Inter-hemispheric Similarities and Asymmetries of the Afternoon Aurora: An Indicator of Solar Wind-Magnetosphere Energy Transfer

M. O. Fillingim, G. K. Parks, & S. B. Mende

Space Sciences Laboratory, University of California, Berkeley

IMAGE FUV 2002-11-04 19:13:53 UT WIC

Northern Hemisphere IMAGE WIC Southern Hemisphere Polar UVI

EGU General Assembly 2006

ST5.5-1WE3O-005

Outline

- 1. Introduction: Background/ Previous Work/ Motivation
- 2. Recent Results and Interpretation

3. Current Progress

EGU General Assembly 2006

ST5.5-1WE3O-005

- The dayside magnetosphere responds directly to incident interplanetary magnetic field (IMF) and solar wind energy
- Changes in the IMF and solar wind drive changes in magnetospheric and ionospheric convection
- Currents and (in the case of upward currents) aurora respond to these changes
 - ⇒ Dayside aurora is a direct indicator of how the magnetosphere-ionosphere system responds to IMF and solar wind energy input

EGU General Assembly 2006ST5.5-1WE3O-0055 April 2006

- Focus on afternoon sector 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [*Cogger et al.*, 1977; *Liou et al.*, 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [*McDiarmid et al.*; 1975, *Evans*, 1985; *Newell et al.*, 1996]
- Co-located with maximum in Region 1 current [*Iijima and Potemra*, 1987] and Poynting flux [*Keiling et al.*, 2003]
- Appearance and behavior influenced by solar wind and IMF [*Murphree et al.*, 1981; *Vo and Murphree*, 1995]
- Can be structured and dynamic (string of pearls configuration) [*Lui et al.*, 1987; *Potemra et al.*, 1990, *Rostoker et al.*, 1992]
- Varies with season: more likely in summer [*Liou et al.*, 2001]
 ⇒ hemispheric differences

The afternoon auroral bright spot is persistent in image data

(from *Liou et al.* [1997])

EGU General Assembly 2006

ST5.5-1WE3O-005

- Focus on afternoon sector 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [*Cogger et al.*, 1977; *Liou et al.*, 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [*McDiarmid et al.*; 1975, *Evans*, 1985; *Newell et al.*, 1996]
- Co-located with maximum in Region 1 current [*Iijima and Potemra*, 1987] and Poynting flux [*Keiling et al.*, 2003]
- Appearance and behavior influenced by solar wind and IMF [*Murphree et al.*, 1981; *Vo and Murphree*, 1995]
- Can be structured and dynamic (string of pearls configuration) [*Lui et al.*, 1987; *Potemra et al.*, 1990, *Rostoker et al.*, 1992]
- Varies with season: more likely in summer [*Liou et al.*, 2001]
 ⇒ hemispheric differences

- Focus on afternoon sector 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [*Cogger et al.*, 1977; *Liou et al.*, 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [*McDiarmid et al.*; 1975, *Evans*, 1985; *Newell et al.*, 1996]
- Co-located with maximum in Region 1 current [*Iijima and Potemra*, 1987] and Poynting flux [*Keiling et al.*, 2003]
- Appearance and behavior influenced by solar wind and IMF [*Murphree et al.*, 1981; *Vo and Murphree*, 1995]
- Can be structured and dynamic (string of pearls configuration) [*Lui et al.*, 1987; *Potemra et al.*, 1990, *Rostoker et al.*, 1992]
- Varies with season: more likely in summer [*Liou et al.*, 2001]
 ⇒ hemispheric differences

- Focus on afternoon sector 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [*Cogger et al.*, 1977; *Liou et al.*, 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [*McDiarmid et al.*; 1975, *Evans*, 1985; *Newell et al.*, 1996]
- Co-located with maximum in Region 1 current [*Iijima and Potemra*, 1987] and Poynting flux [*Keiling et al.*, 2003]
- Appearance and behavior influenced by solar wind and IMF [*Murphree et al.*, 1981; *Vo and Murphree*, 1995]
- Can be structured and dynamic (string of pearls configuration) [*Lui et al.*, 1987; *Potemra et al.*, 1990, *Rostoker et al.*, 1992]
- Varies with season: more likely in summer [*Liou et al.*, 2001]
 ⇒ hemispheric differences

