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High-Z ions for Magnetic Fusion Diagnostics

• ITER status, schedule, expected plasma conditions,
plasma facing materials, fuel and impurity gases.

• ITER diagnostics in general, special constraints of
diagnostic environment.

• ITER spectroscopic diagnostics, plasma parameters
needed, current suite of spectrometers planned.

• Supporting spectroscopic information needed
- potential role of EBIT.

Charles Skinner
Princeton Plasma Physics Laboratory

"20 Years of Spectroscopy with EBIT" 
Workshop Nov 12-16, 2006, Berkeley, California.

Acknowledge very helpful discussions with M Putterich, R Neu, D Stuttman,
P Beiersdorfer, D Stotler, K Hill
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ITER - the essential next step in magnetic fusion

• Worlds biggest fusion energy
research project.

• Objective: to demonstrate the
scientific and technological
feasibility of fusion power.

• Plasma to make 10x more power
(500 MW) than needed to run it.

• Cost about  5 billion EU to
construct and 5 billion EU to
operate over 20 years and
decommission.

• Involves virtually all the most developed countries, representing over half of
today world’s population

Cadarache, France Site (artists impression)
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ITER’s Fusion Performance in context.
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The core of ITER

Toroidal Field Coil
Nb3Sn, 18, wedged

Central Solenoid
Nb3Sn, 6 modules

Poloidal Field Coil
Nb-Ti, 6

Vacuum Vessel
9 sectors

Port Plug
heating/current

drive, test blankets

limiters/RH
diagnostics

Cryostat
24 m high x 28 m dia.

Blanket
440  modules

Torus
Cryopumps, 8

Major plasma radius 6.2 m

Plasma Volume: 840 m3

Plasma Current: 15 MA

Typical Density: 1020 m-3

Typical Temperature: 20 keV 

Fusion Power: 500 MW

Machine mass: 23350 t (cryostat + VV + magnets)

- shielding, divertor and manifolds: 7945 t + 1060 port plugs

- magnet systems: 10150 t; cryostat:  820 t

Divertor
54 cassettes
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R Budny, Plasma Science and Technology in press

Radial profile of core ITER plasma parameters:

• Zeff < 1.6
• He/Ne 0.3
• Be 3% of Ne
• Ar 0.12% of Ne

0              minor radius                  1.8m 0              minor radius                  1.8m
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ITER divertor plasma

• Divertor moves plasma-wall interactions
away from the core plasma.

• Facilitates He ash pumping
• But complicates power handling.
Fusion Reaction:

D+T -> 3.5MeV He + 14 MeV neutron
• At Q=10, Fusion Power = 500 MW.

=100 MW He alphas + 50 MW NBI
• Heat flux similar to rocket nozzle

needs to be dissipated.
•  75% radiated by C + Ar

 -> 10 MW/m2 on carbon divertor plate
• Too much radiation reduces plasma

confinement and fusion power
• Too little radiation could result in

damage to plate

Carbon divertor 

target plate

Divertor spectroscopy needed to control argon injection
and power flowing to divertor plates
Divertor plasma parameters:

Ne = 1020 - 1021 m-3,    Te - 0.1 - 100eV
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ITER plasma facing materials
• Plasma:

– Hydrogen initially,
then

– Deuterium+ Tritium
– Argon ! 0.12% of

electron density to
control detachment

– Ne, N2 also possible
– Be impurities

est. ! 3% of Ne
– Core He ash 15%
– Zeff < 1.6

Beryllium wall
(low Z = low radiation

losses, oxygen

getter, but low melt

temperature)

Tungsten baffle

and dome (high

melt temp, low

erosion, low T

retention, but high

rad. losses)

Carbon divertor

target (does not

melt, good radiator for

plasma detachment,

but T retention is

major issue)

C

C

W
W

W

Be
Be
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Important to track
the creation of
mixed material
surfaces:
Be on W, W on Be
etc.

