

#### Analog and Digital Simulations of Maxwellian Plasmas for Astrophysics

#### Daniel Wolf Savin Columbia Astrophysics Laboratory



#### **Collaborators**

#### S. M. Kahn, M. F. Gu STANFORD UNIVERSITY

Science in the National Interest

P. Beiersdorfer, B. R. Beck G. V. Brown, D. A. Liedahl J. H. Scofield

#### P. Bryans W. Mitthumsiri

WRENCE LIVERMORE NATIONAL LABORATORY



N. Badnell



T. W. Gorczyca



WESTERN MICHIGAN UNIVERSITY

#### J. M. Laming



COLUMBIA UNIVERSITY

### Outline

- I. Maxwell-Boltzmann (MB) plasmas
- II. Simulating MB plasmas in EBIT
- **III. Testing the simulations**
- **IV.** Collisional Ionization Equilibrium (CIE)
- V. New CIE results
- VI. Future needs



### Plasmas with Maxwell-Boltzman (MB) electron distributions are ubiquitous.









COLUMBIA UNIVERSITY

## Interpreting or predicting the properties of MB plasmas is challenging.

- Atomic data are needed for thousands upon thousands of processes.
- Experiments provide only a fraction of the needed data.
- Theory provides the bulk of the data but approximations are made to keep calculations tractable.
- Plasma models can't include all needed data without becoming computationally prohibitive.



So let's solve the problem by building an analog computer in the laboratory.

- Create an MB plasma in the lab under controlled conditions to benchmark plasma models.
- This tests everything at once, the plasma model and the underlying atomic data.



### Outline

- I. Maxwell-Boltzmann (MB) plasmas
- **II.** Simulating MB plasmas in EBIT (analog)
- **III. Testing the simulations**
- **IV.** Collisional Ionization Equilibrium (CIE)
- V. New CIE results
- **VI. Future needs**



#### How to simulate an MB plasma in EBIT.

Sweep the electron beam energy *E* in time so

$$\frac{d\tau}{\tau_0} = P(E, T_e) dE.$$

In an MB plasma

$$P(E,T_e)dE = \frac{2\sqrt{E}}{\sqrt{\pi}(kT_e)^{3/2}}\exp(-E/kT_e)dE.$$

Solving for *t* yields

$$\tau(E) = \tau_0 \left( erf(x) - \frac{2xe^{-x^2}}{\sqrt{\pi}} \right)$$

where  $x = (E/kT_e)^{1/2}$ , and  $n_e$  is kept constant.



#### Why we keep $n_e$ constant as E is swept.

- Keeps space charge and trapping conditions largely unchanged.
- Maintains a constant electron-ion overlap vs. beam energy.
- Ensures all electron-ion collision processes go forward at the correct plasma rates.



#### How to maintain a constant $n_e$ in EBIT.

The current from the gun is given by

$$I_e = p V_a^{3/2}$$

The beam density is

$$n_e \propto \frac{I_e}{v_e} \propto \frac{V_a^{3/2}}{E^{1/2}}.$$

Hence  $V_a$  should vary as

$$V_a(\tau) = (V_a)_r \left(\frac{E(\tau)}{E_r}\right).$$



# EBIT technical limitations constrain the implementation of the MB simulation.

- *E* can only swept between  $E_{min}$  and  $E_{max}$ .
- *E<sub>min</sub>* ~ 0.2 keV, though most collision processes of interest occur for *E* > 0.2 keV.
- $E_{max} \sim 5kT_e$  so  $\leq 2\%$  of the MB distribution is not sampled.
- Capacitances limit dE/dt and  $dV_a/dt$  to  $\leq 30 V/\mu s$ .
- Space charge needs to be accounted for.
- Need to sweep faster than timescale over which the EBIT charge balance changes (~ 5 ms).



#### **Digitized E and V**<sub>a</sub> timing patterns and slew rates for $k_B T_e = 2.0$ keV.



### Outline

- I. Maxwell-Boltzmann (MB) plasmas
- II. Simulating MB plasmas in EBIT
- **III.** Testing the simulations
- **IV. Collisional Ionization Equilibrium (CIE)**
- V. New CIE results
- VI. Future needs



# The simulation fidelity was tested using the j/w $T_e$ diagnostic of He-like ions.

- Simulations carried out for 0.2 to 2.4 keV.
- The line j is formed by the dielectronic recombination, a resonant process.
- The line w is formed by electron impact excitation.



#### Representative scatter plot for Mg<sup>10+</sup> at $T_e = 0.7$ keV













### Outline

- I. Maxwell-Boltzmann (MB) plasmas
- II. Simulating MB plasmas in EBIT
- **III. Testing the simulations**
- **IV.** Collisional Ionization Equilibrium (CIE)
- V. New CIE results
- VI. Future needs



### What is CIE?

- Plasma properties
  - Optically thin
  - Low density
  - Dust free
  - Steady state
- Ionization rate equals recombination rate
  - Accuracy of these rates determines reliability of CIE models





# Major CIE calculations for astrophysics since the 1980s.

- Shull & van Steenberg (1982)
  - An early compilation of published DR, RR, and Ell data
- Arnaud & Rothenflug (1985)
  - Updated atomic database
- Arnaud & Raymond (1992)
  - Updated Fe
- Mazzotta et al. (1998)
  - Re-evaluated and updated recombination data
- Bryans et al. (2006)
  - State-of-the-art DR and RR for all K- and L-shell ions of H through Zn.



