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The flexible atomic code

Ming Feng Gu

Abstract: We describe a complete software package for the computation of various atomic data such as energy levels;
radiative transition; collisional excitation; ionization by electron impact, photoionization, autoionization; and their inverse
processes radiative recombination and dielectronic capture. The atomic theoretical background and numerical techniques
associated with each process are discussed in detail. Sample applications and results are presented.

PACS Nos.: 31.15.−p, 32.70.Cs, 34.80.Kw, 32.80.Fb, 32.80.Dz

Résumé : Nous décrivons un ensemble complet de programmes informatiques pour calculer diverses quantités atomiques,
comme les niveaux d’énergie, les transitions radiatives, l’excitation et l’ionisation par collision électronique, la photo-
ionisation, l’autoionisation et leurs mécanismes radiatifs inverses de recombinaison et de capture diélectronique. Nous
repassons en détail les bases théoriques et les techniques informatiques associées à chaque processus atomique. Nous
présentons des exemples d’utilisation avec leurs résultats.

[Traduit par la Rédaction]

1. Introduction

In this paper, we review the flexible atomic code (FAC). FAC
is a complete software package for the computation of vari-
ous atomic radiative and collisional processes. Since its intro-
duction, the package has been used successfully for modeling
the spectral emission from astrophysical plasmas. For example,
ref. 1 investigates indirect level population processes of iron
L-shell ions in optically thin plasmas, such as those present in
stellar coronae and clusters of galaxies; refs. 2–4 use FAC to
calculate radiative and dielectronic recombination rates for a
number of astrophysically important ions and the X-ray line
radiation following such recombination processes in low tem-
perature, photoionized plasmas, which are often present in ac-
tive galactic nuclei (AGN), and X-ray binaries (XRB). FAC has
also been used to model the emission from magnetic fusion plas-
mas [5]. Laboratory astrophysics experiments performed at the
Livermore electron beam ion traps (EBITs) have tested multiple
aspects of the package, and excellent agreement between FAC
results and laboratory data were found [6–8]. Hansen [9] used
FAC results to analyze the X-ray spectra of krypton clusters
irradiated by high-intensity femtosecond laser pulses. Zhong et
al. [10] used FAC data to investigate the driver-pulse configu-
ration of the Ni-like Ta X-ray laser. The software package has
also been adopted by numerous researchers around the world.
Uses include the calculations of magnetic sublevel populations
for the development of plasma polarization diagnostics [11]
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and the determination of density-dependent line ratios [12, 13].
FAC data have also been included in databases such as CHI-
ANTI [14].

FAC employs a fully relativistic approach based on the Dirac
equation, which allows its application to ions with large values
of nuclear charge. Currently, FAC is able to treat radiative transi-
tion, direct collisional excitation, and ionization by electron im-
pact nonresonant photoionization and radiative recombination,
autoionization and dielectronic recombination. These processes
are essential for the interpretation of laboratory and astrophysi-
cal spectroscopic data. The main goal of creating such a compre-
hensive package is to integrate various atomic processes within
a single theoretical framework, ensure the self-consistency be-
tween different parts, and provide a uniform flexible and easy-
to-use user interface for accessing all computational tasks.

Many computer programs now exist for the calculation of
atomic processes, using either nonrelativistic approximations
(some including relativistic effects through the Breit–Pauli
Hamiltonian) or fully relativistic methods. Most of them are
concerned mainly with atomic structure and bound–bound pro-
cesses, for example, the nonrelativistic configuration interac-
tion codes CIV3 [15] and SUPERSTRUCTURE [16], the widely
used program of Cowan [17], the multiconfiguration Hartree–
Fock (MCHF) program of Fisher et al. [18], and the multicon-
figuration Dirac–Fock (MCDF) code of Grant et al. [19]. Many
newer programs for continuum processes make use of the out-
put from these structure codes for bound-state wave functions.
This sometimes leads to a different treatment of continuum
states from that of bound states. More importantly, the com-
munication between different programs tends to complicate the
user interface, and makes it difficult for people other than the
authors of the codes to use them efficiently.

There also exist several integrated packages for the calcula-
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tion of a variety of atomic processes, for example, the ATOM
package [20], the HULLAC package [21], and the fully rela-
tivistic code (SZ) developed by Samson et al. [22] and Zhang
et al. [23]. These programs treat continuum as well as bound
processes. In ATOM, the radial wave functions for bound and
continuum orbitals are obtained using the self-consistent field
Hartree–Fock method or the frozen-core Hartree–Fock method.
A relativistic version based on the Dirac equation is also avail-
able. Such a procedure tends to be very time consuming, es-
pecially for continuum processes, where the number of contin-
uum orbitals needed is large. The HULLAC package and SZ
are both based on the Dirac equation and use a single local cen-
tral potential for the solution of radial orbitals. This approach
is very efficient because the orthogonality of different orbitals
is automatically ensured. Both programs use the distorted wave
(DW) approximation for continuum processes. The difference
between them is mainly in the way the local central potential is
obtained. In HULLAC, a parametric potential is used and the
parameters in the potential are derived by minimizing the aver-
age energies of some selected configurations [24]. In SZ, one
constructs a fictitious mean configuration with fractional occu-
pation numbers that takes into account the electron screening of
all configurations involved in the physical processes to be cal-
culated. A self-consistent Dirac–Fock–Slater iteration is then
performed on this mean configuration to derive the local cen-
tral potential. Although various results from these two codes
have been published over the years, the programs are not avail-
able to the general public. The present package combines the
strengths of these existing atomic codes, with modifications
to numerical procedures to extend the capability and improve
the efficiency and robustness. Although many of the techniques
used in the present program were developed in existing codes,
we note that FAC is written from scratch and not derived from
those existing codes, such as HULLAC. The entire package is
publicly available upon request to the author.

This paper reviews the theoretical background of various
atomic radiative and collisional processes, the numerical tech-
niques used for efficient computation of such data, and sample
results of applications of these computational methods. Sec-
tion 2 discusses the relativistic atomic structure solution and
the calculation of radiative transition rates; the implementation
of relativistic DW method for electron impact excitation and
ionization are described in Sects. 3 and 4; Sect. 5 presents the
method for computing photoionization and radiative recombi-
nation cross sections; autoionization and dielectronic recom-
bination processes are discussed in Sect. 6; Sect. 7 introduces
several example applications of the computational methods im-
plemented in FAC; and in Sect. 8, a brief summary is given.

2. Atomic structure

The energy levels of an atomic ion with N electrons are
obtained by diagonalizing the relativistic Hamiltonian H . In
atomic units, which we shall use throughout the paper, it reads

H =
N∑
i=1

HD(i)+
N∑
i<j

1

rij
(1)

where HD(i) is the single-electron Dirac Hamiltonian for the
potential due to the nuclear charge. The basis states �ν , which
are usually referred to as configuration state functions (CSF),
are antisymmetric sums of the products ofN one-electron Dirac
spinors ϕnκm

ϕnκm = 1

r

(
Pnκ(r)χκm(θ, φ, σ )

iQnκ(r)χ−κm(θ, φ, σ )

)
(2)

where χκm is the usual spin-angular function; n is the principal
quantum number; and κ is the relativistic angular quantum num-
ber, which is related to the orbital and total angular momentum
through

κ = (l − j)(2j + 1) (3)

andm is the z-component of the total angular momentum j . In
coupling the angular momenta of successive shells, the standard
jj coupling scheme is used.

The approximate atomic state functions are given by mixing
the basis states �ν with same symmetries

ψ =
∑
ν

bν�ν (4)

where bν are the mixing coefficients obtained from diagonaliz-
ing the total Hamiltonian.

