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20 Years of Spectroscopy with the
Electron Beam lon Trap

(a highly personal recollection)

1989 First visit to LLNL

1992 First (published) ICR-EBIT ideas (Schweikhard et al.)
1993 First detailed description (Elliott et al.)

1994 Proof of principle (Beiersdorfer et al.)

1995 Charge-state determination with FT-ICR MS

Coining of the term in “FT-ICR Analysis of the
of the Electron Beam lon Trap”, Beiersdorfer et al.,
IIMSIP, (received Jan 02!)

, I.e. immediately afterwards: “ of
EBIT - New Opportunities for Highly Charged lon Research”,
Belersdorfer et al., RSI
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My standard introduction: How to trap ions?

electrostatietrapping

due to
Laplace: Ap =0

B static electric and
magnetic fields

electric
T radiofrequency
7| HEHS c| s |
—> ¥V <+ Penning trap
quadrupolar potential: ICR cell

Paul trap, rf trap, (ion cyclotron resonance)
QUISTOR, ,ion trap* FT-ICR MS, FTMS




An alternative approach
to 1on trapping

replace
Laplace: Ap =0
by
Poisson: A¢ = p/g,

l.e. space-charge
confinement in an

Electron Beam
lon Trap

EBIT

LLNL, Livermore/CA




HCI production and confinement in an EBIT

axial potential ‘

top
drift tube

trapped/ions

center
drift tube

botton |
drift tube

‘ radial potential ‘

electron beam ‘




Note:

The ions may

not stay continuously
right inside

the electron beam.

Nevertheless, they are

effected with respect to Fig.2 Numerical simulation ol au ion ocbit through an clectron beam
Gillaspy et al., Physica Scripta 1995

(a) their motional modes
and

(b) their internal structure

due to the short- and long-range interaction, resp.,
with the electron beam.




There are lots of interesting things to be done at EBIT

Typical spectrometer layout on EBIT-I

Ge detector

XRS microcalorimeter Detector

(0.2-80keV)
CCD Camera

Grazing Incidence
Spectrometer (10-400 A)

von Hamos-type
Curved Crystal

Spectrometer |
(1-5 A) o
Injector Vacuum Flat-Crystal

Spectrometer (4-25 A)




However, there are circumstances where ion trapping
in a “wall-less container” is chosen
to but only the one of interest,

and in particular to after a defined interaction

light
reactions and
decay products

Laser
RF

charged particles
atoms




In more general terms ion trapping allows

extended preparations,
extended interactions,
extended re-action periods,
extended multi-step sequences.

Which leads to

- effective (non-destructive) (re-)use of rare species,
- easy manipulation of motion and internal modes,

- highly-accurate determination of m/q,

- selection by m/qg-separation,

- accumulation & bunching ,

- charge breeding (ionization, electron attachment),
- cooling (again of motion and internal modes),




Prominent argument: Fourier Limit

Important factor for

all kinds of

spectroscopy

(laser, microwave, etc.)
mass separation

mass determination

- analytical applications and
- precision measurements

Resolving

/ Power
At - Av > 1

At -AE > h
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PENNING trap

+ Strong homogeneous
magnetic field
Weak electric 3D
guadrupole field

Frans Michel Penning
(Penning discharge
at Philips 1936)

Principle of Penning traps

electrode

Hans G. Dehmelt
(Nobel prize in physics 1989)

b2

u




Penning trap configurations

Hyperbolical Cylindrical Axial
Penning trap Penning trap Potential

—H

main electrodes
correction electrodes

Z, =TI, I often used but

not necessarily the best choice

main electrodes
correction electrodes




Equation of motion in a Penning trap

—> — - >
F = -qVo(r)+ quxB

Q(V6(r)+VxB) + mi = 0

axial oscillation

z or axial

radial oscillation

modified or

substitution: U= X+ Iy Cr)?gllcj)(t:reodn

frequency

ma netron
requency




lon motion in a Penning trap

trapping
motion
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Example for Precision Mass Measurements:
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For some highlights see PRL 92, 112501, 93, 072502, 93, 150801 (all 2004)
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Mass Spectrometry for Analytical Chemistry:
Fourier Transform lon Cyclotron Resonance
Mass Spectrometry (FT-ICR MS or short FTMS)
Broadband excitation and detection

Comisarow & Marshall, 1974




Fourier Transformation

Time domain: transient

Freguency domain: mass spectrum




Boom since early 1990s In bio-chemistry
Example: Protein A (44kDa) Broadband Spectrum

Am =0.02176 u

1/Am = 45.964 / u
mass = 44610 u

H/»' |

| il
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From Atoms to Bulk Matter: Clusters

atom/molecule

surface CLUSTER
condensed matter

T.P. Martin (1984)




