Ionization Patches on the Night Side of Mars and Their Seasonal and Solar Cycle Variations

<u>M. O. Fillingim¹</u>, L. M. Peticolas¹, R. J. Lillis¹, D. A. Brain¹, J. S. Halekas¹, D. Lummerzheim², and S. W. Bougher³

 ¹Space Sciences Laboratory, University of California, Berkeley
 ²Geophysical Institute, University of Alaska, Fairbanks
 ³Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor

<u>Summary</u>

- The complex magnetic topology at Mars allows solar wind (and accelerated) electrons to ionize the night side atmosphere in limited regions (cusps)
 → patchy distribution of ionization
- The resulting maximum electron density (n_e^{max}) and total electron content (TEC) vary considerably with season and solar cycle as the scale height of the atmosphere changes
- Both n_e^{max} and TEC impact subsurface science that can be done from orbit: higher n_e^{max} → lower penetration depths

Martian Magnetic Field and Cusps

- Mars has no global magnetic field, <u>but</u> it does have strong crustal fields
- "Cusps" form where radial crustal fields connect to the IMF
 → solar wind has access to the night side atmosphere → ionization
- Accelerated electrons, ionospheric structure, and aurora seen near cusps
- Non-uniform global distribution of cusps (i.e., ionization) \rightarrow "patchy"

Accelerated (Auroral) Electrons

Distribution of Accelerated Electrons

- Global distribution of peaked spectra (dj/dE > 0) found in MGS dataset
- Clustered around perimeter of closed field regions (contours) \rightarrow cusps
- Wide range of energy fluxes up to 40 X higher than previous example
- Accelerated electrons also seen by Mars Express [Lundin et al., 2006]

Observations of Night Side Ionosphere

	n _e ^{max} (cm ⁻³)	Altitude of n ^{max} (km)
 Radio occultation (RO) profiles 		<u></u>
• Mars 4 [<i>Savich et al.</i> , 1976]	4.7 x 10 ³	110
• Viking 1 & 2 [<i>Zhang et al.</i> , 1990]	5 x 10 ³	150
(in all cases, solar zenith angle (SZA)	≤ ~ 125°)	
 Mars Express MARSIS Active Ionospheric [Kirchner et al., 2006, 2007] 	Sounder (AIS)	
Non-magnetic regions (typical)	8 x 10 ³	175
Magnetic regions (typical)	5 x 10 ⁴	127

 Both MARSIS AIS observations [*Gurnett et al.*, 2005; *Duru et al.*, 2006] and near-terminator (SZA ~ 90°) MGS RO profiles [*Withers et al.*, 2005] show evidence of small-scale ionospheric structure associated with cusps
 → Patchy distribution of ionization consistent with particle measurements

Models of Night Side Ionosphere

	n _e ^{max} (cm ⁻³)	Altitude of n ^{_max} (km)
• High altitude (~ 10,000 km) Phobos 2 HARP s	spectra	<u> </u>
• Magnetotail lobe [Verigin et al., 1991]	7 x 10 ³	<u>165</u>
 Magnetotail lobe [Haider et al., 1992] 	1.2 x 10 ⁴	<u>158</u>
 Plasma sheet [Haider et al., 1992] 	1.7 x 10 ⁴	144
 <u>20 eV Maxwellian [Fox et al., 1993]</u> 	1.4 x 10 ⁴	172
 <u>180 eV Gaussian [Fox et al., 1993]</u> 	1.9 x 10 ⁴	159

• Low altitude (~400 km) MGS MAG/ER spectra

• Solar wind (< 1 keV) [Haider et al., 2002]	5 x 10 ³	140
• Typical tail [Fillingim et al., 2007]	1.7 x 10 ³	166
Accelerated [Fillingim et al., 2007]	5.7 x 10 ³	156

- n_e^{max} due to accelerated spectrum is ~ 3 X typical tail spectrum value
- Latitudinal width of enhanced ionization ~ 200 km
 - \rightarrow Consistent with observed small-scale ionospheric structure

Models of Night Side Ionosphere

n _e max (cm °) Alu n _e m	ax (km)† 1)
High altitude (~ 10,000 km) Phobos 2 HARP spectra		_
• <u>Magnetotail lobe [Verigin et al., 1991] 7 x 10³ 1</u>	<u> 65</u>	
• <u>Magnetotail lobe [<i>Haider et al.</i>, 1992] 1.2 x 10⁴ 1</u>	<u>58</u>	
• <u>Plasma sheet [<i>Haider et al.</i>, 1992] 1.7 x 10⁴ 1</u>	<u>44</u>	
• <u>20 eV Maxwellian [<i>Fox et al.</i>, 1993]</u> 1.4 x 10 ⁴ 1	72	
• <u>180 eV Gaussian [<i>Fox et al.</i>, 1993]</u> <u>1.9 x 10⁴</u> <u>1</u>	<u>59</u>	