2.1. Choice of local central potential
The one-electron radial orbitals must be known to construct

the Hamiltonian matrix. In the standard Dirac–Fock–Slater
method, the large and small components, Pnκ and Qnκ , satisfy
the coupled Dirac equation for a local central field V (r),(

d

dr
+ κ

r

)
Pnκ = α

(
εnκ − V + 2

α2

)
Qnκ(

d

dr
− κ

r

)
Qnκ = α (−εnκ + V )Pnκ

(5)

where α is the fine structure constant, and εnκ are the energy
eigenvalues of the radial orbitals.

The local central potential V includes the contribution from
the nuclear charge V N(r) and the electron–electron interaction
V ee(r). The nuclear potential can be written as

V N =


Z
2

(
r
RN

) [
3 −

(
r
RN

)2
]
, r ≤ RN

Z, r > RN

(6)

where RN is the statistical model radius of the nucleus, which
can be expressed in terms of the atomic massA,RN = 2.2677×
10−5A1/3 [25]. In the standard Dirac–Fock–Slater method,
which is the approach used by SZ, the electron–electron in-
teraction includes the spherically averaged classical potential
due to the bound electrons and a local approximation to the
exchange interaction,

V ee(r) = Vc(r)−
[

3

4π2r2

∑
nκ

ωnκρnκ(r)

]1/3

Vc(r) =
∑
nκ

∫
ωnκ

r>
ρnκ(r

′)dr ′

ρnκ(r) = P 2
nκ(r)+Q2

nκ(r) (7)
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where ωnκ is the occupation number of the subshell nκ , and r>
is the greater of r and r ′. This potential includes the undesir-
able self-interaction and has incorrect asymptotic behavior. In
the present program, we shall use a slightly more complicated
expression for V ee(r),

V ee(r) = 1

r
∑
a ωaρa(r)

{ ∑
ab

ωa(ωb − δab)Y
0
bb(r)ρa(r)

+
∑
a

ωa(ωa − 1)
∑
k>0

fk(a, a)Y
k
aa(r)ρa(r)

+
∑
a �=b

∑
k

ωaωbgk(a, b)Y
k
ab(r)ρab(r)

}
(8)

where a = nκ and b = n′κ ′ are the dummy indices denoting
the subshells and,

ρab = Pa(r)Pb(r)+Qa(r)Qb(r)

Y kab(r) = r

∫
rk<

rk+1
>

ρab(r
′)dr ′

(9)

where r< and r> are the lesser and greater of r and r ′, respec-
tively. fk and gk are the direct and exchange coefficients defined
as,

fk(a, b) = −
(

1 + 1

2ja

) (
ja k jb
− 1

2 0 1
2

)2

gk(a, b) = −
(
ja k jb
− 1

2 0 1
2

)2
(10)

where

(
j1 j2 j3
m1 m2 m3

)
is theWigner 3j symbol. Such a choice

for the electron–electron interaction is based on the fact that the
quantity,

Eee = 1

2

∑
a

ωa < a|V ee|a >

= 1

2

∑
a

ωa

∫
V ee(r)ρa(r) dr (11)

is the electron–electron contribution to the average energy of the
configuration. The factor 1/2 in (11) accounts for the double
counting of electron pairs in the summation. It is easily seen
that (8) has the correct asymptotic behavior at large r , since the
self-interaction term is explicitly excluded.

2.2. Solution of Dirac equations

Since the potential depends on the radial orbitals sought, a
self-consistent iteration is required to solve (5). In each itera-
tion, the orbitals from the previous step are used to derive the
potential. Therefore, one only needs to solve the eigenvalue
problem with a known potential. As is standard, we convert
(5) into a Schrödinger-like equation by eliminating the small

component and performing the transformation [25],

Pa = ξa(r)Fa(r)

ξa(r) =
√

1 + α2

2
[εa − V (r)]

Qa = α

2ξ2
a

(
d

dr
Pa + κ

r
Pa

)
(12)

Under this transformation, we have

d2

dr2Fa(r)+
{

2 [εa − U(r)] − κ(κ + 1)

r2

}
Fa(r) = 0 (13)

where U(r) is an effective potential defined as

U(r) = V (r)− α2

2

{
[V (r)− εa]2 −W(r)

}

W(r) = 1

4ξ2(r)

[
d2

dr2V (r)+ 3α2

4ξ2(r)

(
d

dr
V (r)

)2

− 2κ

r

d

dr
V (r)

]
(14)

We use the standard Numerov method to solve (13). How-
ever, it is customary to perform another transformation before
seeking the solution,

t = t (r)

Fa(r) =
(

dt

dr

)−1/2

Ga(t) (15)

where t (r) as a function of radial distance is suitably chosen so
that a uniform grid can be used in the new variable t , and the
corresponding transformation on the wave function is to bring
the differential equation for Ga(t) to a Schrödinger-like form,
without the first derivative term,

d2

dt2
Ga(t) =

(
dt

dr

)−2

Ga(t)

{
κ(κ + 1)

r2 − 2 [εa − U(r)]

+ 1

2

(
dt

dr

)−1 d3t

dr3 − 3

4

(
dt

dr

)−2 (
d2t

dr2

)2 }
(16)

Two types of t (r) have been used in the past. One is a log-
arithmic transformation, t (r) ∝ ln(r), which has been used in
the MCHF code of ref. 18; the other is a hybrid form, t (r) =
c1r + c2 ln(r), for example, as used in ATOM [20]. The loga-
rithmic form is not suitable for highly excited and continuum
orbitals, because the radial grid interval may exceed the oscil-
lation period of the wave function at large r . In the hybrid form,
the grid interval approaches a constant at large r . For suitably
chosen coefficients c1 and c2, it can be used in the calculation
of highly excited orbitals and continua with energy below some
limit. However, for free orbitals with sufficiently high energy,
solving (16) in a conventional way becomes impractical. We
shall use a different approach for continuum states, namely, the
phase-amplitude method as used in HULLAC. For highly ex-
cited bound states, it is easily shown that the oscillation period
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of the wave function is ∝ √
r at large r . We, therefore, use

a modified hybrid form, t (r) = c1
√
r + c2 ln(r), so that one

oscillation period contains approximately the same number of
grid points at large distances. The advantage of the modified
form over the linear hybrid form is that for a given number of
grid points, the modified form can cover a larger radial distance
than the linear form, which is important for the calculation of
highly excited states.

The minimum and maximum radial distances, rmin and rmax,
in setting up the radial grid are chosen as,

rmin = 10−6/Zeff

rmax = 500/Zeff
(17)

whereZeff is the residual charge of the atomic ion that the elec-
trons experience at large r . This ensures that rmin is well within
the nuclear charge distribution for any atomic system. The value
of rmax ensures that for excited states below n ∼ 20, the bound
energies are less than the Coulomb potential at rmax. These
states have no nodes at r > rmax. For states with higher n, how-
ever, wave functions beyond rmax may have additional nodes.
Therefore, counting the nodes is no longer a valid method for
selecting the right solution. Moreover, the wave functions can
no longer be normalized by calculating their norm with simple
numerical integration, since the contributions beyond rmax can-
not be neglected. One may increase rmax when highly excited
states are needed. One must also increase the number of grid
points to ensure the accuracy of numerical integration. How-
ever, wave functions at large radial distances are rarely needed
either because the interaction operators are negligible or be-
cause the states that interact with such highly excited orbitals
have negligible amplitudes at large distances. In the present
program, the low-n and high-n states are treated differently.
The dividing n0 is determined by the choice of rmax, specifi-
cally, n0 = 0.5

√
Zeffrmax. For n ≤ n0, the orbitals are found

by outward and inward integration of (16) with zero ampli-
tudes at both ends and matching at the outer classical turning
point. Node counting is used to pick out the appropriate solution
corresponding to the quantum numbers n and l. The wave func-
tions are then normalized by numerical integration. For n > n0,
(16) is integrated outward until r = rcore, where the potential
has reached its asymptotic Coulomb value. For r > rcore, the
wave function is the regular Dirac–Coulomb function with an
appropriate quantum defect [26]. The quantum defect and nor-
malization of the wave function is determined by matching the
numerical solution inside rcore to that of the Dirac–Coulomb
function at rcore.