- Focus on afternoon sector 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [*Cogger et al.*, 1977; *Liou et al.*, 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [*McDiarmid et al.*; 1975, *Evans*, 1985; *Newell et al.*, 1996]
- Co-located with maximum in Region 1 current [*Iijima and Potemra*, 1987] and Poynting flux [*Keiling et al.*, 2003]
- Appearance and behavior influenced by solar wind and IMF [*Murphree et al.*, 1981; *Vo and Murphree*, 1995]
- Can be structured and dynamic (string of pearls configuration) [*Lui et al.*, 1987; *Potemra et al.*, 1990, *Rostoker et al.*, 1992]
- Varies with season: more likely in summer [*Liou et al.*, 2001]
 ⇒ hemispheric differences

The afternoon auroral bright spot can be structured and dynamic

"String of pearls" configuration (from *Lui et al.* [1989])

EGU General Assembly 2006

ST5.5-1WE3O-005

- Focus on afternoon sector 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [*Cogger et al.*, 1977; *Liou et al.*, 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [*McDiarmid et al.*; 1975, *Evans*, 1985; *Newell et al.*, 1996]
- Co-located with maximum in Region 1 current [*Iijima and Potemra*, 1987] and Poynting flux [*Keiling et al.*, 2003]
- Appearance and behavior influenced by solar wind and IMF [*Murphree et al.*, 1981; *Vo and Murphree*, 1995]
- Can be structured and dynamic (string of pearls configuration) [*Lui et al.*, 1987; *Potemra et al.*, 1990, *Rostoker et al.*, 1992]
- Varies with season: more likely in summer [*Liou et al.*, 2001]
 ⇒ hemispheric differences

The afternoon auroral bright spot varies with season

Summer

Winter

(from *Liou et al.* [2001])

EGU General Assembly 2006

- Focus on afternoon sector 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [*Cogger et al.*, 1977; *Liou et al.*, 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [*McDiarmid et al.*; 1975, *Evans*, 1985; *Newell et al.*, 1996]
- Co-located with maximum in Region 1 upward field aligned current [*Iijima and Potemra*, 1987]
- Appearance and behavior influenced by solar wind and IMF [*Murphree et al.*, 1981; *Vo and Murphree*, 1995]
- Can be structured and dynamic (string of pearls configuration) [*Lui et al.*, 1987; *Potemra et al.*, 1990, *Rostoker et al.*, 1992]
- Varies with season: more likely in summer [*Liou et al.*, 2001]
 ⇒ hemispheric differences

- Previous conjugate observations limited to small scales (in situ point measurements or ground based instruments) in at least one hemisphere [*Dickinson et al.*, 1986; *Mende et al.*, 1990; *Burns et al.*, 1990, 1992; *Vo et al.*, 1995]
- *Fillingim et al.* [2005] presented the first simultaneous images of dayside aurora from two global auroral imagers in opposite hemispheres (IMAGE WIC in northern hemisphere and Polar UVI in south)
- Addressed the issue of conjugacy of the dayside aurora on a synoptic scale for the first time
- Related differences in aurora to solar wind and IMF conditions
- Continuation of the work of *Fillingim et al.* [2005]

EGU General Assembly 2006 ST5.5-1WE3O-005

- Previous conjugate observations limited to small scales (in situ point measurements or ground based instruments) in at least one hemisphere [*Dickinson et al.*, 1986; *Mende et al.*, 1990; *Burns et al.*, 1990, 1992; *Vo et al.*, 1995]
- *Fillingim et al.* [2005] presented the first simultaneous images of dayside aurora from two global auroral imagers in opposite hemispheres (IMAGE WIC in northern hemisphere and Polar UVI in south)
- Addressed the issue of conjugacy of the dayside aurora on a synoptic scale for the first time
- Related differences in aurora to solar wind and IMF conditions
- Continuation of the work of *Fillingim et al.* [2005]