• Low altitude (~400 km) MGS MAG/ER spectra

٠

• Solar wind (< 1 keV) [Haider et al., 2002]	5 x 10 ³	140
• Typical tail [Fillingim et al., 2007]	1.7 x 10 ³	166
Accelerated [Fillingim et al., 2007]	5.7 x 10 ³	156

- n_e^{max} due to accelerated spectrum is ~ 3 X typical tail spectrum value
- Latitudinal width of enhanced ionization ~ 200 km
 → Consistent with observed small-scale ionospheric structure

Purpose & Methodology

- The upper atmosphere changes significantly with season and solar cycle
 How do these changes affect the precipitation induced ionosphere?
- Model the changes in electron density (n_e) and total electron content (TEC) due to atmospheric variations for both typical tail and accelerated spectra
- Examine four cases:
 - Solar moderate, perihelion, northern winter solstice ($L_S = 270^\circ$)
 - Solar minimum, perihelion, northern winter solstice ($L_S = 270^\circ$)
 - Solar moderate, aphelion, northern summer solstice ($L_s = 90^\circ$)
 - Solar minimum, aphelion, northern summer solstice ($L_s = 90^\circ$)
- For each case, the electron density is determined from $n_e(z) = \sqrt{(P(z)/\alpha_{eff}(z)) \text{ cm}^{-3}}$, where P(z) is the ion production rate and $\alpha_{eff}(z)$ is the rece

where P(z) is the ion production rate and $\alpha_{eff}(z)$ is the recombination rate

 Since O₂⁺ is the dominant ionospheric ion due to rapid chemical reactions, α_{eff}(z) = O₂⁺ recombination rate = 1.95 x 10⁻⁷ (300/T_e(z))^{0.7} cm³ s⁻¹, where T_e is the electron temperature (assume T_e = neutral temperature)

Neutral Atmosphere Profiles (MTGCM)

- Model contains CO₂, CO, O₂, O, & N₂; all profiles from 2.5° N & 2 AM LT
- At low altitude, seasonal/orbital effects dominate
- At high altitude, solar cycle effects are important

Electron Density (Typical Tail Spectrum)

- n_e^{max} larger at solar min \rightarrow solar cycle controls magnitude of peak
- Altitude of n_e^{max} higher at perihelion \rightarrow season controls altitude of peak
- TEC larger at solar mod \rightarrow solar cycle controls thickness of ionosphere

Electron Density (Accelerated Spectrum)

- n_e^{max} larger at solar min \rightarrow solar cycle controls magnitude of peak
- Altitude of n_e^{max} higher at perihelion \rightarrow season controls altitude of peak
- TEC larger at solar mod \rightarrow solar cycle controls thickness of ionosphere

<u>Summary</u>

- In all 4 cases, the accelerated spectrum increased n_e^{max} by a factor of ~ 3 and TEC by ~ 2.5 over that produced by the typical tail spectrum
- Since cusps are localized and have a patchy global distribution, regions of enhanced $n_{\rm e}$ and TEC will be **localized and patchy**
- Largest n_e^{max} occur during solar minimum at aphelion
 Upper atmosphere coolest (smallest scale height) → thinnest ionosphere
 → smallest TEC
- Smallest n_e^{max} occur during solar moderate at perihelion
 Upper atmosphere warmest (largest scale height) → thickest ionosphere
 → largest TEC
- Between these two extremes, n_e^{max} changes by ~ 10% → observable TEC changes by ~ 25% → changes!
 - Variations in the upper atmospheric scale height (temperature) over different seasonal and solar cycle conditions can drive variations in the ionospheric density profiles

Implications (Why Should You Care?)

- Both n_e^{max} and TEC impact subsurface science that can be done from orbit
- Penetration depth of radar soundings is inversely proportional to frequency

 $D_{\rm penetration} \sim 1/f_{\rm radar}$

• To traverse the ionosphere, the signal frequency must be greater than the peak ionospheric electron plasma frequency which is determined by ${n_e}^{max}$

 $f_{\rm radar} > f_{\rm p}^{\rm max} \sim \sqrt{n_{\rm e}^{\rm max}}$

Therefore, penetration depth is limited by the maximum electron density;
 → increased ionization leads to decreased penetration depths

 $D_{\text{penetration}} \sim 1/\sqrt{n_e^{\text{max}}}$

- Dispersion, attenuation, & Faraday rotation of radar signals related to TEC
 → times of smallest n_e^{max} = times of largest TEC
 - ➔ It is important to know not only <u>where</u> (geographically) but also <u>when</u> (season and solar cycle) n_e^{max} and TEC are optimal to enable deep subsurface soundings