2.3. Angular integration and the Hamiltonian matrix
elements

In (1), the first term of the Hamiltonian is a one-electron op-
erator, while the second term is a two-electron operator. The
traditional method of evaluating their matrix elements is to ex-
pand them into a sum, with each term being a product of an
angular part and a radial part. The angular part is then calcu-
lated using Racah algebra. In doing so, the initial and final basis
states need to be recoupled, which is often carried out by the
recoupling program of Grant [27]. Recently, Gaigalas et al. [28]
proposed a new method of performing angular integration that

is based on the second quantization form of the operators and
extends the use of Racah algebra to the quasi-spin space. In this
method, instead of recoupling basis states, one recouples the
creation and annihilation operators with the help of Racah al-
gebra. The main advantage of this method is that there are only
two creation and two annihilation operators in the two-electron
interaction, while for the one-electron interaction, there is only
one creation and one annihilation operator. Therefore, at most
four angular momenta are involved in the recoupling, indepen-
dent of the shell structure of the basis states. In the conventional
method, the recoupling of basis states can be quite complicated
for complex configurations. The present code adopts the new
method and the program of Gaigalas et al. [29] is used for the
reduced matrix elements of creation and annihilation operators.

2.3.1. One-electron operators
The one-electron operator in the Hamiltonian is a scalar, how-

ever, we treat a general tensorial operator OL
M = ∑

i o
L
M(i) in

this section since the calculation of radiative transition rates
involves tensors. In second quantization form, OL

M may be ex-
pressed as

OL
M =

∑
α̂β̂

a
†
α̂
a
β̂
< α̂|oLM |β̂ > (18)

where α̂ and β̂ denote a single electron state nκm. a† is the
creation operator and a is the annihilation operator. Using the
Wigner–Ekart theorem for the matrix elements of oLM we have,

OL
M =

∑
αβ

ZLM(α, β) < α||oL||β > (19)

where < α||oL||β > denotes the reduced matrix element, and
α and β denote only quantum numbers nκ . The summation over
m is already contained in ZLM , which is defined as,

ZLM(α, β) = −[L]−1/2
[
a

†
α̂

× ã
β̂

]L
M

(20)

where [L] = 2L+ 1, and ã
β̂

= (−1)jβ−mβa−β̂ with −β̂ being
understood as the single electron state nβκβ −mβ , i.e., having
the magnetic quantum number negated. Such a transformation
is necessary since it is ã

β̂
that form an irreducible tensorial set

with rank jβ [30]. The tensorial coupling has the usual meaning.
The angular integration is equivalent to the evaluation of the
reduced matrix elements of ZLM between basis states [28].

2.3.2. Two-electron operators
After some algebraic manipulation [31], the electrostatic in-

teraction between electrons can be written as,

∑
i<j

1

rij
= 1

2

∑
αβγ δ

∑
k

{
Zk(α, γ ) · Zk(β, δ)

− (−1)jα−jβ [jα]−1/2Z0
0(αδ)

}
Xk(αβ; γ δ) (21)

whereZk(α, γ ) ·Zk(β, δ) denotes the scalar product of the two
tensors, and

Xk(αβ; γ δ) =< α||Ck||γ >< β||Ck||δ > Rk(αβ; γ δ) (22)
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whereCk is the normalized spherical harmonic tensor as defined
in ref. 17, and Rk is the generalized Slater integral,

Rk(αβ; γ δ) =
∫

rk<

rk+1
>

ραγ (r1)ρβδ(r2) dr1 dr2 (23)

The calculation of the matrix elements of Zk(α, γ ) · Zk(β, δ)
follows ref. 28.

2.4. Radiative transition rates
The radiative transition rates are calculated in the single mul-

tipole approximation. This means that the interference between
different multipoles is not taken into account, although rates
corresponding to arbitrary multipoles can be calculated. For a
given multipole operator OL

M and initial and final states of the
transition ψi = ∑

ν biν�ν and ψf = ∑
µ bfµ�µ, the line

strength of the transition is

Sf i =
∣∣∣< ψf ||OL

M ||ψi >
∣∣∣2

=
∣∣∣∣ ∑
µν

bfµbiν
∑
αβ

< �µ||ZLM(α, β)||�ν >

< α||CL||β > ML
αβ

∣∣∣∣
2

(24)

where ML
αβ is the radial part of the single-electron multipole

operator as defined in ref. 32. The weighted oscillator strength
and transition rates are given by,

gffi = [L]−1ω(αω)2L−2Sfi (25)

gAfi = 2α3ω2gffi (26)

where ω = Ei − Ef is the transition energy.
ML
αβ may be calculated using the fully relativistic expressions

of ref. 32. However, in most cases (except for M1 transitions,
where the use of the fully relativistic expressions is essential),
their nonrelativistic limits are sufficiently accurate, which has
the advantage that these operators depend on the transition en-
ergy in a trivial manner.

3. Electron impact excitation

Two classes of methods are commonly used in the calcula-
tion of electron impact excitation (EIE) cross sections. The first
is based on a set of close-coupling (CC) equations, which takes
into account the coupling of various excitation channels [33].
In these methods, resonances can be included in a natural way
by including the coupling to closed channels. Several imple-
mentations of this method exist. The most widely used is the
R-matrix code developed by a group at the Queens University of
Belfast [34]. The second class of methods is based on the first-
order Born approximation, which assumes independent excita-
tion channels. The coupling to closed channels, which results in
resonances, may be included with perturbation methods [35].
Different variants exist according to the different treatments
of the continuum wave functions. The plane-wave (PW) Born
approximation uses an unperturbed plane wave for the free or-
bital. The Coulomb-wave (CW) Born approximation takes into

account the distortion of the continuum due to a pure Coulomb
potential. The most accurate of this class is the DW Born ap-
proximation, in which the free orbitals are calculated in a more
realistic potential taking into account the electronic structure
of the target ion. The majority of the computer programs in
this class implement the DW approximation, since it yields sig-
nificantly better results than the PW and CW methods with
minimal increase in complexity. Many DW codes are in use to-
day. For example, the nonrelativistic DW code from University
College London [36], the relativistic code of Hagelstein and
Jung [37], the HULLAC package [31], the code by Zhang et
al. [23], and that of Chen [38], just to name a few. The present
DW implementation in FAC is, in principle, similar to any of
the relativistic codes listed above.

3.1. Factorized collision strength
The EIE cross section σ01 from the initial stateψ0 to the final

state ψ1 can be expressed in terms of the collision strength�01
as,

σ01 = π

k2
0g0

�01 (27)

where g0 is the statistical weight of the initial state, and k0 is
the kinetic momentum of the incident electron, which is related
to the energy ε0 by,

k2
0 = 2ε0

(
1 + α2

2
ε0

)
(28)

whereα is the fine structure constant. The continuum wavefunc-
tion is normalized so that the large component has an asymptotic
amplitude of

√
k/ε, which reduces to

√
2/k in the nonrelativis-

tic limit, or equivalently,∫ ∞

0

[
Pε(r)Pε′(r)+Qε(r)Qε′(r)

]
dr = πδ(ε − ε′) (29)

where ε and k are the energy and kinetic momentum of the
orbital, and Pε and Qε are the large and small components
of the continuum wave function. The collision strength can be
written as,

�01 = 2
∑
κ0κ1

∑
JT

[JT]
∣∣∣ < ψ0κ0, JTMT

∣∣∣
∑
i<j

1

rij

∣∣∣ψ1κ1, JTMT >

∣∣∣2
(30)

where κ0 and κ1 are the relativistic angular quantum numbers
of the incident and scattered electrons, JT is the total angular
momentum when the target state is coupled to the continuum
orbital, MT is the projection of the total angular momentum,
and [J ] = 2J + 1. Following ref. 31, this expression can be
simplified to give,