EGU General Assembly 2006 ST5.5-1W

ST5.5-1WE3O-005 5 April 2006

- Previous conjugate observations limited to small scales (in situ point measurements or ground based instruments) in at least one hemisphere [*Dickinson et al.*, 1986; *Mende et al.*, 1990; *Burns et al.*, 1990, 1992; *Vo et al.*, 1995]
- *Fillingim et al.* [2005] presented the first simultaneous images of dayside aurora from two global auroral imagers in opposite hemispheres (IMAGE WIC in northern hemisphere and Polar UVI in south)
- Addressed the issue of conjugacy of the dayside aurora on a synoptic scale for the first time
- Related differences in aurora to solar wind and IMF conditions
- Continuation of the work of *Fillingim et al.* [2005]

EGU General Assembly 2006ST5.5-1WE3O-0055 April 2006

Spacecraft Orbits

From October 2002 to March 2003 IMAGE WIC and Polar UVI were in ideal positions and orientations for dayside conjugate observations

EGU General Assembly 2006

ST5.5-1WE3O-005

Instrumentation

IMAGE Wideband Imaging Camera (WIC) & Polar Ultraviolet Imager (UVI) LBHS & LBHL

Temporal resolution

WIC: 10 second integration every 2 minutes UVI: 18 & 36 second integration, cyclic

Spatial resolution WIC: ~ 50 km UVI: ~ 30 km

<u>Spectral resolution</u> WIC: 140 to 190 nm – LBHS: 140 to 160 nm – LBHL: 160 to 180 nm –

EGU General Assembly 2006

ST5.5-1WE3O-005

4 November 2002

NH: enhanced, unstructured emission in afternoon
SH: multiple spots; number, location, and intensity change
EGU General Assembly 2006
ST5.5-1WE3O-005
5 April 2006

4 November 2002

NH: enhanced, unstructured emission in afternoon
SH: multiple spots; number, location, and intensity change
EGU General Assembly 2006
ST5.5-1WE3O-005
5 April 2006

NH: enhanced emission; variable intensity and location; single region

SH: multiple regions of ^{10²} emission; vary in intensity and location; different ^{10¹} regions behave differently

Steady solar wind density and velocity

IMF: $B_X < 0$ $B_Y > 0$ $B_Z < 0$ (with some positive exursions)

EGU General Assembly 2006

ST5.5-1WE3O-005

Interpretation

For $B_Z < 0$ and strong B_Y \Rightarrow mirror image convection patterns

For $B_{Y} > 0$ (shown),

- In northern hemisphere crescent shaped cell at dawn, circularly shaped cell at dusk
- In southern hemisphere circularly shaped cell at dawn, crescent shaped cell at dusk

(from *Clauer et al.* [1997]) ST5.5-1WE3O-005 5 April 2006

EGU General Assembly 2006

Interpretation (cont'd)

- Crescent shaped cell \Rightarrow large velocity shear \Rightarrow strongly con/diverging E_{\perp} , $J_{\perp} \Rightarrow$ intense $J_{//}$
- J_" is upward on duskside ⇒ enhanced auroral precipitation in southern hemisphere ⇒ hemispheric asymmetry (consistent with *Robinson et al.* [1986] – B_Y control of J_" & Kozlovsky et al. [2003] – inter-hemispheric current)

Interpretation (cont'd)

- Crescent shaped cell \Rightarrow large velocity shear \Rightarrow strongly con/diverging E_{\perp} , $J_{\perp} \Rightarrow$ intense $J_{//}$
- J_{//} is upward on duskside ⇒ enhanced auroral precipitation in southern hemisphere ⇒ hemispheric asymmetry (consistent with *Robinson et al.* [1986] – B_Y control of J_{//} & Kozlovsky et al. [2003] – inter-hemispheric current)

