

H-like Spectra (Higher $\overline{E_{coll}}$)

_vman-≀

Statistical *I* population and $\Delta I = \pm 1$ \Rightarrow yrast cascades and little high-*n* emission CTMC model predictions for O⁸⁺ CX. Otranto, Olson, Beiersdorfer PRA (2006).

He-like Spectra

<u>∆S</u>=0

S=0 (singlets)

Singlet emission is similar to that for H-like, but ...

S=1 (triplets)

No E-dipole decay to ground so everything funnels into K α .

Fe CX with N_2 . Wargelin et al, ApJ (2005).

Xe^{53,54+} + Xe. Perez et al , J Phys B (2001)

CXC

Enhancement of He-like Triplets

Direct excitation (G. Brown)

CX with N₂ (P. Beiersdorfer)

Target Dependence

Beiersdorfer et al, Science (2003)

High-n Fe Lyman (G. Brown)

Multi-e Targets

Otranto et al, PRA (2006)

Theory using H OK for σ_{total} and n_{max} , but not / distrib.

HR for $O+CO_2$, Ne+Ne, Ar+Ar, Fe+N₂, Kr+Kr, all with ~several eV/amu. Wargelin et al, ApJ (2005)

Future Work

- Measurements with H (and He) most important astrophysically
- Push theory to model *I*-distributions for CX with multi-*e* targets
- Extend to L-shell, especially in C band
 - Geo/helio CX strongest in ROSAT C band (R12)

ROSAT All-Sky Survey Map (R12) and LTEs

Long Term Enhancements from geo/helio CX fluctuations.

Strongest in R12 band.

Current CX models known to be incomplete (no Lshell Mg, Si, S, Fe).

Some hints in current data.

S. Snowden

Diffuse X-Ray Spectrometer (DXS)

Model SWCX spectrum. Wargelin et al (2004).

X-Ray Quantum Calorimeter (XQC)

Astrophysical Examples: Supernova Remnants

CX from SNR in inhomogeneous ISM as shocked ionized gas interacts with neutral clouds?

Wise & Sarazin (ApJ 1989) concluded that <10% of He-like N and C X-rays from CX based on *Einstein* OGS observations of old SNRs.

No solid evidence yet. Need highres non-dispersive detectors to see CX spectral signatures.

Galactic Center

High-*T* gas + molecular clouds --> CX ?? Probably only at low level.

Low-E cosmic rays and Galactic Ridge???

Galactic Center Positronium

Figure 1. Spectrum of the e^+e^- annihilation radiation (fixed background model) detected by SPI from the GC region and the best-fitting model (thick solid line, see Table 1 for parameters). The dotted line shows the orthopositronium radiation and the dashed line shows the underlying power-law continuum.

Roughly 30% of positronium is formed by CX of positron+gas.

- Para-positronium (opposite spins) annihilates in 2photon emission.
- Ortho-positronium (spin 1) requires 3-photon decay.

INTEGRAL/SPI observation. Churazov et al. MNRAS (2005)