�01 = 2
∑
k

∑
α0α1
β0β1

Qk(α0α1;β0β1) < ψ0||Zk(α0, α1)||ψ1 >

< ψ0||Zk(β0, β1)||ψ1 > (31)
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where

Qk(α0α1;β0β1)

=
∑
κ0κ1

[k]−1P k(κ0κ1;α0α1)P
k(κ0κ1;β0β1) (32)

and

P k(κ0κ1;α0α1) = Xk(α0κ0;α1κ1)

+
∑
t

(−1)k+t [k]
{
jα0 j1 t

j0 jα1 k

}
Xt(α0κ0; κ1α1) (33)

where Xk and the operator Zk(α, β) are defined in Sect. 2.
The importance of (31) is that the angular and radial integrals

are completely factorized. The radial integrals
Qk(α0α1;β0β1) with the same set of bound orbitals α0, α1,
β0, and β1 may appear in many transitions. These integrals also
depend on the energy of incident and scattered electrons, or for
a fixed scattered electron energy, they depend on the excita-
tion energy of the transition �E. However, as noted in ref. 31,
the dependence on �E is rather weak. For dipole forbidden
radial integrals, Qk ∝ �E, and for dipole allowed integrals,
Qk ∝ ln�E approximately holds over a wide range of transi-
tion energies. Therefore, for a given scattered electron energy,
Qk may be calculated at a few values of �E, and the integral
at the actual transition energy can be interpolated from these
few values. In practice, usually a three-point grid spanning the
entire transition energy range for a given array of excitations
yields sufficiently accurate results. The dependence of Qk on
ε1, the scattered electron energy, although not as simple as that
on �E, is still rather smooth and has known asymptotic be-
havior at large energies according to the type of the transition.
We use interpolation on ε1 as well with a few more points. The
calculation of < ψ0||Zk||ψ1 > is the same as that involved in
the radiative transition rates.

3.2. Solution of the Dirac equation for the continuum
In FAC, the continuum orbitals are obtained by solving the

Dirac equations with the same central potential as that for bound
orbitals. However, in obtaining the potential one may optionally
add a high-lying subshell to the mean configuration to account
for the fact that the continuum wave functions experience the
screening of one additional electron at large distances. Such a
high-lying subshell has little effect on the bound orbitals be-
cause the deviation of the potential from its correct asymptotic
value starts at a very large distance where the bound orbitals
have exponentially decayed.After transforming the Dirac equa-
tions to a second-order Schrödinger-like equation and adopting
the same radial grid as in the solution of bound orbitals, the
transformed large component, F(r), of the free orbital satisfies
(13), except that the boundary condition at infinity is replaced
by the requirement that the original large component P(r) has
the asymptotic amplitude of

√
k/ε.

In solving (13), the radial grid is divided into two regions.
In the inner region, where the wave function is not oscillatory,
or the oscillation period is large enough to contain a sufficient
number of grid intervals (for example, more than 16), we use the
standard Numerov method to integrate the equation outward.

Beyond some point r = rc, which depends on the energy and
angular momentum of the continuum sought, the oscillation
period of the wave function becomes too small for the direct
integration to be accurate. At that point, we switch to a phase-
amplitude method, in which F(r) is written as,

F(r) = A
1

η1/2(r)
sin φ(r) (34)

where the constant A is chosen to ensure the appropriate nor-
malization. φ(r) and η(r) satisfy,

φ(r) =
∫ r

0
η(s) ds

η2(r) = η1/2 d2

dr2 η
−1/2 + ω2(r) (35)

where

ω2(r) = 2 [ε − U(r)] − κ(κ + 1)

r2 (36)

For r > rc, (35) can be easily solved by iteration starting from
the first-order WKB approximation η(r) = ω(r). In fact, in
most cases, the first-order approximation itself is sufficiently
accurate. The inner and outer solutions are matched at rc by
requiring the continuity of F(r) and its first derivative.

3.3. Evaluation of radial integrals
The evaluation of Slater integrals reduces to the calculation

of the following type of integrals,

I =
∫ ∞

0
Pa(r)f (r)Pb(r) dr (37)

where Pa(r) and Pb(r) may be large or small components of
either bound or continuum orbitals, and f (r) is a smooth func-
tion of r . If both wave functions are from bound orbitals, direct
numerical integration is used.

If one of them is from a continuum orbital, we divide the
integration range into two regions. In the first region, r < rc,
the integration proceeds as in the bound–bound case. In the
r > rc region, the integral is of the type,

I1 =
∫
g(r) sin φ(r) dr (38)

or

I2 =
∫
g(r) cosφ(r) dr (39)

where g(r) is a smooth function of r . Since the phase φ is also
a smooth function of r , we evaluate I1 as,

I1 =
∫
g̃(φ) sin φ dφ (40)

where

g̃(φ) = g(r)
dr

dφ
(41)

© 2008 NRC Canada



Gu 681

which is a smooth function of φ. Using its values at each grid
point, it is represented by a cubic spline interpolation function.
Therefore, within each grid interval it is a third-order polyno-
mial of φ. I1 is evaluated by integrating

∫
φn sin φdφ analyti-

cally, where n = 0, 1, 2, or 3. The evaluation of I2 is similar,
replacing sin φ with cosφ.

If both wave functions are from the continuum, the inte-
gration range is divided into three regions. In the first region,
r < min(rc1, rc2), the integration proceeds as in the bound–
bound case. In the second region, min(rc1, rc2) < r < max(rc1,
rc2), the integration proceeds as in the bound-free case. In the
last region, r > max(rc1, rc2), both wave functions are in the
phase-amplitude form, the integrals are of the type,

I =
∫
g(r) sin φ1(r) sin φ2(r) dr (42)

or similar ones where one or both sine functions are replaced
by cosine functions. Such integrals are transformed to the sum
of two terms,

I+ =
∫
g+(r) cosφ+(r) dr

I− =
∫
g−(r) cosφ−(r) dr (43)

or variants where the cosine function is replaced by the sine
function. In the above equation, φ+ = φ1 + φ2 and φ− =
φ1 − φ2, respectively. These integrals are evaluated similarly
to the bound-free integrals except when the energies of two
continuum orbitals are very close so that φ− is very small, in
which case the integrals containing φ− are calculated directly
in the radial variable r .

3.4. Magnetic sublevel excitation
In many cases, only the total excitation cross sections are of

importance, at least when the electron distribution functions are
isotropic. However, there exist situations where aligned excita-
tion produces polarized line emission. Suggestions have been
made to use such polarized light to study beam–plasma inter-
actions in solar flares [39, 40] and the properties of tokamak
plasmas [41]. Line polarization is also an important factor to
take into account in the analysis of laboratory spectroscopic
data involving a directional electron beam, such as electron
beam ion traps [42, 43].

To determine the degree of polarization and angular distribu-
tion of emitted lines driven by electron collisional excitation,
one needs detailed cross sections between the magnetic sub-
levels of lower and upper states. Several authors have made
calculations of such cross sections involving magnetic sub-
levels. For example, Inal and Dubau [44] made DW calcula-
tions using nonrelativistic radial wave functions, but they in-
cluded intermediate-coupling effects by transforming the reac-
tance matrices from LS-coupling to a relativistic pair-coupling
scheme. Zhang et al. [45] performed the first fully relativistic
DW calculations of magnetic sublevel collision strengths with
a modified version of their previous program for total cross
sections.

