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The photon clean method: an event-based
approach to analyzing X-ray spectra1

Matthew H. Carpenter, J. Garrett Jernigan, Peter Beiersdorfer, and
Gregory V. Brown

Abstract: The Photon Clean Method (PCM) is an inverse Monte-Carlo method of spectral fitting that differs from
traditional fitting routines found in spectral modeling packages by fitting event lists as opposed to binned spectra.
The model spectrum is represented in event form as well. Thus, using this method it is possible to fit data of higher
dimensionality than can be fit using binned spectra and standard routines based on Chi-Square statistics, such as event-
mode data from electron beam ion traps or satellite observations that are tagged, for example, as a function of time,
position, or energy. To demonstrate some of the power of the PCM and aid in its development, we have implemented a
simplified one-dimensional version of the PCM algorithm (PCM1D). Using our implementation, which is a command-line
program intended for public release, we have performed tests on simulated and observed Chandra ACIS CCD data, and
present two examples, one on Cassiopeia A and another on a simulated multitemperature plasma in collisional ionization
equilibrium.

PACS No.: 52.65.Pp

Résumé : La méthode Photon Clean (PCM) est une méthode de Monte-Carlo inverse d’ajustement numérique spectral qui
diffère des programmes traditionnels de modélisation en ajustant des listes d’événements plutôt que des spectres regroupés
en classes (binned). Le spectre modèle est également représenté sous la forme événement. Ainsi, cette méthode permet
un ajustement à des données de plus grande dimension que ce qui peut être ajusté en utilisant des spectres classés ou des
programmes standard basées sur la statistique des moindres carrés, telles les données en mode événement provenant de
pièges ioniques ou d’observations par satellite qui sont identifiées, par exemple, par le temps, la position ou l’énergie.
Afin d’illustrer la puissance de la PCM et aider à son développement, nous utilisons une version à une dimension de
l’algorithme PCM (PCM1D). Il s’agit d’un programme ouvert avec commandes que nous avons utilisé sur des données
réelles et simulées ACIS CCD de Chandra et nous présentons deux exemples, un de Cassiopée et l’autre une similation
d’un plasma à plusieurs température dans un équilibre d’ionisation par collisions.

[Traduit par la Rédaction]

1. Introduction

There are many tools freely available to perform spectral
analysis of laboratory or astrophysical data. The standard prac-
tice in plasma modeling involves building synthetic spectra
from one or more models, each with one or more parameters.
Goodness of fit is usually determined by the Chi-Square test,
in which a minimum number of parameters as practicable are
desired. The Photon Clean Method (PCM), first described by
Jernigan and Vezie [1], approaches this problem from a fun-
damentally different direction. Instead of normalized spectral
bins, it compares discrete lists of photon events. This quan-
tized treatment opens up several possibilities, including the use
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of Monte-Carlo (MC) methods, complex detector geometries,
and models with numbers of degrees of freedom proportional
to the number of photons. While it suffers the same problems
of energy and spatial resolution imposed on standard methods,
its reliance on random MC trials with feedback coupled with
the use of bootstrap methods to determine sample variability
allows complex solution spaces to be evaluated.

There are other analysis methods related to PCM that also
derive models from event data using MC approaches. These
related methods are all inverse MC approaches that find solu-
tions in one or more dimensions via iteration with feedback as
first described in Jernigan and Vezie 1996. Peterson developed
a variation of this type of algorithm that fits models of a few free
parameters based on a binned Chi-Square metric for feedback,
in contrast to the PCM, which is based on the Kolmogorov–
Smirnov (KS) metric. In this version, all the model photons and
simulated detected events are produced by a detailed MC sim-
ulation of both the model and the detector system [2, 3]. Subse-
quently, Peterson extended the algorithm to allow many param-
eters in the form of multidimensional “blobs”, each an aggre-
gate of photons characterized by a set of a few parameters. The
feedback method in this approach is based on a Monte-Carlo
Markov Chain (MCMC; see ref. 4). Gu has also implemented a
similar one-dimensional version of this MCMC approach [5].
Each of these inverse MC methods also includes a particular

Can. J. Phys. 86: 245–250 (2008) doi: 10.1139/P07-153 © 2008 NRC Canada



246 Can. J. Phys. Vol. 86, 2008

Fig. 1. Flow-chart for one-dimensional Photon Clean Method with the Atomic Plasma Emission Database model.

methodology for the estimation of errors in the derived mod-
els. This entire class of methods has significant advantages over
traditional methods in situations in which complex models and
complex detectors require accurate MC techniques typical of
the current generation of imaging spectrometers.

