Hemispheric Asymmetries in the Dayside Aurora

M. O. Fillingim, M. Spasojevic, G. K. Parks, H. U. Frey. T. J. Immel, and S. B Mende

Space Sciences Laboratory, University of California, Berkeley

IMAGE FUV 2002-11-04 19:13:53 UT WIC

Northern Hemisphere IMAGE WIC

Southern Hemisphere Polar UVI

2004 AGU Fall Meeting

Introduction

- Focus on afternoon sector 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [*Cogger et al.*, 1977; *Liou et al.*, 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [*McDiarmid et al.*; 1975, *Evans*, 1985; *Newell et al.*, 1996]
- Co-located with maximum in Region 1 upward field aligned current [*Iijima and Potemra*, 1987]
- Appearance and behavior influenced by solar wind and IMF [*Murphree et al.*, 1981; *Vo and Murphree*, 1995]
- Can be structured and dynamic (string of pearls configuration) [*Lui et al.*, 1987; *Potemra et al.*, 1990, *Rostoker et al.*, 1992]
- Varies with season: more likely in summer [*Liou et al.*, 2001]
 => hemispheric differences

Introduction (cont'd)

- Previous conjugate observations limited to small scales (in situ point measurements or ground based instruments) in at least one hemisphere [*Dickinson et al.*, 1986; *Mende et al.*, 1990; *Burns et al.*, 1990, 1992; *Vo et al.*, 1995]
- Present first simultaneous images of dayside aurora from two global auroral imagers in opposite hemispheres (IMAGE WIC in northern hemisphere and Polar UVI in south)
- Address issue of conjugacy of dayside aurora on a synoptic scale for the first time
- Relate differences in aurora to solar wind and IMF input

Spacecraft Orbits

From October 2002 to March 2003 IMAGE WIC and Polar UVI were in ideal positions and orientations for dayside conjugate observations

Instrumentation

IMAGE Wideband Imaging Camera (WIC) & Polar Ultraviolet Imager (UVI) LBHS & LBHL

Temporal resolution

WIC: 10 second integration every 2 minutes UVI: 18 & 36 second integration, cyclic

Spatial resolution WIC: ~ 50 km UVI: ~ 30 km

<u>Spectral resolution</u> WIC: 140 to 190 nm – LBHS: 140 to 160 nm – LBHL: 160 to 180 nm –

4 November 2002

NH: enhanced, unstructured emission in afternoon SH: multiple spots; number, location, and intensity change

4 November 2002

NH: enhanced, unstructured emission in afternoon SH: multiple spots; number, location, and intensity change

NH: enhanced emission in afternoon; variable intensity and location; single region

SH: multiple regions of emission; vary in intensity and location; different 'regions behave differently

Steady solar wind density and velocity

IMF $B_X < 0$ $B_Y > 0$ $B_Z < 0$ (with some positive excursions)

22 October 2002

NH: latitudinally narrow emission, brightens near 19:40 UT SH: broader, more diffuse emission; no noticeable change

22 October 2002

NH: latitudinally narrow emission, brightens near 19:40 UT SH: broader, more diffuse emission; no noticeable change

NH: very quiet from 17:45 to 19:15 UT; brightening near 19:40 UT; narrow MLT range (peaked)

¹⁰² SH: aurora brightens near 19:30 UT; diffuse in ¹⁰¹ latitude and MLT

Steady solar wind density and velocity

IMF $B_X > 0$ $B_Y < 0$ $B_Z < 0, > 0, <0$

2004 AGU Fall Meeting

Interpretation

For B_Z < 0, strong B_Y => mirror image convection patterns

Strong flow shear, divergent E_⊥, J_⊥, strong J_{//} => more discrete auroral structure (brighter?)

=>Hemispheric asymmetry

(from *Clauer et al.*)

2004 AGU Fall Meeting

Summary

- Present first simultaneous synoptic scale observations of dayside aurora in opposite hemispheres
- Hemispheric asymmetries in afternoon aurora controlled by IMF orientation
- For $B_Z < 0 ...$
- $B_{Y} > 0$, structure in afternoon aurora in southern hemisphere
- $B_Y < 0$, structure in northern hemisphere
- Interpreted as due to strong flow shear => strong $J_{//}$
- Source of structure? KHI at low altitude, $|B_Y/B_Z|$, $E_{//}$, ...
- Relate to other ionospheric measurements (convection, $J_{\prime\prime}$)
- Effects during $B_Z > 0$? (Very quiet on 22 October 2002)
- Effects of variable solar wind density and velocity?

2004 AGU Fall Meeting