In FAC, we have generalized the factorization theory of EIE
discussed earlier to the excitation of magnetic sublevels by a
unidirectional electron beam. We start from the scattering am-
plitude B

msf
msi given in ref. 45,

B
msf
msi = 2π

ki

∑
li ,mli ,ji ,mi
lf ,mlf ,jf ,mf

(i)li−lf+1 exp
[
i(δi + δf )

]
Y
mli∗
li

(
k̂i

)
Y
mlf
lf

(
k̂f

)
C

(
li

1

2
mlimsi; jimi

)

× C

(
lf

1

2
mlfmsf ; jfmf

)
T

(
αi, αf

)
(44)

where T (αi, αf ) are the transition matrix elements in the representation where the free electrons are uncoupled to the targets, and
C(lsmlms; jm) represents the Clebsch–Gordan coefficient. The uncoupled state is

αi = ki j̃imiJiMi, αf = kf j̃f mf JfMf (45)

where j̃ denotes {l, j}. The differential cross section is

dσ

dk̂f
=

∣∣∣Bmsfmsi

∣∣∣2
(46)

Choosing the direction of the incident electron as the z axis, integrating over k̂f , summing overmsf , and averaging overmsi gives,

σ(JfMf , JiMi) = π

2k2
i

∑
j̃i ,j̃

′
i
, ˜jf

msi ,mf

(i)li−l′i exp[i(δi − δi′)]([li][l′i])1/2(−1)ji+j ′
i+2mi ([ji][j ′

i ])1/2
(
ji

1
2 li

−mi msi 0

) (
j ′
i

1
2 l′i−mi msi 0

)

× T (αi, αf )T
∗(α′

i , αf ) (47)
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In the first-order perturbation theory,

T (αi, αf ) = −2i
∑
t

∑
j̃i j0˜jf j1

< JiMij̃imi |Zt(j0, j1) · Zt(j̃i , j̃f )|JfMf j̃f mf > P t(j̃i j̃f ; j0j1) (48)

where P t(j̃i j̃f ; j0j1) is defined by (33). Substituting this expression into (47),

σ(JfMf , JiMi) = 2π

k2
i

∑
j̃i ,j̃

′
i
, ˜jf

msi ,mf

∑
j0,j1
j ′0,j ′1

∑
t,t ′
(i)li−l′i exp[i(δi − δi′)]([li][l′i])1/2 × (−1)ji+j ′

i+2mi ([ji][j ′
i ])1/2

(
ji

1
2 li

−mi msi 0

) (
j ′
i

1
2 l′i−mi msi 0

)
×

〈
JiMij̃imi

∣∣∣Zt(j0j1) · Zt(j̃i j̃f )
∣∣∣ JfMf j̃f mf

〉
×

〈
JiMij̃

′
imi

∣∣∣Zt ′(j ′
0j

′
1) · Zt ′(j̃ ′

i j̃f )

∣∣∣ JfMf j̃f mf

〉
× P t(j̃i j̃f ; j0j1)P

t ′(j̃ ′
i j̃f ; j ′

0j
′
1) (49)

Expanding the scalar product in the spherical tensors, we have,

〈
JiMij̃imi

∣∣∣Zt(j0j1) · Zt(j̃i j̃f )
∣∣∣ JfMf j̃f mf

〉
=

∑
q

(−1)q < j̃imi |zt−q(j̃f j̃f )|j̃imi > × < JiMi |Ztq(j0j1)|JfMf >

= (−1)q+ji−mi+Ji−Mi

(
ji t jf

−mi −q mf

) (
Ji t Jf

−Mi q Mf

) 〈
JiMi

∣∣∣∣Zt(j0j1)
∣∣∣∣ JfMf

〉
(50)

The summation over q may be dropped since it is fixed by the 3j symbols to be Mi −Mf . Therefore,

σ(JfMf , JiMi) = 2π

k2
i

∑
t t ′

(
Ji t Jf

−Mi q Mf

) (
Ji t ′ Jf

−Mi q ′ Mf

) ∑
j0j1
j ′0j ′1

〈
JiMi

∣∣∣∣Zt(j0j1)
∣∣∣∣ JfMf

〉 〈
JiMi

∣∣∣∣∣∣Zt ′(j ′
0j

′
1)

∣∣∣∣∣∣ JfMf

〉

×
∑
j̃i ,j̃

′
i
, ˜jf

msi ,mf

(i)li−l′i exp[i(δi − δi′)]([li][l′i])1/2 × ([ji][j ′
i ])1/2

(
ji

1
2 li

−mi msi 0

) (
j ′
i

1
2 l′i−mi msi 0

)

×
(
ji t jf

−mi −q mf

) (
j ′
i t ′ jf

−mi −q ′ mf

)
× P t(j̃i j̃f ; j0j1)P

t ′(j̃ ′
i j̃f ; j ′

0j
′
1) (51)

or it may be written as,

σ(JfMf , JiMi) = 2π

k2
i

∑
t t ′

(
Ji t Jf

−Mi q Mf

) (
Ji t ′ Jf

−Mi q ′ Mf

) ∑
j0j1
j ′0j ′1

At(j0j1)A
t ′(j ′

0j
′
1)Q

tt ′(j0j1, j
′
0j

′
1) (52)

with

At(j0j1) = 〈
JiMi

∣∣∣∣Zt(j0j1)
∣∣∣∣ JfMf

〉
(53)

and

Qtt ′(j0j1, j
′
0j

′
1) =

∑
j̃i ,j̃

′
i
, ˜jf

msi ,mf

(i)li−l′i exp[i(δi − δi′)]([li][l′i])1/2 × ([ji][j ′
i ])1/2

(
ji

1
2 li

−mi msi 0

) (
j ′
i

1
2 l′i−mi msi 0

)

×
(
ji t jf

−mi −q mf

) (
j ′
i t ′ jf

−mi −q ′ mf

)
P t(j̃i j̃f ; j0j1)P

t ′(j̃ ′
i j̃f ; j ′

0j
′
1) (54)

In (51), after summation over Mf and averaging over Mi , the first two 3j symbols produce δtt ′δqq ′ , then the summation over
mf and q in the last two 3j symbols gives δjij ′

i
, and finally the summation over msi and mi gives δli l′i , which cancels the phase

factors, and we recover the factorization formula for the total cross section. Just as the formula for the total cross section, (51) also
completely factorizes the angular and radial integrals, and similar interpolation procedures for the radial integrals can be applied.
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4. Electron impact ionization

4.1. Relativistic distorted wave theory
The formula for the DW electron impact ionization (EII) cross section differential in energy of the ejected electron, may be

obtained from that for EIE by replacing one bound orbital in the final state with the free orbital of the ejected electron and summing
over its angular momentum. It can be expressed in terms of the collision strength similar to that of EIE,

σ(ε0, ε) = 1

k2
0g0

�01 (55)

where ε0 and k0 are the energy and kinetic momentum of the incident electron, and ε is the energy of the ejected electron. The
normalization of continuum orbitals is discussed in Sect. 3. Note that the absence of the factor π , compared with the formula for
the EIE cross section, is due to the different normalization of the free and bound orbitals. The collision strength �01 is

�01 = 2
∑
κ,JT
k,α0β0

Qk(α0κ;β0κ) < ψ0||Zk(α0, κ)||ψ1, κ; JT >< ψ0||Zk(β0, κ)||ψ1, κ; JT > (56)

where κ is the relativistic angular quantum number of the ejected electron, JT is the total angular momentum of the final state
coupled with the ejected electron, the radial partQk is identical to that for EIE, except that one of the bound orbitals in the final state
is now replaced by a free orbital. Note that Qk contains the summation over the partial waves of incident and scattered electrons.