We have implemented a trial version of the PCM algorithm
as an ANSI C command line program named PCM1D. This
test version will be released publicly under open-source license
in 2007 [6]. The PCM algorithm may be generalized to high
dimensionality; however, this current manifestation operates in
one dimension in both data and parameter space. In many ways
this is sufficient to address analysis issues associated with, for
example, event-mode data generated at the University of Cali-
fornia Lawrence Livermore National Laboratory electron beam
ion traps. This includes spectral data of K-shell and L-shell
iron emission recorded with the XRS microcalorimeter on the
Electron Beam Ion Trap I (EBIT-I) device using a simulated
Maxwell–Boltzmann electron distribution [7, 8]. Since this ver-
sion is intended for eventual general release with a focus on the
astrophysics community, special effort has been made to make
the program inter-operate with NASA HEASARC3 tools via
use of standard-format input and output products. In the ex-
amples presented here, the model is limited to collisional ion-
ization equilibrium (CIE) plasma models constructed from the
publicly available Atomic Plasma Emission Database (APED)
developed at the Chandra X-Ray Center [9].

3 High Energy Astrophysics Science Archive Research Center. See
http://heasarc.gsfc.nasa.gov/

2. Method

The main departure from traditional analysis methods is that
PCM operates directly on lists of photons without creating any
bins or histograms. Observed events are loaded directly into an
internal array, and model data are generated as a list of photons
with associated model parameters. As each simulated photon
is generated with a discrete set of model parameters, it is re-
garded as a parameter itself, or one member of the span of
the parameter space. Goodness-of-fit statistics are provided by
the two-sample Kolmogorov–Smirnov (KS) test [10] (see also
Jernigan and Vezie [1]). The KS test is both well-suited to com-
paring event-mode data and computationally inexpensive. As
with any Monte-Carlo-based method, the speed of individual
components of the algorithm, as well as their scaling with size
of the data set, is crucial to the practicality of the method.

The Photon Clean Method makes an important distinction
between “observed events” and “real photons”. To compute
discrete photons from a variety of models, the program imple-
ments a Monte-Carlo “photon generator”. The flow chart dis-
playing the various steps, including inputs and outputs, is shown
in Fig. 1. Given a fixed set of model parameters as inputs, the
generator outputs a detected photon; to do this, the generator
may need to produce and discard many undetected photons.
The probability that a photon is detected as a discrete event is
determined by the instrument model provided by instrumen-
tal response files (i.e., standard detection efficiency and point-
spread function matrices, given by the so-called Ancillary Re-
sponse File (ARF) and Redistribution Matrix File (RMF) files
in the HEASARC tool sets). Due to the nature of theAPED data
base, it is known, exactly, which atomic transition produced a
given photon, or whether it was emitted at part of the thermal
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Fig. 2. Detail of Phase I and II steps. The photon parameters,
energy (E), detected energy (E′), and temperature (T ), are
specific to the analysis presented here using an Atomic Plasma
Emission Database collisional ionization equilibrium plasma; in
general, any set of parameters may be used to describe the photon
model source.

continuum or background. This information is retained by the
program for the life of the photon, so that each photon is directly
linked to a set of model parameters. This coupling allows the
photon to be treated as an independent concept with a specific
energy selected from a model distribution determined by a CIE
plasma of a selected temperature. The variable parameter in this
analysis is plasma temperature. In general, there could be more
than one variable parameter, which is distinct for each emitted
X-ray.

