Seasonal Variation of Substorm Recovery Time Scales

M. O. Fillingim¹, D. Chua², G. A. Germany³, and J. F. Spann⁴

 ¹Space Sciences Laboratory, University of California, Berkeley
 ²E. O. Hulburt Center for Space Research, Naval Research Laboratory
 ³Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville
 ⁴NASA Marshall Space Flight Center

<u>SM41A-04</u>

2007 Joint Assembly, Acapulco, Mexico

24 May 2007

<u>Outline</u>

- 1. Quantification of auroral substorm development
 - Energy deposition by particle precipitation: peak hemispheric power, total energy deposition
 - Time scales: expansion time, **recovery time** (τ)
- Statistical study of auroral substorm characteristics;
 350 substorms from Polar UVI [see Chua et al., 2004]
 - IMF orientation
 - Season -> Implications for auroral conjugacy
- 3. Simultaneous, conjugate substorm observations Do auroral substorms develop differently in each hemisphere?

Quantitative description of auroral substorms

Hemispheric Power, $HP = \sum_{i=1}^{m} \sum_{j=1}^{n} Q_{i,j} A_{i,j}$

where m, n = pixel indices

$$Q_{i,j}$$
 = energy flux [$mW m^{-2}$]
 $A_{i,j}$ = projected area of pixel(i, j) [m^{2}

SM41A-04 2007 Joint Assembly, Acapulco, Mexico 24 May 2007

Peak Hemispheric Power

Total Energy Deposition

Expansion Time

Recovery (e-folding) Time

<u>Summary</u>

variation of \downarrow with \rightarrow	IMF Orientation	Season
Peak hemispheric power	50%	15%
Total energy deposition	65%	60%
Expansion time	80%	60%
Recovery time	15%	80%

Implications for auroral conjugacy:

- Statistically, auroral substorms last longer in darkness (winter) than in sunlight (summer)
- More energy is deposited in the dark hemisphere
- Does this hold true for individual events?

<u>SM41A-04</u> 2007 Joint Assembly, Acapulco, Mexico 24 May 2007

Conjugate Observations

IMAGE WIC: Northern Hemisphere (Sunlit)

Polar UVI: Southern Hemisphere (Dark)

SM41A-04

2007 Joint Assembly, Acapulco, Mexico 24 May 2007

Conjugate Observations

IMAGE WIC: Northern Hemisphere (Sunlit)

Polar UVI: Southern Hemisphere (Dark)

SM41A-04

2007 Joint Assembly, Acapulco, Mexico 24 May 2007

Summary & Conclusions

- Both statistical study and simultaneous, conjugate observations suggest a hemispheric difference (asymmetry) in auroral substorm recovery times
- Recovery time is **nearly double** in dark hemisphere [*Caveats: small sample size of conjugate observations differences in instruments/filter responses*]

May be explained by effects of ionospheric conductivity

- Suppression of aurora in sunlight [Newell et al., 2001]
- Conductivity plays major role in substorm dynamics

Asymmetric energy input during auroral substorms
 ➔ Implications for upper atmospheric dynamics