Be is backed by
copper so spectral
information on Cu
important too.
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Near Term:  100% W Asdex-U,  JET ITER-like wall

• Clearly important to get advance experience with ITER PFC materials.
• Asdex-U is completing conversion to 100% W PFCs - operations in 2007
• JET is implementing an ITER-like wall project - first W/Be then

W/Be/C;  operations in 2009

Asdex-U  (R Neu PSI-17)

Be

W

Be

W C
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ITER diagnostics

X-ray Survey

XUV

spectroscopy

X-ray crystal

spectroscopy

Divertor VUV

spectroscopy

X-ray

survey

Core VUV

monitor

Divertor

Reflectometry

Micro Fission

Chambers
Magnetic

Diagnostic

Coils

Motional Stark

Effect

Toroidal

Interferometer

Electron

Cyclotron

Emission

Wide-angle

viewing IR

Lost Alphas

Neutron Flux

Divertor

Thomson

Scattering

X-point LIDAR

Edge

Thomson

Scattering
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ITER diagnostics

• Essential for plasma operations
and physics goals:

• 40 measurement systems include
magnetics, neutron, optical,
spectroscopic, bolometry and
microwave systems.

• Provide
– Input for real time machine

protection systems and
plasma control.

– Data for understanding of
plasma behavior.

– Optimization of plasma
performance.

• Physics of diagnostics instruments
typically established on present
machines but application to ITER
poses difficult challenges:
– High reliability and accuracy required

for real time plasma control.
– Stability and longevity required for

long pulse length and high duty cycle
• Severe Environment:

– < 3e18 n/m2s (10x present machines)
– <2e3 Gy/s (10x present machines)
– 500kw/m2 plasma radiation
– Radiation Induced Conductivity
– Radiation Induced EMF
– T containment, vacuum integrity
– Minimal activation
– Remote maintenance
– Limited views

A Costley, Fus. Eng. Des. 74 (2005) 109

PID p.329 “The machine is unable to operate without a

working diagnostic providing every group 1a parameter (1b for

advanced operation).’
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Tungsten will be principal high-z impurity

T Putterich

                  Asdex                                ITER
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ITER spectroscopic diagnostics (fiberoptic coupled):

• Will identify impurity species C, W, Be,
Cu, Ne, Ar, Kr.

• Measure 2D distributions of impurity
density  and influx.

• Measure ionization front and He ash
density.

• Measure impurity ion temperature and
flow velocity from Doppler effect.

Four visible survey spectrometers
200-1000 nm. 0.1nm resolution, 10 ms time
resolution, 10 cm spatial resolution.

Three high dispersion spectrometers
(Echelle) 200-1000nm, 0.01nm resolution,
10 ms, 10 cm

+ filter spectrometers.
Spectrometers for 200-450 nm are close

in to minimise fiber optic losses but
will experience neutron noise.

 Responsible Party: Japan T. Sugie et al., J. Plasma Fusion Res. 79 (2003) 1051

Sightlines in red

Te ! 1-100eV, 
Ne ! 1e21 m-3
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•  At present W influx gauged by W I 400.8 nm line with known photon
efficiency (S/XB) but there is potential interference from WII line
at nearly same wavelength

• Ionized tungsten has small gyro radius so major fraction is promptly
recycled back to wall on the first gyro orbit after ionization.

•  NIST Database for 450-1000 nm shows 2186 lines for W1, 35 lines
for WII but remarkably nothing for W III and up at any wavelength.

Recommend:

1. Search for emission lines  > 450 nm

2. Identifying emissions of charge states for ionization states

below about W26+

3. Corresponding S/XB (emission /mass loss) measurements.

Recommendation:
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Forbidden Lines

• Line of sight from upper port passes through plasma core.
– potential to observe forbidden lines in 450-1000 nm region.
– Could temperature and density of highly charged ions be

conveniently obtained using high throughput visible region
spectrometers / fiber optics ?

• First observation Fe+19 n=2 M1 line at 2665.1Å on the PLT tokamak
in 1978 (Suckewer PRL 41 (1978) 756).

• Observations of forbidden lines in Cu, Zn, Ga, Ge, As, Se, Kr, Sr, Zr,
Nb, Mo, Y on PLT, TEXT & Alcator followed.

• Visible forbidden transitions observed on SuperEBIT from Kr +21,
Kr +22, Mo +28…… (Trabert, Utter, Beiersdorfer, Crespo Lopez-Urrutia)

• Ti-like Tungsten+52 M1 transition at 3627.13Å  reported by Utter,
Beiersdorfer & Brown (PRA 61 (2000) 030503(R))
– (not seen so far on Asdex but maybe insufficient Te).

