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Martian Magnetic Field

• Mars has no global dipole magnetic field
• But does have strong localized crustal fields
• “Cusps” form in strong field regions where the solar wind has

access to the atmosphere

Map of the magnitude of the
radial component of B (BR)

Probability of observing
upward loss cones on the
nightside (“open” field lines)



Martian Aurora

• Aurora recently discovered at Mars [Bertaux et al., 2005]
using SPICAM UV spectrometer on Mars Express

• Emissions observed from CO, CO2
+, and O

• Associated with magnetic cusps(?)

Auroral emission spectrum
from Bertaux et al. [2005]

Position of observed emission
with respect to magnetic cusp



Accelerated (Auroral) Electron Spectra
(see Brain et al., SA53B-1166 this afternoon)

• MGS observes accelerated electrons near magnetic cusps



Purpose

• Model Martian auroral emission using observed accelerated

electron spectra as input

• Most auroral transport codes developed for Earth do not

incorporate strong magnetic field gradients

• Such strong magnetic field gradients may be important at Mars

• Perform two model calculations:

one run with no magnetic field gradient

one run with strong (realistic) magnetic field gradient

• What is the effect of strong field gradients on the emission?



Models

Mars Primary Electron Transport (MPET) Code:

• described by Lillis et al. [2004]

• single particle Monte-Carlo model

• follows primary electrons in an arbitrary field configuration

(i.e., strong or weak gradient)

• keeps track of primary collisions and production of secondaries

Mars Discrete-Ordinate Transport (MDOT) Code:

• modification of Lummerzheim and Lilensten [1994]

• uses discrete-ordinate method to solve multi-stream electron

transport problem

• uses secondaries from MPET as input (similar to approach by

Peticolas and Lummerzheim [2000] for Earth)

• ignores strong magnetic field gradients – OK since most

secondaries are produced in narrow altitude range



Flowchart illustrating the

various inputs and the

coupling between the MPET

and MDOT codes:

• Primary electrons given by

observed accelerated

electron spectra from MGS

• Atmospheric density

profile given by MTGCM

[e.g., Bougher et al., 2000]

• Magnetic field is modeled

as a straight line geometry

with a specified

exponential falloff

• Electric field is zero



No Magnetic Gradient

• MDOT used to model primary and secondary electron transport



No Magnetic Gradient

• MPET follows primaries and records secondary production

• 9000 primary electrons => ~ 200,000 secondaries



No Magnetic Gradient

• MDOT models secondary electron transport



Strong Magnetic Gradient

• 9000 primary electrons => ~ 35,000 secondaries

• Significant magnetic reflection



Strong Magnetic Gradient



Summary

• Significant reduction in secondary production in strong gradient

case compared to no gradient (~ 80% decrease in secondaries)

• Mainly due to magnetic reflection of primary electrons

• Secondaries produced at higher altitude for strong gradient case

• Lower intensity emission (~ 5 X weaker) for strong gradient case

Future Work

• Work-in-progress – still in testing phase

• Refine emission calculation

• include CO, CO2 lines to compare with observations

• 2-D model for converging field

• larger collection area versus magnetic reflection of primaries

• which dominates?