Interpretation (cont'd)

- Crescent shaped cell \Rightarrow large velocity shear \Rightarrow strongly con/diverging E_{\perp} , $J_{\perp} \Rightarrow$ intense $J_{//}$
- J_{//} is upward on duskside ⇒ enhanced auroral precipitation in southern hemisphere ⇒ hemispheric asymmetry (consistent with *Robinson et al.* [1986] – B_Y control of J_{//} & Kozlovsky et al. [2003] – inter-hemispheric current)

Prediction:

For $B_Y > 0$, afternoon aurora enhanced in south; for $B_Y < 0$, afternoon aurora enchanced in north.

EGU General Assembly 2006

ST5.5-1WE3O-005

Why Multiple Spots?

- "String of pearls" configuration is consistent with KHI [*Lui et al.*, 1989; *Rostoker et al.*, 1992; *Wei and Lee*, 1993]
- KHI occurs at velocity shear; assumed to occur at equator

Problems:

- Observed $v_{phase} \sim 0.5$ km/s sunward (also anti-sunward) $v_{phase} = (\rho_1 v_1 + \rho_2 v_2)/(\rho_1 + \rho_2)$ for 1: BL & 2: PS, $\rho_1 \approx \rho_2$, $|v_1| > |v_2|$; v_{phase} anti-sunward
- Multiple spots only in one hemisphere, not both as expected

KHI occurs near the ionosphere (low altitude – crescent cell) Depends on $|B_Y/B_Z|$ [cf. *Ridley and Clauer*, 1996] Imbalance in J_{//} decouples hemispheres [*Kozlovsky et al.*, 2003]

EGU General Assembly 2006

ST5.5-1WE3O-005 5 April 2006

Why Multiple Spots?

- "String of pearls" configuration is consistent with KHI [*Lui et al.*, 1989; *Rostoker et al.*, 1992; *Wei and Lee*, 1993]
- KHI occurs at velocity shear; assumed to occur at equator

Problems:

- Observed $v_{phase} \sim 0.5$ km/s sunward (also anti-sunward) $v_{phase} = (\rho_1 v_1 + \rho_2 v_2)/(\rho_1 + \rho_2)$ for 1: BL & 2: PS, $\rho_1 \approx \rho_2$, $|v_1| > |v_2|$; v_{phase} anti-sunward
- Multiple spots only in one hemisphere, not both as expected

KHI occurs near the ionosphere (low altitude – crescent cell) Depends on $|B_Y/B_Z|$ [cf. *Ridley and Clauer*, 1996] Imbalance in J_{//} decouples hemispheres [*Kozlovsky et al.*, 2003]

EGU General Assembly 2006

ST5.5-1WE3O-005 5

Why Multiple Spots?

- "String of pearls" configuration is consistent with KHI [*Lui et al.*, 1989; *Rostoker et al.*, 1992; *Wei and Lee*, 1993]
- KHI occurs at velocity shear; assumed to occur at equator

Problems:

- Observed $v_{phase} \sim 0.5$ km/s sunward (also anti-sunward) $v_{phase} = (\rho_1 v_1 + \rho_2 v_2)/(\rho_1 + \rho_2)$ for 1: BL & 2: PS, $\rho_1 \approx \rho_2$, $|v_1| > |v_2|$; v_{phase} anti-sunward
- Multiple spots only in one hemisphere, not both as expected

KHI occurs near the ionosphere (low altitude – crescent cell) Depends on $|B_Y/B_Z|$ [cf. *Ridley and Clauer*, 1996] Imbalance in J_{//} decouples hemispheres [*Kozlovsky et al.*, 2003]

EGU General Assembly 2006ST5.5-1WE3O-0055 April 2006

22 October 2002

NH: latitudinally narrow emission; brightens near 19:40 UTSH: broader, more diffuse emission; no noticeable changeEGU General Assembly 2006ST5.5-1WE3O-0055 April 2006