• Recommendation:
Search for MI emission lines from highly ionized tungsten
(up to Li-like).
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ITER VUV spectroscopic diagnostics:

T. Sugie et al., J. Plasma Fusion Res. 79 (2003) 1051

Responsible Party: Korea

• Spectral region 1 - 100 nm
• VUV spectrometers in upper port

and equatorial port (includes
mirror to view divertor)

• Potential application of new high
efficiency XUV spectrometer
developed for W7-X (HEXOS).

HEXOS  Biel et al., RSI 77 10F305 (2006) 
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Impurity density

• High number of W emission lines modeled in ADAS code and compared to
experiment (rather than comparison of individual lines)

• More identified lines always desirable to identify W density gradients
and transport barriers.

• Charge exchange processes may add to emission spectrum

See also O’Mullane et al., RSI 77 10F520 (2006) for JET plans

Putterich Asdex-U data
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Ionization Balance data needed.

• Ionization balance
needs improvement
(Putterich)

• Baseline ADAS (408
+ 408) not good
enough.

Putterich Asdex-U data

CADW 

+408

CADW +

ADPAK

408 +

408

ADPAK +

ADPAK

CADW

+408

CADW +

ADPAK

408 +

408

ADPAK +

ADPAK

Zn-like W 44+ Ga-like W 43+
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ITER x-ray spectroscopic diagnostics:

PROCUREMENT PACKAGE # 55.PE

SPECTROSCOPIC DIAGNOSTICS ANNEX 1:

TECHNICAL SPECIFICATION

Responsible Party: US/India tbd. 

• Survey spectrometer 0.05 - 10 nm
Equatorial port 11
Single chord 0.1 - 10 nm
!/∂ ! ~ 500

• High resolution spectrometer for
Doppler ion temperatures and velocities
from Ar, Kr.
Equatorial port 3, Upper port 9
 Imaging of minor radius
~ 1% bands between 0.1 and 0.4 nm
 !/∂ ! ~ 10,000

Measurement Requirements:
• Nw/ne range 1e-6 to 4e-4
• W influx 4e14 - 2e17 /s
• Ne,Ar,Kr /ne 1e-4 to 2e-2
• Ne, Ar, Kr influx 4e16 - 8e18 /s
• Ti 0.05 - 40 keV

Accuracy 10%
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Imaging Crystal Spectrometer

R Barnsley, IPR, India. 8th Feb 2006.

Design options for spectrometer location:

- Ex-port: Better access, Better shielding

- In-port:  Wider view of plasma

Choice will be based on:

- Neutronics modelling

- Detector radiation hardness

- Detector background rejection

Design improvements ongoing:
2-D detectors, better spatial resolution to allow

tomographic reconstruction.
Well resolved Ti, Te, Vpol in H-mode pedastal region.
Better spectral resolution, especially for tungsten.

Trend reported by Barnsley at Sendai ITPA mtg. :
• Visible measurements complicated by high continuum and mirror issues
• VUV, x-ray detectors becoming better, less expensive

– e.g. Pilatus II Bitter talk.
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Time to develop new energy sources is short….

• The Arctic perennial ice cover has been decreasing  at 9 to 10% per decade.
•  Polar bears may be extinct by end of 21st century.
• Many Carribean reefs have seen a 80 % decline in coral reef cover partly due to global warming
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Summary of areas where EBIT data could help:

1. Search for W emission lines  > 450 nm
2. Identifying emissions of charge states for ionization states

below about W26+

3. Corresponding photon efficiency (S/XB) measurements
-> measure of influx without recycling.

4. Identification of emission lines from neon-like tungsten for
ITER temperatures 10-30 keV.
– Use data for JET in 2009 with W PFC and 35 MW NBI.

5. Improve ADAS - energy dependence of ionization equilibria and
excitation rates for W (Putterich). Look at spectral lines, where
strong discrepancies between codes and experimental spectra
appeared (such as 0.793 nm of Ni-like W46+).

6. More identified lines always desirable to measure W density
gradients and transport barriers.

7. Ne, Ar, Kr, Cu lines also…
8. Measurements of charge exchange spectra ?