Large Medium Small

) R, N

Liquid Drop
Behaviour

Quantum Size
and Surface
Effects

Roy L. Johnston:
Atomic and

Molecular Clusters B
(London, New York, 2002) R_OL’ N B—>




Noble gas clusters: Van der Waals force
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Metal clusters

STTITRIET) LT
1
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Counting rate
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Number of sodium atoms per cluster, N

W. D. Knight et al. (1984)




Metal clusters

Closed electronic
ALAEE D3t ,rll,ﬁ Mﬁg LT S h e I I )
33

at n=8,20,40,58,92

Counting rate

T 58
Number of sodium atoms per cluster, |

Effective Potential (eV)

W. D. Knight et al. (1984)

Radius R (arb.units)




The ClusterTrap setup




The ClusterTrap setup

: lon source
. Transfer section
Penning-trap
Detector
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CID of product ions
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CLUSTER SIZE/CHARGE [n/z]

capture/accumulation and
electron bombardment

1. selection

CID

2. selection

CID

CID after first selection

S. Krluckeberg et al., ZPD (1997)




Time - resolved photodissociation

—~ @ — @

Excitation Fragmentation

Laser Pulse lon Detection

C. Walther et al., CPL (1996), M. Lindinger et al., ZPD (1997)




Time - resolved photodissociation

TIME OF FLIGHT




Time - resolved photodissociation
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decay cascades

l.e.
sequential
time — resolved
decays

U. Hild et al., PRA (1998)
M. Vogel et al., PRL (2001)
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=> model-free determination of dissociation energy D

KER
O/Aun1 Y AUn 2

?ﬁ@ﬁf X

M. Vogel et al.
PRL (2001)

fort =1




Sequential photoexcitation

=> Study of Radiative Cooling
(,blackbody” radiation in the limit of small particles)

C. Walther et al., PRL (1999)




Dianion production
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Dianion production

(b)

£ |

ACCUMULATION
<

A

5 10 15

20

25 30

35

CLUSTER SIZE/CHARGE STATE n/z




Dianion production
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Dianion production
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Dianion abundancies
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photoexcitation
of dianions
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lon trapping for cluster research

Interaction

Reactions
Partners

dissociation
atoms (evaporation, fission)

molecules ilonization

recombination

electrons
electron attachment

photons adsorption

(clusters) radiative cooling

(ions) (fusion)

Why cluster trapping? - extended interactions
- extended reaction periods

- multi-step preparation
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In-situ analysis by FT-ICR MS

- Grounded drift
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Fig. 4. Equipotential curves for (infin llyiung)

cylindrical trap segmented into four 90°

Elliot et al.
Hyp. Int. 1993
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Fig. 5. Equipotential curves for (infinitely long) cylindrical
trap at ground excited by two 15° wide excitor electrodes.

Beiersdorfer et al.
IIMSIP 1996




Excitation and
Detection Electrodes
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Beiersdorfer et al., RCMS 1994 Beiersdorfer et al., [IIMSIP 1996




Broad-band FT-ICR MS .
Relative charge-state

abundances
e.g. as a function of breeding time

Signal (AU}
Lo

0.5

il il

17.5 18.0 18.5 19.0 19.5
Freguency (MHz)

Fig. 2. FT-1CR spectrum of heliumlike, hydrogenlike, and bare
™ Kr ions excited by a 300 ps broadband sweep from 17.5 to 195 P = X T

] d f | Time (s)
Belers orfer et al. Fig. 3. Relatnve abundance of hydrogenlike Kr'¥* and bare
N I M B 1995 Kr** as a function of time after injection into the EBIT trap. The

ions were produced at an electron beam current of 1K mA and a
beam cnergy of 90 kV, Measurcments were made with the

Conflrmed by X- ray meas. FI-1CR method and an X-ray technique as discussed in the text.
but 20 t|meS faster | The solid and dashed lines are drawn to guide the eye.
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Beiersdorfer et al., RSI 1996: . lacwon Impping maghetic Irapping
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The

of an electron beam ion trap:
New opportunities for

highly charged ion research
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S/N enhancement by Pulsed Gas Injection

electren  rapging magnetic  lrapping
= lascin otet -
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Already in Beiersdorfer et al., RSI
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FIG. 10. Time dependence of the K-shell x-ray emission from N°**_ Att=0
ms, EBIT operation is switched from the electron to the magnetic trapping
mode. The x rays observed in the magnetic mode are the result of the
fluorescent decay of the 1525 35‘1 level in heliumlike N°*. An exponential
decay in the signal intensity evident.

from
time-resolved
fluorescence
NEESIEINEIS
In the x-ray regime




Also: from
time-resolved fluorescence

Measurements in the optical regime
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“Everything’s 4 tra if you’ »
4p. Y youre mot_careful.”

Well, sometimes a trap may not be that bad, after all.