The angular factors involving the free electron can be simplified using the decoupling formula of Racah,

∑
JT

< ψ0||Zk(α0, κ)||ψ1, κ; JT >< ψ0||Zk(β0, κ)||ψ1, κ; JT >=

(−1)jα0 −jβ0 < ψ1||ãα̃0 ||ψ0 >< ψ1||ãβ̃0
||ψ0 >

∑
JT

[JT]
{
J1 j JT
k J0 jα0

} {
J1 j JT
k J0 jβ0

}
(57)

where [JT] denotes 2JT + 1 and

{
j1 j2 j3
j4 j5 j6

}
is the Wigner

6j symbol. Substituting this into (56) and after carrying out the
summation over JT analytically, we find,

�01 = 2
∑
k,α0β0

δjα0 jβ0
[jα0 ]−1Q

k
(α0, β0)

< ψ1||ãα̃0 ||ψ0 >< ψ1||ãβ̃0
||ψ0 > (58)

where Q
k
(α0, β0) = ∑

κ Q
k(α0κ;β0κ). Note that since only

basis states with the same parity can mix, the condition jα0 =
jβ0 implies that lα0 = lβ0 as well. Therefore, if the configuration
interaction is limited within the same n complex, only terms
with α0 = β0 survive in the summation.

The total ionization cross section is obtained by integrating
�01 over the energy of the ejected electron ε,

σ(ε0) =
∫ (ε0−I )/2

0
σ(ε0, ε) dε (59)

where I is the ionization energy. The ionization energy enters
the radial integral Qk implicitly, since ε0 = I + ε1 + ε, where
ε1 is the energy of the scattered electron.

4.2. Coulomb–Born-exchange approximation
The computation of radial integrals in the DW approximation

is relatively time consuming. In many applications, fast and less
accurate methods are highly desirable. The Coulomb–Born-
exchange (CBE) approximation implemented in the present

program is one of such methods. In this method, we only retain
terms with α0 = β0 in (58). After the integration over the en-
ergy of the ejected electron, a reduced radial integral is defined
as,

QR(α0) = Iα0I
∑
k

∫ (ε0−I )/2

0
Q
k
(α0, α0) dε (60)

where Iα0 is the binding energy of the orbitalα0. It is well known
that the reduced radial integrals are not very sensitive to the
difference in the electronic structures and nuclear charges [46].
We therefore use the hydrogenic values, calculated under the
CBE approximation [47, 48], in place of detailed DW radial
integrals. A simple parameterized formula as given in ref. 46 is
used for this purpose.

QR = A ln(u)+D

(
1 − 1

u

)2

+
(
c

u
+ d

u2

) (
1 − 1

u

)
(61)

where u = ε0/I . In fact, even in the detailed DW calculations,
the computed radial integrals are fitted with this formula, fixing
the coefficient A according to the correct Bethe limit. The pa-
rameters are then used to obtain total ionization cross sections at
many incident energies. It is also possible to use the parameters
given by ref. 49 instead of the CBE values to bring the results
into better agreement with the detailed DW calculations.

4.3. Binary-encounter-dipole theory
The CBE approximation discussed earlier attempts to cap-

ture the detail of the ionic structure through a universal reduced
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radial integral. In the binary-encounter-dipole (BED) theory de-
veloped by Kim and Rudd [50], a semi-empirical formula for
the radial integrals is derived by combining the Mott cross sec-
tion and binary encounter cross section, taking into account the
high-energy Bethe limit. The computation of bound-free dif-
ferential oscillator strengths (discussed in Sect. 5), which are
related to the Bethe coefficients, is much simpler than the DW
calculation of ionization radial integrals. Therefore, the BED
implementation is very efficient in practice. A unique feature
of the BED theory is the energy denominator ε0 +I (for neutral
atoms, the average kinetic energy of the active bound electron
should also be added), as opposed to ε0 in various first-order
Born approximations (including DW). This modification effec-
tively introduces a scaling factor ε0/(ε0 + I ), which reduces
the ionization cross sections at low energies. Comparison with
experimental results for low-Z near neutral ions indicates that
such scaling brings the theoretical results into better agreement
with experiment [50]. However, for highly charged ions, we find
that this scaling reduces the cross -sections by a too large factor.
A modified scaling factor is therefore introduced as ε0/(ε0+Is)
with,

Is = N

2Z −N
I (62)

where N is the number of electrons of the ion and Z is the
atomic number.

5. Photoionization and radiative
recombination

5.1. Factorized formula for cross sections
The partial photoionization (PI) cross section can be ex-

pressed in terms of the differential oscillator strength (in atomic
units), and the partial radiative recombination (RR) cross sec-
tion is related to that of PI through the Milne relation,

σPI = 2πα
df

dE

σRR = α2

2

gi

gf

ω2

ε(1 + 0.5α2ε)
σPI (63)

whereα is the fine structure constant, gi and gf are the statistical
weight of the bound states before and after the photoionzation
takes place, respectively, ω is the photon energy, and ε is the
energy of the ejected photo-electron. The differential oscillator
strength, df/dE, may be calculated similar to the bound–bound
oscillator strength through the generalized line strength,

df

d
= ω

gi
[L]−1(αω)2L−2S (64)

whereL is the rank of the multipole operator inducing the tran-
sition, [L] denotes 2L + 1, and the generalized line strength
is

S =
∑
κJT

∣∣∣< ψf , κ; JT||OL||ψi >
∣∣∣2

(65)

where κ is the relativistic quantum number of the free electron,
JT is the total angular momentum of the free state when the

final bound state is coupled to the continuum electron, andOL

is the multiple operator inducing the transition.
As in the calculation of bound–bound radiative transitions,

(65) may be decomposed into an angular part and a radial part,

S =
∑
κJT

∣∣∣∣ ∑
αβ

< ψf , κ; JT||ZLM(α, β)||ψi >

< α||CL||β > ML
αβ

∣∣∣∣
2

(66)

where ML
αβ is the one-electron radial integral for the multipole

operator.
Since the continuum orbital is absent in the initial bound state,

the creation operator a†
α̃

must be chosen to be that of the free
electron. Using the decoupling formula of Racah, the reduced
matrix elements of the angular operator can be written as,

< ψ,κ; JT||ZLM(κ, β)||ψi >= (−1)JT+Ji−L[JT]1/2

< ψf ||ãβ̃ ||ψi >

{
Jf j JT
L Ji jβ

}
(67)

where Ji and Jf are the total angular momenta of the initial and
final states, j is the angular momentum of the free electron, and{
j1 j2 j3
j4 j5 j6

}
is the Wigner 6j symbol. Substituting this into

(66) results in,

S =
∑
κββ ′

∑
JT

[JT]
{
Jf j JT
L Ji jβ

} {
Jf j JT
L Ji jβ ′

}

< ψf ||ãβ̃ ||ψi >< ψf ||ãβ̃ ′ ||ψi >< κ||CL||β >
< κ||CL||β ′ > ML

κβM
L
κβ ′ (68)

The summation over JT can be carried out analytically using
the orthogonality relation of 6j symbols to give,

S =
∑
κββ ′

δjβjβ′ [jβ ]−1 < ψf ||ãβ̃ ||ψi >< ψf ||ãβ̃ ′ ||ψi >

< κ||CL||β >< κ||CL||β ′ > ML
κβM

L
κβ ′ (69)

Note that the condition jβ = jβ ′ in the summation also implies
lβ = lβ ′ , since only basis states with the same parity can mix
in ψi.

5.2. Multipole radial integrals
The radial integrals ML

κβ are the same as those involved in
the the calculation of bound–bound radiative transitions, with
a free electron replacing one of the bound orbitals. They may
be calculated with the fully relativistic expressions of ref. 32.
These expressions depend on both the photon and the ejected
photo-electron energies. However, when the photon energy is
not too high, the nonrelativistic limits of the multipole operators
suffices. Using nonrelativistic multipole operators to evaluate
radial integrals is the default of the program.