The functional process may be divided into two main cy-
cles. After generating an initial model photon list from input
parameters, the program enters the first iterative cycle, labeled
in Fig. 1 as “Phase I”. In this phase, the program works pri-
marily on improving the parameter space of the model. Its goal
is to produce the closest match to the observed data possible,
given the limited set of model parameters to vary. “Phase II” in
Fig. 1 breaks strict adherence to the model to produce the most
accurate spectral distribution possible. While this final solution
may not be reproducible from its parameters, it contains infor-
mation that can be of great help to the analysis process, such as
quantitative measurements of line ratios and fluxes.

Both phases have the same Monte-Carlo iteration and feed-
back loop at their core. For each iteration, an arbitrary photon
is selected from the model list and set aside, then replaced with
a new photon from the photon generator. The parameters used
to generate the new photon may vary from completely random
parameters to a linear combination of parameters taken from
the existing model photon list. The program computes the KS
parameter, and keeps the new photon if the KS value is the same

Fig. 3. Histogram of photon temperatures from the Photon
Clean Method fit to knot in Cassiopeia A (see Fig. 6). The
continuous line depicts the final distribution of temperatures, and
the dotted line depicts the initial distribution of temperatures.
The distribution of temperatures may be taken as the emission
measure distribution of the fit.

or better than it was before the change. If the KS value has de-
graded, it throws away the new photon and restores the original
photon set aside earlier.

During phase I (see Fig. 2), after a set number of iterations
defining one cycle, the program throws away the entire list of
model photon energies, but leaves the photon parameters in-
tact. A new list of photons is generated from the old photons’
parameters, and the cycle starts again. This “relaxation” step is
needed because the algorithm is most likely to keep a photon
with very different parameters than the one it replaces when
the rest of the population is well-constrained by the model pa-
rameters. By “re-constraining” the population in this manner
every so often, the algorithm is able to work most effectively
to correctly change the distribution in parameter space. If the
set of models cannot produce a realizable solution, phase I will
not be able to arrive at a solution of sensible KS probability.
Phase II takes over where phase I leaves off, and iterates until it
produces a solution of highest KS probability. As noted earlier,
without re-constraining the model population, phase II diverges
from a physically realizable model, at the benefit of fine-tuning
the discrepancies.

At the end of the fitting process, PCM outputs the model
photon list with accompanying photon parameters. Emission
measure diagrams in Figs. 3 and 4 are histograms of the tem-
perature parameters of the photons in this list. Note that the
histograms shown here are for visualization of results only and
are not computed as part of the PCM algorithm. PCM also ag-
gregates photons by element and transition, normalizing the
counts in a given group by the ARF file to generate a line list
with fluxes. Table 1 is copied directly from the line list output
by the program. The program may also produce outputs at reg-
ular intervals during the process, so that plots such as the three
panels in Fig. 5 are possible.

The natural way for PCM to estimate errors and variance in
fit is using “bootstrap” re-sampling methods. This approach,
introduced by Efron in 1979 [11], is a fully-developed branch
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Table 1. Ten brightest emission lines, Cassiopeia A analysis. This list corresponds to Phase II solution (see Fig. 2). The
complete model derived from the Atomic Plasma Emission Database (APED) includes thousands of X-ray lines. For illustration,
only the ten brightest lines are listed here. The element, ionization, and atomic transition are derived directly from APED. Both
the energy and wavelength of the lines are listed, along with computed flux in photon and energy units.

Element Ion Transition E (keV) λ(Å) Flux (photons (s/cm2)−1) Flux (erg (s/cm2)−1)