22 October 2002

NH: latitudinally narrow emission; brightens near 19:40 UTSH: broader, more diffuse emission; no noticeable changeEGU General Assembly 2006ST5.5-1WE3O-0055 April 2006

EGU General Assembly 2006

ST5.5-1WE3O-005

2 November 2002

NH: sudden brightening at 14:10 UT; SH: no change

EGU General Assembly 2006

ST5.5-1WE3O-005

2 November 2002

NH: sudden brightening at 14:10 UT; Si

SH: no change

EGU General Assembly 2006

ST5.5-1WE3O-005

NH: intermittent spots before 14 UT; sudden brightening at 14:10 UT

SH: wide, diffuse emission; ^{10²} fades before 14 UT; no change at 14:10 UT

SW density high; > 30% drop in P_{dyn} at 14:05 UT

Large IMF |**B**|; rapid rotation from Y dominated to – X dominated (radial) IMF at 14:05 UT

EGU General Assembly 2006

ST5.5-1WE3O-005

SuperDARN Data

- NH: Large increase in dayside velocities in eastward direction Large increase in velocity shear ⇒ could increase FAC Response to solar wind/IMF change?
- SH: Good data coverage; no increase in dayside velocitiesComplex change in convection pattern; stagnation point?No auroral signature

EGU General Assembly 2006ST5.5-1WE3O-0055 April 2006

25 October 2002

FUV 2002-10-25 19:45:51 UT WIC FUV 2002-10-25 19:47:54 UT WIC FUV 2002-10-25 19:49:57 UT WIC FUV 2002-10-25 19:52:00 UT WIC

UVI 2002-10-25 19:45:50 UT LBHLUVI 2002-10-25 19:47:40 UT LBHLUVI 2002-10-25 19:49:30 UT LBHLUVI 2002-10-25 19:51:58 UT LBHL

Simultaneous widespread brightening (< 15 MLT to 18 MLT)</th>in both hemispheres at 19:47 UT (relatively conjugate)EGU General Assembly 2006ST5.5-1WE3O-0055 April 2006

25 October 2002

FUV 2002-10-25 19:45:51 UT WIC FUV 2002-10-25 19:47:54 UT WIC FUV 2002-10-25 19:49:57 UT WIC FUV 2002-10-25 19:52:00 UT WIC

UVI 2002-10-25 19:45:50 UT LBHLUVI 2002-10-25 19:47:40 UT LBHLUVI 2002-10-25 19:49:30 UT LBHLUVI 2002-10-25 19:51:58 UT LBHL

Simultaneous widespread brightening (< 15 MLT to 18 MLT)</th>in both hemispheres at 19:47 UT (relatively conjugate)EGU General Assembly 2006ST5.5-1WE3O-0055 April 2006

Simultaneous widespread brightening at 19:47 UT in both hemispheres

Other brightenings and ^{°²} structure (and lots of it) non-conjugate

SW density constant; SW velocity large with minor variations

IMF $B_X < 0$ $B_Y < 0$ (mostly) $B_Z > 0$ w/fluctuations

EGU General Assembly 2006

ST5.5-1WE3O-005

Prediction: For $B_Y > 0$, afternoon aurora enhanced in SH For $B_Y < 0$, afternoon aurora enhanced in NH

22 October 2002:

Quiet interval for $B_Z > 0$; more discrete in NH for $B_Y < 0$ 2 November 2002:

Brightening in north aurora absent in south for $B_Y > 0 X$ \Rightarrow Large decrease in dynamic pressure and IMF rotation 25 October 2002:

Sporadic brightenings in north and south for $B_Y < 0 \times$ \Rightarrow High solar wind velocity and large B_Z fluctuations

Seeing short-lived response to changes in solar wind and IMF and not quasi-steady state conditions of 4 November 2002 → M-I system responds asymmetrically to solar wind variability

EGU General Assembly 2006

ST5.5-1WE3O-005

Prediction: For $B_Y > 0$, afternoon aurora enhanced in SH For $B_Y < 0$, afternoon aurora enhanced in NH