Unlike in bound–bound radiative transitions, the radial in-
tegrals now depend on the photo-electron energy. To reduce
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computing time when cross sections at a large number of col-
lision energy points are needed, the ML

κβ are calculated on an
internal grid for the photo-electron energy. The integrals needed
at other energies are interpolated using this grid. The grid points
may be specified from the input, or if not specified it is gener-
ated according to the photo-electron energies where the cross
sections are to be calculated. For highly charged ions, where
no Cooper minimum is present, few points are needed for ac-
curate interpolation. However, when the PI cross sections show
Cooper minima in the low-energy region, which often occurs
in neutral or near neutral ions, a dense grid should be used. On
the other hand, the DW approximation at such low energies in
neutral or near neutral ions is rather inaccurate [51].

6. Autoionization and dielectronic
recombination

In the first-order perturbation theory, the autoionization (AI)
rate can be written as,

Aa = 2
∑
κ

∣∣∣∣∣∣< ψf , κ; JTMT|
∑
i<j

1

rij
|ψi >

∣∣∣∣∣∣
2

(70)

where ψi is the autoionizing state, ψf is the final state that has
one less electron than ψi, κ is the relativistic angular quantum
number of the free electron whose wave function is normalized
as discussed in Sect. 3. The total angular momentum of the
coupled final state must be equal to that of ψi, i.e., JT = Ji
and MT = Mi. After the separation of the angular and radial
integrals we have,

Aa = 2[Ji]−1
∑
κ

∣∣∣ ∑
k,αγ δ

< ψf , κ; JT||Zk(α, γ )

· Zk(κ, δ)||ψi > Pk(κδ;αγ )
∣∣∣2

(71)

where γ and δ are the doubly excited bound orbitals in ψi, α
is the orbital that makes the internal transition in ψf , and P k

is the radial integral as defined in the expression for the DW
collision strength of electron impact excitation, except that one
of the free orbitals is replaced by a bound orbital. For autoion-
ization of complex ions, the radial integrals P k with the same
set of bound orbitals, α, γ , and δ, often appear in many different
transitions. However, the energies of the free electrons in these
integrals are different due to the conservation of energy. It is
computationally demanding to calculate such integrals for each
transition individually. Fortunately, the dependence of P k on
the free electron energy is rather weak, as noticed by Oreg et
al. [52]. Therefore, it is possible to calculate P k at a few ener-
gies, and the integrals at actual transition energies are obtained
by interpolation from these values. Usually for a given class
of transitions, a three-point grid spanning the entire range of
transition energies is sufficient.

The inverse process of AI is radiationless electron capture,
sometimes called dielectronic capture (DC). The cross sections
for DC are related to AI rates through the detailed balance. DC
is a resonant process, which only occurs at certain energies.

These resonances are extremely narrow, and in most applica-
tions it is more appropriate to characterize each resonance by its
resonance strength, which is the cross section integrated over
energy. In atomic units, the DC strength can be written as

SDC = gi

2gf

π2

Eif
Aa (72)

where gi and gf are the statistical weights of the autoionizing
state formed by DC and the target state before DC, respectively,
and Eif is the resonance energy.

The autoionizing states formed by DC may either autoion-
ize, or radiatively decay. Radiative decay to the states below
the ionization limit completes the dielectronic recombination
process, or DR. Sometimes, the final state of decay lies above
the ionization limit and may further decay to yield DR or au-
toionize. Therefore, the radiative branching ratio for DR can be
expressed as,

B(i) =
∑
k A

r(i → k)+ ∑
a A

r(i → a)B(a)∑
k′ A

a(i → k′)+ ∑
k A

r(i → k)+ ∑
a A

r(i → a)

(73)

where Ar represents radiative decay rates, k denotes levels be-
low the ionization limit, a denotes levels that may further au-
toionize, and k′ are the final levels of autoionization. In most
cases, the effect of radiative decay to autoionizing levels is
small, and an approximate expression for the branching ratio
may be used by dropping the final term in both the numerator
and denominator of (73), that is,

B(i) =
∑
k A

r(i → k)∑
k′ A

a(i → k′)+ ∑
k A

r(i → k)
(74)

This approximation turns out to be fairly good even if the decay
to autoionizing levels is not completely negligible as demon-
strated and explained in refs. 53 and 54. The DR strength SDR
is the product of DC strength and the branching ratio.

In plasma modeling, the DR rate coefficients, αDR, for elec-
trons in the Maxwellian distribution is often needed, which can
be expressed as,

αDR(T ) = h3

(2πmekBT )3/2∑
i

gi

2gf
Aa(i → f )B(i) exp

(
− Eif

kBT

)
(75)

where T is the electron temperature,me is the electron mass, h
is the Planck constant, and kB is the Boltzmann constant. Since
rate coefficients are not fundamental atomic parameters, atomic
units are not used in this expression.

7. Sample applications

FAC has been used in a wide range of applications since its
public release. Brief mention of its application in astronomy,
magnetic fusion, and laser-produced plasma has been made al-
ready in Sect. 1. To further illustrate the reliability of FAC, we
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Table 1. Comparison of energy levels (relative to the ground state) for the n = 2
states of N-like iron. The HULLAC, MCDF, and Breit–Pauli R-matrix (BPRM)
results are from ref. 55.

Energy (eV)

Index Level Experiment Present HULLAC MCDF BPRM

0 2s22p3 4So3/2 0 0 0 0 0
1 2s22p3 2Do

3/2 17.1867 17.386 17.3514 17.4848 17.400
2 2s22p3 4Do

5/2 21.8373 22.657 22.4259 22.2628 21.376
3 2s22p3 2Po1/2 32.2694 32.205 31.9788 32.1682 32.245
4 2s22p3 4So3/2 40.0890 40.501 40.0720 40.0987 39.908
5 2s2p4 4P5/2 93.3266 93.939 93.4074 93.2280 93.198
6 2s2p4 4P3/2 101.769 102.328 101.5300 101.906 101.30
7 2s2p4 4P1/2 104.486 105.079 104.3240 104.592 103.99
8 2s2p4 2D3/2 129.262 131.252 130.5768 129.635 129.91
9 2s2p4 2D5/2 131.220 133.391 132.5973 131.506 131.65
10 2s2p4 2S1/2 148.193 149.951 149.3152 148.891 148.595
11 2s2p4 2P3/2 154.042 156.689 156.2177 155.532 154.967
12 2s2p4 2P1/2 166.144 168.767 167.9513 167.437 154.967
13 2p5 2P3/2 242.330 246.221 245.6736 244.0624 243.455
14 2p5 2P1/2 255.680 259.855 258.9285 257.3803 256.768

provide in the following some simple calculations and compare
the results with previous work. As an example of FAC’s utility
for energy level and oscillator strength calculations, we show
in Tables 1 and 2 the energies and dipole oscillator strengths
of n = 2 states of N-like iron. The results calculated with FAC
agrees well with previous calculations using different theoreti-
cal approaches and experimental values.

Figure 1 shows the comparison of EIE collision strengths
from the ground state to the n = 2 states of Be-like iron calcu-
lated with FAC and those of ref. 57. Because the EIE calculation
in FAC is based on the DW approximation, resonace exciata-
tion must be included with the independent process isolated
resonance method. For highly charged ions, this method has
been shown to be comparable in accuracy to the more sophis-
ticated scattering calculations using the R-matrix method [58].
However, as channel coupling becomes more important in near
neutral ions at low incident energies, the DW results may be-
come increasingly unreliable, as indicated in ref. 59.

The ionization cross sections of 2s and 2p electrons for the
ground state of Ne-like iron are calculated with FAC in CBE, rel-
ativistic DW, and BED approximations. The results are shown
in Fig. 2. The relativistic DW cross sections of ref. 46 and those
recommended in ref. 60 in their ionization equilibrium calcula-
tion for iron, which are based on the nonrelativistic DW results
of ref. 61, are also presented for comparison. It is seen that the
present CBE cross sections agrees with those of ref. 61 very
well. The present DW results are slightly smaller than those of
ref. 46, though the differences are within 10%. The BED cross
sections are significantly smaller at low energies, which is due
to the scaling factor discussed above.

