Interactions of the Solar Wind with Planetary lonospheres I

Localized Ionization Patches on the Nightside of Mars and Their Dependence Upon Atmospheric Variations

<u>M. O. Fillingim</u>¹, L. M. Peticolas¹, R. J. Lillis¹, D. A. Brain¹, J. S. Halekas¹, D. Lummerzheim², and S. W. Bougher³

 ¹Space Sciences Laboratory, University of California, Berkeley
 ²Geophysical Institute, University of Alaska, Fairbanks
 ³Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor

Martian Magnetic Field

- Mars has no global dipole magnetic field
- But it does have strong localized crustal fields
- "Cusps" form in strong field regions where the solar wind has access to the atmosphere (strong B_R + open field = cusps)
- Non-uniform global distribution of cusps ("patchy")

Accelerated Electron Event

(from Brain et al. [2006])

Incident Electron Spectra

Purpose & Methodology

- Model the nightside electron density profile due to electron precipitation using typical tail and accelerated electron spectra observed by MGS
- The upper atmosphere changes significantly with season and solar cycle
 How do these changes affect the precipitation induced ionosphere?
- Examine four cases:
 - Solar moderate, perihelion, northern winter solstice ($L_S = 270^\circ$)
 - Solar minimum, perihelion, northern winter solstice ($L_S = 270^\circ$)
 - Solar moderate, aphelion, northern summer solstice ($L_S = 90^\circ$)
 - Solar minimum, aphelion, northern summer solstice ($L_s = 90^\circ$)
- For each case, determine electron density profile, $n_e(z)$, from $n_e(z) = (P(z)/\alpha_{eff}(z))^{\frac{1}{2}} cm^{-3}$

where P(z) is the total model-calculated ion production rate and $\alpha_{eff}(z)$ is the effective recombination rate

O₂⁺ is the dominant ion in the ionosphere due to rapid chemical reactions; therefore, α_{eff}(z) is equal to the O₂⁺ dissociative recombination rate α(z) = 1.95 x 10⁻⁷ (300/T_e(z))^{0.7} cm³ s⁻¹ for T_e < 1200 K where T_e is the electron temperature (assume T_e = neutral temperature)

Neutral Atmosphere Profiles (MTGCM)

[Bougher et al., 1999, 2000]

Model contains 5 neutral atmospheric species: CO_2 , CO, O_2 , O, & N_2 (only total density shown)

All profiles taken at 2.5° N lat. & 2 AM LT

At low altitude, seasonal (orbital) effects dominate; density increases by **2.7 x** from aphelion to perihelion

At high altitude, solar cycle effects become important; seasonal change: **4 x** solar cycle change: **4 x**

→ 16 x change in density

Neutral Atmosphere Profiles (MTGCM)

Ionization Rate (Typical Tail Spectrum)

Peak ionization rate
at higher altitude
during perihelion
→ season controls
altitude of peak

Peak ionization rate
has larger magnitude
during solar minimum
→ solar cycle controls
magnitude of peak

Region of ionization thicker during solar moderate conditions → solar cycle controls thickness of layer

Electron Density (Typical Tail Spectrum)

<u>Comparison of Atmospheric Models</u> (Typical Tail Spectrum)

Atmospheric model	Maximum ionization rate (P ^{max}) [cm ⁻³ s ⁻¹]	Maximum electron density (n _e ^{max}) [cm ⁻³]	Altitude of n _{e^{max} [km]}	Total Electron Content (TEC) [10 ¹⁴ m ⁻²]
Solar moderate; perihelion; northern winter	0.87	1700	166	1.35
Solar minimum; perihelion; northern winter	1.07	1850	159	1.15
Solar moderate; aphelion; northern summer	1.00	1830	149	1.20
Solar minimum; aphelion; northern summer	1.16	1880	146	1.07

Ionization Rate (Accelerated Spectrum)

Peak ionization rate
at higher altitude
during perihelion
→ season controls
altitude of peak

Peak ionization rate
has larger magnitude
during solar minimum
→ solar cycle controls
magnitude of peak

Region of ionization thicker during solar moderate conditions → solar cycle controls thickness of layer

Electron Density (Accelerated Spectrum)

Comparison of Atmospheric Models

(Accelerated Spectrum)

Atmospheric model	Maximum ionization rate (P ^{max}) [cm ⁻³ s ⁻¹]	Maximum electron density (n _e ^{max}) [cm ⁻³]	Altitude of n _e ^{max} [km]	Total Electron Content (TEC) [10 ¹⁴ m ⁻²]
Solar moderate; perihelion; northern winter	9.77	5700	156	3.47
Solar minimum; perihelion; northern winter	10.92	5900	153	2.95
Solar moderate; aphelion; northern summer	10.41	5860	140	3.06
Solar minimum; aphelion; northern summer	12.00	6020	138	2.72

<u>Comparison of Atmospheric Models</u> (Accelerated vs. Typical Tail Spectrum)

Atmospheric model	n _{e^{max} accelerated n_e^{max} typical}	TEC accelerated TEC typical	Δh n _{e^{max} [km] typical – accelerated}
Solar moderate; perihelion; northern winter	3.35	2.57	10
Solar minimum; perihelion; northern winter	3.19	2.55	6
Solar moderate; aphelion; northern summer	3.20	2.56	9
Solar minimum; aphelion; northern summer	3.20	2.54	8

Summary & Implications

- In all 4 cases, the accelerated spectrum increased n_e^{max} by a factor of ~ 3 and TEC by ~ 2.5 over that produced by the typical tail spectrum
- Since cusps are localized and have a patchy global distribution, regions of enhanced n_e and TEC will be localized and patchy
- Largest P^{max} and n_e^{max} occur during solar minimum at aphelion
 → atmosphere most rarefied and coolest (smallest scale height)
 - thinnest ionospheric layer and smallest TEC
- Smallest P^{max} and n_e^{max} occur during solar moderate at perihelion
 → atmosphere densest and warmest (largest scale height) thickest ionospheric layer and largest TEC
- Between these two extremes, P^{max} changes by ~ 30%
 n_e^{max} changes by ~ 10%
 TEC changes by ~ 25%
 - ➔ Variations in the upper atmospheric scale height (i.e., temperature) over different seasonal and solar cycle conditions play a prominent role in determining variations in the ionospheric profiles

Summary & Implications (continued)

- Seasonal (orbital) variations control the altitude of P^{max} and n_e^{max}
 Altitude of P^{max} and n_e^{max} increases by 10% from aphelion to perihelion (No significant difference between solar minimum and solar moderate)
- Solar cycle variations control the magnitude of P^{max} and n_e^{max} P^{max} increases by 17% from solar moderate to solar minimum (P^{max} increases by 10% from perihelion to aphelion) n_e^{max} increases by 4.4% from solar moderate to solar minimum (n_e^{max} increases by 3.5% from perihelion to aphelion)
- Solar cycle variations control the thickness of the ionosphere and TEC TEC increases by 15% from solar minimum to solar moderate (TEC increases by 10% from aphelion to perihelion)
- Only consider solar minimum vs. solar moderate conditions here; solar cycle effects should be **more dramatic** during **solar maximum**
- At high altitude, T_e is probably greater than the neutral temperature; as T_e increases → α_{eff} decreases → n_e increases (n_e ~ T_e^{0.35})
 → we are probably underestimating n_e