22 October 2002:

Quiet interval for $B_Z > 0$; more discrete in NH for $B_Y < 0 \checkmark$ 2 November 2002:

Brightening in north aurora absent in south for $B_Y > 0 \times$ \Rightarrow Large decrease in dynamic pressure and IMF rotation 25 October 2002:

Sporadic brightenings in north and south for $B_Y < 0 \times$ \Rightarrow High solar wind velocity and large B_Z fluctuations

Seeing short-lived response to changes in solar wind and IMF and not quasi-steady state conditions of 4 November 2002 → M-I system responds asymmetrically to solar wind variability

EGU General Assembly 2006

ST5.5-1WE3O-005 5 April 2006

Prediction: For $B_Y > 0$, afternoon aurora enhanced in SH For $B_Y < 0$, afternoon aurora enhanced in NH

22 October 2002:

Quiet interval for $B_Z > 0$; more discrete in NH for $B_Y < 0$ 2 November 2002:

Brightening in north aurora absent in south for $B_Y > 0 \times$ \Rightarrow Large decrease in dynamic pressure and IMF rotation 25 October 2002:

Sporadic brightenings in north and south for $B_Y < 0 \times$ \Rightarrow High solar wind velocity and large B_Z fluctuations

Seeing short-lived response to changes in solar wind and IMF and not quasi-steady state conditions of 4 November 2002 → M-I system responds asymmetrically to solar wind variability

EGU General Assembly 2006

ST5.5-1WE3O-005

Prediction: For $B_Y > 0$, afternoon aurora enhanced in SH For $B_Y < 0$, afternoon aurora enhanced in NH

22 October 2002:

Quiet interval for $B_Z > 0$; more discrete in NH for $B_Y < 0$ 2 November 2002:

Brightening in north aurora absent in south for $B_Y > 0 \times$ \Rightarrow Large decrease in dynamic pressure and IMF rotation 25 October 2002:

Sporadic brightenings in north and south for $B_Y < 0 \times$ \Rightarrow High solar wind velocity and large B_Z fluctuations

Seeing short-lived response to changes in solar wind and IMF and not quasi-steady state conditions of 4 November 2002 → M-I system responds asymmetrically to solar wind variability

EGU General Assembly 2006

ST5.5-1WE3O-005 5 April 2006

Prediction: For $B_Y > 0$, afternoon aurora enhanced in SH For $B_Y < 0$, afternoon aurora enhanced in NH

22 October 2002:

Quiet interval for $B_Z > 0$; more discrete in NH for $B_Y < 0$ 2 November 2002:

Brightening in north aurora absent in south for $B_Y > 0 \times$ \Rightarrow Large decrease in dynamic pressure and IMF rotation 25 October 2002:

Sporadic brightenings in north and south for $B_Y < 0 \times$ \Rightarrow High solar wind velocity and large B_Z fluctuations

Seeing short-lived response to changes in solar wind and IMF
and not quasi-steady state conditions of 4 November 2002⇒ M-I system responds asymmetrically to solar wind variabilityEGU General Assembly 2006ST5.5-1WE3O-0055 April 2006

Prediction: For $B_Y > 0$, afternoon aurora enhanced in SH For $B_Y < 0$, afternoon aurora enhanced in NH

22 October 2002:

Quiet interval for $B_Z > 0$; more discrete in NH for $B_Y < 0$ 2 November 2002:

Brightening in north aurora absent in south for $B_Y > 0 \times$ \Rightarrow Large decrease in dynamic pressure and IMF rotation 25 October 2002:

Sporadic brightenings in north and south for $B_Y < 0 \times$ \Rightarrow High solar wind velocity and large B_Z fluctuations

Seeing short-lived response to changes in solar wind and IMF
and not quasi-steady state conditions of 4 November 2002⇒ M-I system responds asymmetrically to solar wind variabilityEGU General Assembly 2006ST5.5-1WE3O-0055 April 2006