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Plasmas with Maxwell-Boltzman (MB)
electron distributions are ubiquitous.

Z-pinches

Sun, stars,…

Laser plasmas

Fusion devices



Interpreting or predicting the properties
of MB plasmas is challenging.

• Atomic data are needed for thousands upon
thousands of processes.

• Experiments provide only a fraction of the
needed data.

• Theory provides the bulk of the data but approx-
imations are made to keep calculations tractable.

• Plasma models can’t include all needed data
without becoming computationally prohibitive.



So let’s solve the problem by building
an analog computer in the laboratory.

• Create an MB plasma in the lab under controlled
conditions to benchmark plasma models.

• This tests everything at once, the plasma model
and the underlying atomic data.
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How to simulate an MB plasma in EBIT.

( ) .,
0

dETEP
d

e
=

!

!

( )
( )

( ) ./exp
2

,
2/3

dEkTE
kT

E
dETEP

e

e

e
!=

"

Sweep the electron beam energy E in time so

In an MB plasma

Solving for τ yields 
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where x=(E/kTe)1/2, and ne is kept constant. 



Why we keep ne constant as E is swept.

• Keeps space charge and trapping conditions
largely unchanged.

• Maintains a constant electron-ion overlap vs.
beam energy.

• Ensures all electron-ion collision processes go
forward at the correct plasma rates.



How to maintain a constant ne in EBIT.
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The current from the gun is given by

The beam density is

Hence Va should vary as 
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EBIT technical limitations constrain the
implementation of the MB simulation.
• E can only swept between Emin and Emax.

• Emin ~ 0.2 keV, though most collision processes
of interest occur for E > 0.2 keV.

• Emax ~ 5kTe so ≤ 2% of the MB distribution is not
sampled.

• Capacitances limit dE/dt and dVa/dt to ≤ 30 V/µs.
• Space charge needs to be accounted for.
• Need to sweep faster than timescale over which

the EBIT charge balance changes (~ 5 ms).



Digitized E and Va timing patterns
and slew rates for kBTe = 2.0 keV.
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The simulation fidelity was tested using
the j/w Te diagnostic of He-like ions.

• Simulations carried
out for 0.2 to 2.4 keV.

• The line j is formed
by the dielectronic
recombination, a
resonant process.

• The line w is formed
by electron impact
excitation.

j
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Te = 0.2 keV

Te = 2.4 keV



Representative scatter plot for Mg10+

at Te = 0.7 keV
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Measured j/w ratios and theoretical
predictions for Ne8+



Measured j/w ratios and theoretical
predictions for Mg10+



Measured j/w ratios and theoretical
predictions for Ar16+



We find good agreement between the
inferred Te and the simulated Te.



The inferred Te agree on average to
within 10% with the simulated Te.
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What is CIE?

• Plasma properties
– Optically thin
– Low density
– Dust free
– Steady state

• Ionization rate equals
recombination rate
– Accuracy of these rates

determines reliability of
CIE models



Major CIE calculations for astrophysics
since the 1980s.

• Shull & van Steenberg (1982)
– An early compilation of published DR, RR, and EII

data
• Arnaud & Rothenflug (1985)
– Updated atomic database

• Arnaud & Raymond (1992)
– Updated Fe

• Mazzotta et al. (1998)
– Re-evaluated and updated recombination data

• Bryans et al. (2006)
– State-of-the-art DR and RR for all K- and L-shell ions

of H through Zn.



Au line emission from EBIT for a 2.5
keV MB simulation (Wong et al. 2003).



Inferred Au charge balance distribution
(Wong et al. 2003).
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There have been significant theoretical
advances in RR and DR.

• Modern calculations exist for K-, L-, and some M-
shell ions (Badnell et al. 2003-6; Gu 2003-4).

• For an ion at CIE formation temperatures,
modern theory agree with one another to < 25%.



Measurements have been used to
benchmark modern DR calculations

• K-shell ions well studied using EBITs and
storage rings – agreement with theory is ~ 20%.

• L-shell ions less well studied – agreement with
theory is ~ 35% but additional studies needed.

• DR theory is much less reliable at ~ 104 K and
lab work needed for ions forming at these Te’s.



How our new CIE results differ from
Mazzotta et al. (1998).

• Peak fractional abundances differ by up to 60%.

• At 0.1 fractional abundances, differ by of up to a
factor of 5.

• At 0.01, differ of up to a factor of 11.

• Peak formation Te can shift by up to 20%.

• Ions with particularly large differences include
Mg, Al, Ca, Fe, Co, and Ni.



Comparison between our CIE result and
Mazzotta et al. for Fe (Bryans et al.)
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CIE models using the data of Badnell et
al. and Gu are in good agreement

• Peak fractional abundance differs by < 10%.

• At 0.1 fractional abundances, differ by up to
30%.

• At 0.01 differences up to 50%.
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et al. and Gu data for Fe (Bryans et al.)
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Further RR theoretical and
experimental work is needed.

• Data for M-shell ions



Further DR experimental and
theoretical work is needed.

• L-shell ions laboratory benchmarking for
– Δn=0 DR in B-, C-, N-, O-, and F-like ions.
– Δn=1 DR in B-, C-, N-, O-, F-, and Ne- like ions.

• Reliability of theory at ~ 104 K is poor and lab
data needed for ions forming at these Te’s.

• More accurate atomic structure codes could
remove much of the uncertainties in the theory.

• Significant work remains for all M-shell ions
(except for Na-like).



Electron impact ionization (EII) data have
remained unchanged for almost 20 years

• Kato et al. (1991) found factor of 2-3 difference
between various recommended data sets.



An updating of the EII database is
sorely needed.

• Much of the existing data are based on
experiments with unknown metastable fractions.

• The recommended EII data used in astrophysics
has not been updated since around 1990.

• This is partly because almost no new laboratory
measurements exist.



Charge Transfer (CT) needs to be
incorporated into CIE models.

• CT is most important for near-neutral systems
(charge ≤ 4).

• CT with H is important at Te ≤ 25,000 K.



Atomic data needs for future CIE models
Iso. seq. DR RR EII

• DR for L- and M-shell ions.
• RR for M-shell ions.
• Modern EII data plus double EII.
• Incorporate CT.
• Provide data to accuracy of ~35%.

From Bryans et al.


