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Abstract. We present a spectrum of the Sun taken by the Cosmic Hot Interstellar Plasma
Spectrometer (CHIPS) covering 150 to 275 Å. This spectrum is dominated in the 200 Å region by
emission lines from intermediate charge states of iron (Feviii – Fexvi). We also made laboratory
measurements of iron emission at temperatures relevent to solar emission on the EBIT-II electron
beam ion trap and the Large Helical Device stellerator. We used our laboratory measurements
to identify lines and check the CHIANTI database and then used CHIANTI to validate line
identifications in the CHIPS spectrum.

1. Introduction

Iron plays an important role in virtually every plasma, both in man-made plasmas, such as for
fusion, and in astrophysical plasmas, such as the Sun. The solar spectrum is dominated by
emission lines from intermediate to high charge states of iron and is currently being observed in
high resolution in the 180 to 204 Å and 250 to 290 Å range by the EUV Imaging Spectrometer on
Hinode (Astro-B) and at lower resolution in the 90 to 270 Å range by the Cosmic Hot Interstellar
Plasma Spectrometer (CHIPS). In addition, the Solar EUV Rocket Telescope and Spectrograph
(SERTS) observed this region during its 10 flights. EUV emission lines of iron have well known
and valuable diagnostics utility for such parameters as temperature and density. In particular,
much attention has been directed to the spectrum of Fexiii near 200 Å as a density diagnostic
in the range typical of solar plasmas because it is believed to be relatively free of atomic physics
problems. These lines have been observed, for example, in the solar spectrum by SERTS and in
spectra of Procyon and ε Eridani by the Extreme Ultraviolet Explorer (EUVE) [1, 2, 4, 3].

2. Spectroscopic measurements

EBIT-II is an electron beam ion trap at Lawrence Livermore National Laboratory in Livermore,
California [5], that has been optimized for laboratory astrophysics measurements [6, 7, 8].
Measurements on EBIT-II utilized similar techniques as those described in earlier measurements
of the iron emission [9, 10, 11, 12]. Iron was injected into the trap in the form of iron
pentacarbonyl via a gas injector. The electron beam energy ranged from 363 to 513 eV. The
higher energy is sufficient to produce charge states as high as Fe xvi. The spectra were recorded
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with the grazing-incidence spectrometer described by Beiersdorfer et al [13], which employs a
1200 line/mm flat-field grating developed by Harada & Kita [14] with a 3o angle of incidence.
Readouts were taken with a back-illuminated, liquid nitrogen-cooled CCD camera with a one
inch square array of 1024 × 1024 pixels. The resolving power is ∼ 600 at 200 Å. A foil comprised
of a 2000 Å thick aluminum layer on top of 1000 Å of paralene was placed in front of the grating
in order to screen out emission from lines with wavelengths below 170 Å. The wavelength scale
was established using the well known K-shell emission lines of nitrogen, in particular the Nvii

Lyman-α line and the Nvi resonance line commonly referred to as w, as described by Beiersdorfer
et al [13], observed in higher (7th through 10th) orders. The wavelengths of the iron emission
lines in this wavelength region are well known, and we have not attempted to improve upon
those data. Spectra were also taken without an active trap, i.e., without a potential applied
to the trap electrodes. These spectra enabled us to determine the level of background emission
(including visible light from the electron-gun filament, to which the CCD camera is sensitive),
which was then subtracted from the iron to yield background-corrected spectra.

The Large Helical Device (LHD) is a steady-state stellarator at the National Institute for
Fusion Science in Toki, Japan [15, 16]. Measurements on the LHD were made with the SOXMOS
EUV grazing-incidence spectrometer [17] covering the wavelength range from 158 to 214 Å. The
instrument utilized a 600 lines/mm grating. It was operated with a 10 µm slit, which provided
a resolving power of ∼780 throughout the wavelength range of interest. The iron concentration
in the LHD was increased by injection of plastic pellets with an iron core known as TESPEL
[18]. Iron then dominates the emission, and essentially no lines from other elements are seen.
The discharge in this shot lasted about 4.5 s and the temperature reached to (2 to 3) keV
during the main part of the discharge; this temperature is, however, greatly reduced during the
plasma decay phase after the end of the heating by neutral beam injection. By recording spectra
throughout the discharge every 0.1 s, spectra with different ionization balances are obtained. For
example, while the emission from Fexxiv dominates the spectral region near 200 Å during the
main part of the discharge, after the end of the plasma heating the temperature is sufficiently
low to see emission from Feviii through Fe xiii, similar to the measurements made on EBIT-II
[16]. The wavelength scale was determined using 15 strong Fe lines between 171.07 Å and 211.33
Å, as the wavelengths of the iron emission lines in this region are well known.

Measurements on CHIPS were made possible by a fortuitous low-throughput light leak,
since the instrument is too sensitive to directly observe the Sun. Normal operation employs
a mirror inside a slit to reflect photons to the detector. However, when pointed at the “correct”
angle relative to the Sun, photons scattered off a baffle bypass the mirror to directly hit the
detector. The resolving power is ∼ 150 at 200 Å, and the spectrum presented here was obtained
through a 1000 Å thick aluminum filter. For further details of the instrument and spacecraft,
see [19, 20, 21]. A detailed analysis of the CHIPS solar spectra is presented in [22].

3. The spectra

Figure 1 shows the iron spectrum from EBIT-II in the range from 170 to 285 Å. The spectrum
represents the sum of about 20 spectra after background subtraction. The spectrum includes
lines from charge states between Feviii and Fexv. Figure 2 shows the iron spectrum from the
LHD in the range from 170 to 214 Å, and includes lines from charge states between Fe viii and
Fexiv. Figure 3 shows a spectrum from CHIPS in the range from 150 to 275 Å. The spectrum
includes iron from charge states between Fe viii and Fexv, and also includes a few lines from
elements other than iron. In contrast, the laboratory spectra only include iron. Essentially all
lines in the spectra have been identified and are labelled. For identification we relied on the
atomic data provided by the CHIANTI spectral model [23, 24], as we found that the CHIANTI
database did a very good job at reproducing the iron spectra from the EBIT-II and the LHD
[16].
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Figure 1. Iron spectrum taken on the electron beam ion trap EBIT-II, covering the range 170
to 285 Å. Charge states from Fe viii through Fexv are seen. The wavelengths for all figures are
those given by CHIANTI [23, 24].
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Figure 2. Iron spectrum taken on the LHD stellarator, covering the range 170 to 214 Å. The
spectrum includes charge states from Feviii through Fe xiv.
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Figure 3. Solar spectrum taken by the EUV spectrometer on board the CHIPS satellite,
covering the range 150 to 275 Å. Charge states from Fe viii through Fe xv are labelled, as well
as emission lines from other elements.

4. Conclusions

We have presented two laboratory spectra of iron and a spectrum of the solar disk dominated
by iron. All three spectra are dominated by intermediate charge states of iron, showing good
agreement between each other and the widely used CHIANTI atomic database. We find that
the CHIANTI database is an accurate identification tool for the spectrum of iron around 200 Å.
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