# Au line emission from EBIT for a 2.5 keV MB simulation (Wong et al. 2003).





### Inferred Au charge balance distribution (Wong et al. 2003).



### Outline

- I. Maxwell-Boltzmann (MB) plasmas
- II. Simulating MB plasmas in EBIT
- **III. Testing the simulations**
- **IV.** Collisional Ionization Equilibrium (CIE)
- V. New CIE results (digital)
- VI. Future needs



### There have been significant theoretical advances in RR and DR.

- Modern calculations exist for K-, L-, and some Mshell ions (Badnell et al. 2003-6; Gu 2003-4).
- For an ion at CIE formation temperatures, modern theory agree with one another to < 25%.



Measurements have been used to benchmark modern DR calculations

- K-shell ions well studied using EBITs and storage rings – agreement with theory is ~ 20%.
- L-shell ions less well studied agreement with theory is ~ 35% but additional studies needed.
- DR theory is much less reliable at ~  $10^4$  K and lab work needed for ions forming at these  $T_e$ 's.



#### How our new CIE results differ from Mazzotta et al. (1998).

- Peak fractional abundances differ by up to 60%.
- At 0.1 fractional abundances, differ by of up to a factor of 5.
- At 0.01, differ of up to a factor of 11.
- Peak formation  $T_e$  can shift by up to 20%.
- Ions with particularly large differences include Mg, Al, Ca, Fe, Co, and Ni.



#### Comparison between our CIE result and Mazzotta et al. for Fe (Bryans et al.)





# CIE models using the data of Badnell et al. and Gu are in good agreement

- Peak fractional abundance differs by < 10%.
- At 0.1 fractional abundances, differ by up to 30%.
- At 0.01 differences up to 50%.



#### Comparison of CIE results using Badnell et al. and Gu data for Fe (Bryans et al.)





### Outline

- I. Maxwell-Boltzmann (MB) plasmas
- II. Simulating MB plasmas in EBIT
- **III. Testing the simulations**
- **IV.** Collisional Ionization Equilibrium (CIE)
- V. New CIE results
- **VI.** Future needs



# Further RR theoretical and experimental work is needed.

Data for M-shell ions



Further DR experimental and theoretical work is needed.

- L-shell ions laboratory benchmarking for
  - $\Delta n=0$  DR in B-, C-, N-, O-, and F-like ions.
  - $\Delta n=1$  DR in B-, C-, N-, O-, F-, and Ne- like ions.
- Reliability of theory at ~  $10^4$  K is poor and lab data needed for ions forming at these  $T_e$ 's.
- More accurate atomic structure codes could remove much of the uncertainties in the theory.
- Significant work remains for all M-shell ions (except for Na-like).



#### **Electron impact ionization (EII) data have remained unchanged for almost 20 years**



• Kato et al. (1991) found factor of 2-3 difference between various recommended data sets.



# An updating of the Ell database is sorely needed.

- Much of the existing data are based on experiments with unknown metastable fractions.
- The recommended Ell data used in astrophysics has not been updated since around 1990.
- This is partly because almost no new laboratory measurements exist.



Charge Transfer (CT) needs to be incorporated into CIE models.

- CT is most important for near-neutral systems (charge ≤ 4).
- CT with H is important at  $T_e \leq 25,000$  K.



#### Atomic data needs for future CIE models

TABLE 2

SOURCES OF DATA FOR THE AUTOST RUCTURE-BASED CIE CALCULATIONS.

| lso. seq.                                                                                                                | DR                                                                                                                                                                                                                                                              | RR                                                                                                                                                                                                            | EII |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Bare<br>H-like<br>He-like<br>Li-like<br>Be-like<br>B-like<br>C-like<br>N-like<br>P-like<br>Ne-like<br>Ne-like<br>Na-like | Badnell (2006c)<br>Bautista & Badnell (2006)<br>Colgan et al. (2004)<br>Colgan et al. (2003)<br>Altun et al. (2004)<br>Zatsarinny et al. (2004a)<br>Mitnik & Badnell (2004)<br>Zatsarinny et al. (2003)<br>Zatsarinny et al. (2006)<br>Zatsarinny et al. (2006) | Badnell (2006d)<br>Badnell (2006d) |     |
| Mg-like                                                                                                                  | <ul> <li>DR for L- and M-shell ions.</li> <li>RR for M-shell ions.</li> <li>Modern Ell data plus double Ell.</li> <li>Incorporate CT.</li> <li>Provide data to accuracy of ~35%.</li> </ul>                                                                     |                                                                                                                                                                                                               |     |

#### From Bryans et al.

