What Do Simultaneous, Conjugate Observations of Substorm Time Scales Tell Us About Magnetosphere-Ionosphere Coupling?

M. O. Fillingim¹, D. Chua², G. A. Germany³, and J. F. Spann⁴

 ¹Space Sciences Laboratory, University of California, Berkeley
 ²Space Science Division, Naval Research Laboratory
 ³Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville
 ⁴NASA Marshall Space Flight Center

<u>Outline</u>

- 1. Motivation and Background
 - Aurora suppressed in sunlight
 - Seasonal differences in auroral energetics
 - Seasonal differences in substorm time scales
 - \rightarrow Substorm conjugacy?
- 2. Methodology and Results
 - Simultaneous, conjugate substorm observations
 - Recovery time scales for different seasons
- 3. Summary and Conclusions
 - What have we learned?
 - Implication for magnetosphere-ionosphere coupling
 - Challenges and complications/Future direction

Newell et al. [1996] showed that the occurrence rate of precipitating accelerated electrons (i.e., create aurora) is higher in darkness than in sunlight

Liou et al. [1997] found a similar result using global auroral images: discrete auroral more common in darkness than sunlight (*on the nightside!*)

Ionospheric conductivity controls occurrence of aurora

In addition, *Liou et al.* [2001] showed that the *energetics* of the aurora are different in darkness and sunlight: in darkness, precipitating electron **energy flux** is **higher**, electron **energy** is **higher**, and **number flux** is **lower**

Chua et al. [2004] analyzed 350 substorms

They found that the substorm **recovery time scale** was about **twice as long** in winter/darkness (~ 32 minutes) than in summer/sunlight (~ 18 minutes)

Substorms last longer in darkness than in sunlight

Chua et al. [2004] analyzed 350 substorms

They found that the substorm **recovery time scale** was about **twice as long** in winter/darkness (~ 32 minutes) than in summer/sunlight (~ 18 minutes)

➔ Substorms last longer in darkness than in sunlight

- Aurora are more common in darkness
- Aurora are more energetic in darkness
- Substorms last longer in darkness

What's the difference between darkness and sunlight?

→ Ionospheric conductivity! – controls occurrence and energy of aurora and length of substorms

Implications for **auroral conjugacy**

→ More energy deposited in dark hemisphere
 However, previous work based on statistical results
 → What about for individual events?

Methodology

- Identify substorms when IMAGE FUV (north) and Polar UVI (south) are viewing opposite hemispheres
- Focus on substorms near solstices and equinoxes
- Determine substorm recovery times scales for both instruments following the method of *Chua et al.* [2004]
- However, Chua et al. [2004] computed energy flux and hemispheric power from Polar UVI – IMAGE FUV doesn't (directly) measure energy flux
- To directly compare both instruments, we compute the area-integrated photon flux (units of photons/sec)
 – analogous to auroral power from Polar UVI

Instrumentation

IMAGE Far UltraViolet (FUV) Wideband Imaging Camera (WIC) Polar UltraViolet Imager (UVI) LBH Short (LBHS) & Long (LBHL) filters

Minor temporal and spatial differences

Spectral Resolution WIC: 140 to 190 nm LBHS: 140 to 160 nm LBHL: 160 to 180 nm

Respond to different energies (due to O_2)

Instrumentation

- Calibrate WIC and LBHL with "same scene" substorms
- Magnitudes and slopes of adjusted WIC and LBHL integrated photon flux (IPF) are approximately equal ✓ Adjusted WIC_{IPF} = (WIC_{IPF} a)/b ≈ LBHL_{IPF} where a and b are instrument dependent constants
 <u>SM21B-04</u> 2009 Joint Assembly, Toronto, ON, CANADA 26 May 2009

Results: Global Images

IMAGE WIC: Northern Hemisphere (Sunlit)

Polar UVI: Southern Hemisphere (Dark)

Results: Recovery Time

au longer in darkness by factor of > 4; long tail in darkness <u>SM21B-04</u> 2009 Joint Assembly, Toronto, ON, CANADA 26 May 2009

Northern Summer: 2

 τ longer in darkness; initial $\tau \sim 5$ min; weak intensifications <u>SM21B-04</u> 2009 Joint Assembly, Toronto, ON, CANADA 26 May 2009

Northern Winter: 1

Northern Winter: 2

26 May 2009

Northern Winter: 3

What Have We Learned?

- For individual substorms, different recovery time scales in different hemispheres
- Recovery time scales longer in darkness than sunlight
- Consistent with previous statistical results
 Asymmetric energy input during substorms
- Extremely large variation in substorm time scales
 → from 4 minutes to over 2 ½ hours
- Also, large variation in hemispheric differences in $\tau \rightarrow \tau_W/\tau_S$ from > 4.5 to < 1.3 during solstice; typically ≤ 2
- Often see symmetric initial rapid drop in IPF followed by asymmetric more gradual decay → 2 phase recovery(?)

Implication for M-I Coupling

- These results suggest that the ionospheric conductivity plays an important role in substorm dynamics
- Previous interpretation [e.g., Newell et al., 2001]: In sunlit (higher conductivity) hemisphere, ambient plasma density is sufficient to carry imposed current
 → no or weak potential/particle acceleration
- What about recovery time scales... Treat each hemisphere as a circuit; each circuit has a different resistance, hence a different time constant
 → τ ~ R ~ 1/Σ → as conductivity increases, τ decreases
- 2 phase recovery: strong driving → symmetric response
 → Threshold below which conductivity dominates(?)

Challenges/Complications

- Elusive "isolated" substorm multiple intensifications
 → Fit parameters sensitive to endpoints
- Differences in spatial/temporal/spectral responses
 → Complicates quantitative comparisons
 → Integrated photon flux rather than hemispheric power
- Differences in spatial coverage/orbits/field of view
 → Complicates conjugate studies
 → Confined to local, not global, comparisons

How to address these (instrumental) challenges?

 \rightarrow Two (or more) identical instruments in conjugate orbits