Relating Global Auroral Images to Plasma Sheet Observations During Auroral Activity

> M. O. Fillingim & G. K. Parks (with special thanks to E. Lee) Space Sciences Laboratory University of California, Berkeley

Western Pacific Geophysical Meeting

SM 31A-02

Introduction

Goal:

• Understand the connection of aurora to plasma sheet dynamics

• Not a new idea: *Fairfield et al.* [1999]; *Fillingim et al.* [2000; 2001; 2003]; *Nakamura et al.* [2001; 2002]; and *many* others

Methodology:

- Correlate global auroral images with in-situ plasma sheet data using IMAGE WIC, Polar UVI, and Cluster
- One illustrative example (same as Nakamura et al. [2002])

Conclusions:

- For X Earthward of ~ 20 $\rm R_{E},$ plasma sheet activity is magnetically connected to intense auroral emission
- Plasma sheet activity kinetic in nature (not shown)

Western Pacific Geophysical Meeting

SM 31A-02

Introduction

Example: X_{Wind} ~ -10R_E (from *Fillingim et al.* [2000])

Correlation between ∆B, <v>, and auroral brightenings near Wind footprint

Simultaneous within resolution of instruments (~ 1min)

Most intense auroral signature ≠ most intense plasma sheet signatures

Western Pacific Geophysical Meeting

SM 31A-02

Solar Wind

Geotail location: [20 \rightarrow 5, 25, 5] R_E GSE

Large pressure pulse observed at 11:30 UT; P_{dyn} increased by 5

Initially $B_Z > 0$; turns southward ~ 15 UT

17:30 – 19:30 UT:
B_Z variable
B_Y < 0, dominant component

Western Pacific Geophysical Meeting

SM 31A-02

• IP: 10 sec
 • Cadence: 2 min
 • Filter: WIC

 (140 – 190 nm)

, Onset between 18:36:27 and 18:38:30 UT

Western Pacific Geophysical Meeting

SM 31A-<u>02</u>

Western Pacific Geophysical Meeting

SM 31A-02

26 July 2006

Instrument mode

Cadence: 37 s

(Continuous

• Filter: LBHL

Only plot every

2nd or 3rd image

Onset between

18:37:37 and

18:38:13 UT

imaging mode)

(160 - 180 nm)

• IP: 37 sec

Western Pacific Geophysical Meeting

KEOGRAMS

Use every available UVI image

Cluster footprint calculated using T96 also shown

Onset ~18:38 UT
From 18:38 – 18:44 UT, poleward expansion 1°/min → ~2 km/s in ionosphere → > 50 km/s in plasma sheet
Emission reaches Cluster footprint at ~18:41 UT

Intensity "near" Cluster footprint

SM 31A-02

Western Pacific Geophysical Meeting

SM 31A-02

Combine auroral data with plasma sheet <**v**> (could also use n, T, or B)

Auroral intensity at footprint ↔ plasma sheet activty signatures

Better correlation with *changes* in the auroral intensity at footprint (?)

A-02

CURRENTS

Western Pacific Geophysical Meeting

FAC → Connectivity between plasma sheet and ionosphere

Determine currents using curlometer ($\mathbf{J} = \nabla \times \mathbf{B}$)

Significant FAC during large <**v**> event near auroral onset

Plasma sheet-ionosphere travel time for thermal electrons ~ 10 seconds
→ "Simultaneous" within the resolution of the detectors

SM 31A-02

Compare global auroral images with in-situ plasma sheet data with the purpose of trying to understand the connection between auroral activity and plasma sheet dynamics

Both UVI and WIC saw substorm onset at ~ 18:38 UT; however, Cluster (X ~ -18 R_E) saw no effects until 18:40 UT (SC 3) and 18:41 UT (SC 1) when auroral emission reached footprints \rightarrow FACs provide magnetosphere-ionosphere connection

• For X Earthward of ~ 20 R_E, plasma sheet activity ($n\downarrow$, $<v>\uparrow$, $T\uparrow$, ΔB , etc.) is magnetically connected to intense auroral emission

• Plasma sheet activity kinetic in nature: $\ell < \rho_i$, t < 1/ Ω_{ci} , $\Delta B/B > 1$ (see Chen et al.[2000]; Fillingim et al.[2003]; Parks et al. [2002])

Western Pacific Geophysical Meeting

SM 31A-02 26

Compare global auroral images with in-situ plasma sheet data with the purpose of trying to understand the connection between auroral activity and plasma sheet dynamics

Both UVI and WIC saw substorm onset at ~ 18:38 UT; however, Cluster (X ~ -18 R_E) saw no effects until 18:40 UT (SC 3) and 18:41 UT (SC 1) when auroral emission reached footprints \rightarrow FACs provide magnetosphere-ionosphere connection

• For X Earthward of ~ 20 R_E, plasma sheet activity ($n\downarrow$, $<v>\uparrow$, $T\uparrow$, ΔB , etc.) is magnetically connected to intense auroral emission

• Plasma sheet activity kinetic in nature: $\ell < \rho_i$, t < 1/ Ω_{ci} , $\Delta B/B > 1$ (see Chen et al.[2000]; Fillingim et al.[2003]; Parks et al. [2002])

Western Pacific Geophysical Meeting

SM 31A-02 2

Compare global auroral images with in-situ plasma sheet data with the purpose of trying to understand the connection between auroral activity and plasma sheet dynamics

Both UVI and WIC saw substorm onset at ~ 18:38 UT; however, Cluster (X ~ -18 R_E) saw no effects until 18:40 UT (SC 3) and 18:41 UT (SC 1) when auroral emission reached footprints \rightarrow FACs provide magnetosphere-ionosphere connection

For X Earthward of ~ 20 R_E, plasma sheet activity (n↓, <v>↑, T↑, ΔB, etc.) is magnetically connected to intense auroral emission

• Plasma sheet activity kinetic in nature: $\ell < \rho_i$, t < 1/ Ω_{ci} , $\Delta B/B > 1$ (see Chen et al.[2000]; Fillingim et al.[2003]; Parks et al. [2002])

Western Pacific Geophysical Meeting

SM 31A-02

Compare global auroral images with in-situ plasma sheet data with the purpose of trying to understand the connection between auroral activity and plasma sheet dynamics

Both UVI and WIC saw substorm onset at ~ 18:38 UT; however, Cluster (X ~ -18 R_E) saw no effects until 18:40 UT (SC 3) and 18:41 UT (SC 1) when auroral emission reached footprints \rightarrow FACs provide magnetosphere-ionosphere connection

• For X Earthward of ~ 20 R_E, plasma sheet activity ($n\downarrow$, $<v>\uparrow$, $T\uparrow$, ΔB , etc.) is magnetically connected to intense auroral emission

 Plasma sheet activity kinetic in nature: l < ρ_i, t < 1/Ω_{ci}, ΔB/B > 1 (see Chen et al.[2000]; Fillingim et al.[2003]; Parks et al. [2002])

Western Pacific Geophysical Meeting

SM 31A-02 26