Si XIII 1s2p 1P1 → 1s2 1S0 1.865 6.648 6.955 × 10−7 2.045 × 10−15

Mg XII 2p 2P3/2 → 1s 2S1/2 1.473 8.419 2.982 × 10−7 7.039 × 10−16

Si XIII 1s2s 3S1 → 1s2 1S0 1.839 6.740 2.913 × 10−7 8.584 × 10−16

Si XIV 2p 2P3/2 → 1s 2S1/2 2.006 6.180 2.822 × 10−7 9.070 × 10−16

S XV 1s2p 1P1 → 1s2 1S0 2.461 5.039 2.719 × 10−7 1.072 × 10−15

Fe XXI 1s22s22p3d 3D1 → 1s22s22p2 3P0 1.009 12.284 2.695 × 10−7 4.356 × 10−16

Fe XXII 1s22s23d 2D3/2 → 1s22s22p 2P1/2 1.053 11.770 1.947 × 10−7 3.286 × 10−16

Fe XXI 1s22s22p4d 3P1 → 1s22s22p2 3P0 1.308 9.480 1.844 × 10−7 3.863 × 10−16

Si XIV 2p 2P1/2 → 1s 2S1/2 2.004 6.186 1.835 × 10−7 5.893 × 10−16

Mg XII 2p 2P1/2 → 1s 2S1/2 1.472 8.425 1.730 × 10−7 4.080 × 10−16

Fig. 4. Emission measure of the PCM fit to simulated CIE
plasma. The continuous line depicts input data, and the dotted
lines are initial and final distributions of the PCM fit. The model
includes both a theoretical spectrum and a model of detector
performance, including quantum efficiency and detector resolution.

in modern statistics. Bootstrap methods are broadly useful for
many analysis algorithms, both binned and unbinned. Since
we have implemented PCM using Monte-Carlo methods for
both the model and simulated data to be compared to actual
observed-event data, the estimation of the errors in the model
derived by PCM are quantified by re-running PCM using boot-
strapped versions of the observed data. This re-sampling of the
observed data is analogous to a Monte-Carlo realization of the
data. Details of the bootstrap method are beyond the scope of
this paper.

3. Example analysis

Results from this implementation are preliminary and serve
primarily as illustrative examples, but nonetheless may demon-
strate the versatility of the method. As mentioned, all models
were constructed from APED CIE plasma models. However,
other models could readily be substituted in these examples.

3.1. Cassiopeia A
The first example is a Chandra ACIS-S3 observation of Cas-

siopeia A (Cas A). The observation used, Chandra ObsID 4638,
comprises 167 ks of exposure and totals over 24 × 106 events.
An extraction region defined by a circle of radius 19.8′′ cen-
tered about RA 23◦ 23′ 32.0′′ Dec +58◦ 49′ 29.6′′ was used to
generate a subset of almost 30 000 events (see Fig. 6). This
region was chosen to capture X-rays from the diffuse central
portion of the remnant while keeping the total number of events
to a practical amount. The events were extracted from Chandra
pipeline data products using the CIAO4 tool dmcopy, and RMF
and ARF files were generated with specextract. The design
goal is not to implement any processing code as part of PCM1D
that is already available by using a standard processing tool.

An initial arbitrary guess is generated from a CIE plasma of
solar abundance with a broad Gaussian emission measure dis-
tribution in temperature, as shown in Fig. 3. Interstellar medium
attenuation is modeled as an effective hydrogen absorption col-
umn with a density of NH = 1.3 × 1022 cm−2 [12]. The choice
of the centroid temperature and deviation of the initial model’s
emission measure is arbitrary, and is seen to provide a poor fit in
the top panel of Fig. 5.As the abundance ratios and ISM absorp-
tion are fixed parameters in this fit, phase I is not expected to
converge to a high confidence level. Subsequent tuning during
the second phase fixes discrepancies around the Fe L-complex
and the Mg and Si lines at 1.47 and 1.87 keV, respectively. See
Table 1 for the location of these emission features.

The resulting emission measure is in agreement with pub-
lished temperature ranges for knots in Cas A, which vary near
1 keV for the soft X-ray component of the spectrum below 6 keV
[13]. The highly peaked emission measure distribution sug-
gests this region is approximately fit with a single-temperature
model. The line list in Table 1 is generated directly from counts
in the final model photon list, divided by detector effective area
contained in a standardized ARF. These numbers are useful in
determining the correct elemental abundance ratios, as the frac-
tional change in total flux per element from the end of phase I
to the final solution is directly related to the abundance ratio in
the model.