Figure 3 shows the photoionization cross sections calculated
with FAC and the comparison with those of ref. 51. Only elec-
tric dipole operators are included in the calculations. The photo-
electron energy grid used in the FAC calculation is lightly dif-
ferent from that used in ref. 51. Our results shown in Table
3 are the interpolated values at their energy grid. The ioniza-

Table 2. Comparison of dipole oscillator
strengths (≥0.0001) for 2s22p3 − 2s2p4

transitions of N-like iron. The BPRM results are
from ref. 56.

Lower Upper Present NIST BPRM

0 5 0.0494 0.0520 0.0503
0 6 0.0390 0.0413 0.0392
0 7 0.0209 0.0221 0.0208
0 8 0.0024 0.0026 0.0021
0 10 0.0010 0.0010 0.0009
0 11 0.0043 0.0045 0.0040
1 5 0.0035 0.0038 0.0033
1 6 0.0003 0.0004 0.0003
1 7 0.0004 0.0005 0.0004
1 8 0.0739 0.0780 0.0742
1 10 0.0290 0.0300 0.0289
1 11 0.0174 0.0181 0.0187
1 12 0.0146 0.0151 0.0148
2 5 0.0011 0.0012 0.0011
2 6 0.0001 0.0001 0.0001
2 9 0.0593 0.0630 0.0599
2 11 0.0856 0.0890 0.0868
3 7 0.0010 0.0011 0.0010
3 8 0.0136 0.0146 0.0141
3 10 0.0612 0.0640 0.0622
3 11 0.0270 0.0284 0.0272
3 12 0.0053 0.0057 0.0057
4 5 0.0003 0.0003 0.0003
4 6 0.0010 0.0011 0.0010
4 8 0.0017 0.0020 0.0018
4 9 0.0234 0.0250 0.0242
4 10 0.0025 0.0030 0.0026
4 11 0.0165 0.0167 0.0169
4 12 0.0671 0.0700 0.0679
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Table 3. Comparison of ionization energies (eV) and PI cross sections (Mb) of 1s22s → 1s2, 1s22p1/2 →
1s2, and 1s22p3/2 → 1s2 for Li-like iron. The energy grid is indicated by the photon energy in threshold
units. The first entries are the present results interpolated to the energy grid used in ref. 51, and the second
entries are the results in ref. 51.

Eph/Eth

Shell Eth 1.01 1.20 2.00 3.00 4.00 6.00

2s1/2 2046.5 2.35 × 10−2 1.65 × 10−2 5.47 × 10−3 2.13 × 10−3 1.05 × 10−3 3.67 × 10−4

N/A 2.28 × 10−2 1.62 × 10−2 5.44 × 10−3 2.13 × 10−3 1.06 × 10−3 3.74 × 10−4

2p1/2 1997.6 2.37 × 10−2 1.42 × 10−2 2.89 × 10−3 7.74 × 10−4 2.93 × 10−4 7.12 × 10−5

2000.5 2.24 × 10−2 1.36 × 10−2 2.84 × 10−3 7.65 × 10−4 2.91 × 10−4 7.06 × 10−5

2p3/2 1981.1 2.36 × 10−2 1.40 × 10−2 2.84 × 10−3 7.54 × 10−4 2.8 × 10E−4 6.82 × 10−5

1984.5 2.23 × 10−2 1.35 × 10−2 2.79 × 10−3 7.43 × 10−4 2.81 × 10−4 6.77 × 10−6

Fig. 1. Comparison of collision strengths of excitation from the
ground state to n = 2 states of Be-like iron. Filled circles are
the present results. Continuous lines are those of ref. 57. The
numbers on the lines are the upper level indexes in the energy
order counting from 0.

tion potentials and PI cross sections for the 1s22s → 1s2,
1s22p1/2 → 1s2, and 1s22p3/2 → 1s2 transitions are listed.
The agreement is generally good to within a few percent.

Savin et al. [62] measured the �n = 0 DR cross sections
of O-like and F-like iron using the heavy-ion test storage ring
and compared the experimental results with various theoretical
calculations, all of them in the DW approximation. The mul-
ticonfiguration Dirac–Fork (MCDF) and Breit–Pauli (MCBP)
calculations presented in their paper are shown to agree with the
measurement to within 20%–30%. Recently, Pradhan et al. [63]
calculated the�n = 0 DR of F-like iron using the CC approx-
imation and found those results to agree with experiment to
within a similar percentage.

Fig. 2. Cross sections for the direct ionization of 2s and 2p
subshells of Ne-like iron. The relativistic cross sections for 3p1/2

and 3p3/2 subshells are summed together.

We have also calculated DR resonance strengths and rate co-
efficients of F-like iron for comparison with the experimental
and previous theoretical results. The target states of the F-like
iron include the configuration mixing within the n = 2 com-
plexes. There are only two excitation channels for the �n =
0 DR, corresponding to the core transitions 2s22p5P3/2 →
2s22p5P1/2 and 2s22p5P3/2 → 2s2p6S1/2, which have mea-
sured transition energies of 12.7182 and 132.0063 eV, respec-
tively. The theoretical resonance energies are adjusted accord-
ing to these experimental transition energies. The doubly ex-
cited states of the Ne-like iron include the configuration mixing
within the same nln′l′ complex.
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Fig. 3. Comparison of the energy-weighted resonance strengths
of F-like iron. The top panel is for P3/2 → P1/2 channel and the
bottom panel is for P3/2 → S1/2 channel. The filled diamonds
are the present results, open diamonds and filled circles are
the MCDF calculations and experimental results of Savin et
al. [62]. Note that the weighting factors of the resonance strengths
plotted in Figs. 6 and 7 of ref. 62 are that of the highest energy
resonances in each complex. The data plotted here include a small
corrections factor (∼10%) for the first three points in both panels.

The P3/2 → P1/2 channel starts to open at n′ = 6 for the
spectator electron, and the P3/2 → S1/2 channel starts to open
at n′ = 18. The orbital angular momentum l′ of up to 12 are
included. Detailed calculations are carried out for n′ = 6, 7, 9,
13, 17, 18, 19, 21, 25, 33, 49, and 60. DR rate coefficients for
other values of n′ < 60 are obtained by interpolation and for
n′ > 60 by extrapolation using the n′−3 scaling relation.

In Fig. 3, we show the energy-weighted resonance strengths
as a function of n′. The strength for an entire n′ complex is
calculated as

Sn =
∑
i

EifSDCB(i) (76)

which removes the trivial dependence on the resonance ener-
gies. The approximate branching ratio given by (74) is used.
Along with the present results, the MCDF calculations and the
experimental results of ref. 62 are also shown. The present re-
sults seem to be systematically lower than the MCDF calcula-
tions by ∼10%–15%, and both theoretical results are smaller

Fig. 4. Comparison of the �n = 0 DR rate coefficients of
F-like iron. The dotted line is the present result for P3/2 → P1/2

channel, the broken line is the present result for P3/2 → S1/2

channel, the continuos line is the present total rate coefficients,
the dash-dot, and the long-dash lines are the MCDF calculations
and experimental results of ref. 62.

than the measurements. Figure 4 shows the comparison of to-
tal �n = 0 DR rate coefficients as a function of temperature.
At temperatures above 100 eV, the present calculations agree
with the experimental results and the MCDF results to within
a few percent. At lower temperatures, the difference between
the present calculations and the MCDF results is less than 15%,
and the difference between the present calculations and the mea-
surements is ∼10%–40%.

8. Conclusions

In conclusion, we have described an integrated software pack-
age, the flexible atomic code (FAC), for the computation of var-
ious atomic radiative and collisional processes. The program is
fully relativistic and implements efficient methods for distorted
wave approximation, which is most useful for modeling spectral
properties of highly charged ions.
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