Dayside Aurora as an Indicator of Asymmetric Solar Wind-Magnetosphere Energy Transfer

M. O. Fillingim, G. K. Parks, and S. B. Mende

Space Sciences Laboratory, University of California, Berkeley

Introduction (part 1)

- The dayside magnetosphere responds directly to incident interplanetary magnetic field (IMF) and solar wind energy
- Changes in the IMF and solar wind drive changes in magnetospheric and ionospheric convection
- Currents and (in the case of upward currents) aurora respond to these changes
 - ⇒ Dayside aurora is a direct indicator of how the magnetosphere-ionosphere system responds to IMF and solar wind energy input

Introduction (part 2)

- Focus on afternoon sector 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [Cogger et al., 1977; Liou et al., 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [McDiarmid et al.; 1975, Evans, 1985; Newell et al., 1996]
- Co-located with maximum in Region 1 upward field aligned current [*Iijima and Potemra*, 1987]
- Appearance and behavior influenced by solar wind and IMF [Murphree et al., 1981; Vo and Murphree, 1995]
- Can be structured and dynamic (string of pearls configuration) [Lui et al., 1987; Potemra et al., 1990, Rostoker et al., 1992]
- Varies with season: more likely in summer [Liou et al., 2001]
 ⇒ hemispheric differences

Introduction (part 3)

- Previous conjugate observations limited to small scales (in situ point measurements or ground based instruments) in at least one hemisphere [*Dickinson et al.*, 1986; *Mende et al.*, 1990; *Burns et al.*, 1990, 1992; *Vo et al.*, 1995]
- Fillingim et al. [2005] presented the first simultaneous images of dayside aurora from two global auroral imagers in opposite hemispheres (IMAGE WIC in northern hemisphere and Polar UVI in south)
- Addressed the issue of conjugacy of the dayside aurora on a synoptic scale for the first time
- Related differences in aurora to solar wind and IMF conditions
- Continuation of the work of *Fillingim et al.* [2005]

Spacecraft Orbits

IMAGE

Launch: Mar. 25, 2000

Apogee: 8 R_E

Period: 14 hours

Polar

Feb. 24, 1996

 $9 R_{E}$

18 hours

Instrumentation

IMAGE Wideband Imaging Camera (WIC) & Polar Ultraviolet Imager (UVI) LBHS & LBHL

Temporal resolution

WIC: 10 second integration every 2 minutes

UVI: 18 & 36 second integration, cyclic

Spatial resolution

WIC: ~ 50 km

UVI: ~ 30 km

Spectral resolution

WIC: 140 to 190 nm –

LBHS: 140 to 160 nm -

LBHL: 160 to 180 nm -

4 November 2002

NH: enhanced, unstructured emission in afternoon

SH: multiple spots; number, location, and intensity change

4 November 2002

NH: enhanced, unstructured emission in afternoon

SH: multiple spots; number, location, and intensity change

NH: enhanced emission in afternoon; variable intensity and location; single region

SH: multiple regions of emission; vary in intensity and location; different regions behave differently

Steady solar wind density and velocity

IMF
$$B_X < 0$$

 $B_Y > 0$
 $B_Z < 0$ (with some positive excursions)

SuperDARN Ionospheric Velocity Data

NH: large velocities pre-noon; moderate velocities in afternoon SH: poor coverage; crescent shaped cell in afternoon, large v?

Interpretation

For $B_z < 0$, strong B_y

⇒ mirror image convection patterns

Strong flow shear, divergent E_{\perp} , J_{\perp} , strong J_{\parallel}

- → more discrete auroral structure (brighter?)
- → Hemispheric asymmetry

(from Clauer et al.)

Why Multiple Spots?

"String of pearls" configuration is consistent with being the result of a Kelvin-Helmholtz Instability (KHI) [*Lui et al.*, 1989; *Rostoker et al.*, 1992; *Wei and Lee*, 1993]

- KHI occurs at velocity shear; assumed to occur at equator
- Multiple spots only in one hemisphere, not both as expected
- ⇒ KHI occurs at high latitude near the ionosphere (in crescent cell) \star and depends on $|B_y/B_z|$ [cf. *Ridley and Clauer*, 1996]

NH: latitudinally narrow emission, brightens near 19:40 UT SH: broader, more diffuse emission; no noticeable change

NH: latitudinally narrow emission, brightens near 19:40 UT SH: broader, more diffuse emission; no noticeable change

NH: very quiet from 17:45 to 19:15 UT; brightening near 19:40 UT; narrow MLT range (peaked)

SH: aurora brightens near 19:30 UT; diffuse in latitude and MLT

Steady solar wind density and velocity

IMF
$$B_{x} > 0$$

 $B_{y} < 0$
 $B_{z} < 0, > 0, < 0$

2 November 2002

NH: Sudden brightening at 14:10 UT;

SH: No change

NH: Sudden brightening at 14:10 UT

SH: No change

> 30% drop in solar wind dynamic pressure (related to brightening?)

Large IMF |**B**| (note change in scale) Change from +Y dominated to -X dominated (radial) IMF (related to brightening?)

SuperDARN Data

NH: Large increase in dayside velocities in eastward direction Large increase in velocity shear → could increase FAC Response to solar wind/IMF change?

SH: Good data coverage; no increase in dayside velocities Complex change in convection pattern; stagnation point? No auroral signature

Simultaneous widespread brightening (< 15 MLT to 18 MLT) in both hemispheres at 19:47 UT (relatively conjugate)

Simultaneous widespread brightening at 19:47 UT in both hemispheres

Other brightenings and structure (and lots of it) non-conjugate

Solar wind density constant; velocity large with minor variations

IMF
$$B_X < 0$$

 $B_Y < 0$ (mostly)
 $B_Z > 0$ w/fluctuations

Summary

Prediction: For $B_Y > 0$, afternoon aurora more structured [brighter] in the southern hemisphere

For $B_{y} < 0$, afternoon aurora more structured

[brighter] in the northern hemisphere

2 November 2002:

Brightening in north aurora absent in south for $B_Y > 0$

→ Large decrease in dynamic pressure and IMF rotation

25 October 2002:

Sporadic brightenings in north and south for $B_Y < 0$

 \Rightarrow High solar wind velocity and large B_Z fluctuations

Seeing short-lived response to changes in solar wind and IMF and not quasi-steady state conditions observed on 4 November 2002 => M-I system responds asymmetrically to solar wind variability