4 Chandra Interactive Analysis of Observations. See
http://cxc.harvard.edu/ciao/
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Fig. 5. Analysis progression, Cassiopeia A. The top panel
of the figure shows the initial conditions input to the Photon
Clean Method (PCM). The middle portion of the panel shows
a spectrum in the form of a histogram of the Chandra event
data for a portion of Cassiopeia A (broken-dotted line). The
continuous line shows the simulated data derived from an initial
model of a Collisional Ionization Equilibrium (CIE) plasma with
solar elemental abundances and a broad Gaussian distribution in
emission measure (see the initial emission measure distribution
in Fig. 3). The top portion of the panel shows the discrepancy
between the simulated and observed histograms. The large
difference residuals indicate that the initial model is a poor fit to
the observations. The middle panel shows the same information,
in the same form as for the top panel to aid comparison. The
displayed data corresponds the end of Phase I of the PCM (see
Fig. 2). Phase I finds an optimal solution based on a blend of
CIE plasmas with a more highly constrained distribution in
emission measure (see final distribution in Fig. 3). Similarly,
the lower panel shows the end of Phase II. Phase II finds an
optimal solution by modifying individual photons which are not
constrained by strict adherence to a CIE model.

3.2. Simulated CIE blend
A simulated Chandra ACIS observation of a CIE plasma

source with a broad Gaussian emission measure distribution
centered about 2.6 keV was produced using ARF and RMF
files from the previous Cas A analysis (see Fig. 7). The emis-
sion measure distribution of this simulated data set is plotted
with a continuous line in Fig. 4, and is seen to have broad high-

Fig. 6. Unsmoothed Chandra broadband image of Cassiopeia A,
with logarithmic intensity scaling. Circular extraction region for
Cassiopeia A analysis is marked in white.

Fig. 7. The Photon Clean Method fit to simulated Collisional
Ionization Equilibrium plasma with Gaussian distribution in
emission measure. The left and right panels computed similarly to
the top and middle panels of Fig. 5. Since this example is based
on simulated data, the Phase I solution residuals are consistent
with Poisson noise. Therefore, there is no need to compute a
Phase II solution. Note the initial and final solutions correspond
to the emission measure distributions shown in Fig. 4.

and low-temperature tails. The initial guess input to PCM is a
much broader arbitrary Gaussian distribution, with a lower cen-
troid of 1 keV. The lower overall temperature in the initial guess
is evident in the Fe L-shell forest in the left panel of Fig. 7.

The purpose of testing in this manner is that we may use
identical calibration files for the simulated observed data and the
model data, which removes the effects of calibration errors. This
provides a control environment that establishes that PCM works
under ideal conditions. In addition, PCM is shown to fit data
with complex models of high dimensionality with nontrivial
parameter distributions. Because of the precise control over free
parameters (NH, element abundances) in the simulated input,
PCM is able to produce a solution with residuals consistent with
Poisson noise (right panel, Fig. 7) in phase I alone, and does
not need to proceed to phase II as expected for ideal simulated
data that matches a selected model perfectly.
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4. Summary and future work

The method as described in this paper is limited in function
but retains several advantages over traditional fitting methods,
most importantly in its ability to handle complex models with
many parameters. It is well suited to resolving error between
blends of lines and other problems related to detector resolution
and calibration. Future versions of the code will benefit from
being able to vary multiple parameters independently, multiple
simultaneous models, and fitting in two or more dimensions
at once, for example, fitting to energy and spatial coordinates
simultaneously.

Early testing with the current version of the software has pro-
duced promising results on a number of celestial sources. Fur-
ther tests to quantify its performance and to extend the number
of models available to the program are underway, in anticipa-
tion of the release of a beta version to be made available to
the general research community for evaluation and feedback in
2007.

It is also planned to apply PCM to the thermal emission
or iron recorded LLNL’s electron beam ion trap using a mi-
crocalorimeter under simulated Maxwell–Boltzmann conditions.
The microcalorimeter records the spectral emission from about
300 eV to the above ionization potential of Fe25+ near 10 keV.
The spectrum thus includes both the L-shell as well as the
K-shell emission of iron. The temperature distribution derived
by PCM can thus be compared to the temperature setting of the
Maxwell–Boltzmann simulator. This will provide a stringent
test of the accuracy of the method.
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