TIME HISTORY OF EVENTS AND MACROSCALE INTERACTIONS DURING SUBSTORMS

THEMIS Science Objectives:

- Onset and evolution of the macroscale *sub-storm instability*, a fundamental mode of mass, and energy transport throughout Geospace.
- Production of storm-time MeV electrons.
- Control of the solar wind-magnetosphere coupling by the bow shock, magnetosheath, and magnetopause.

Figure B-1. THEMIS objectives are addressed by 300 hrs/yr of tail-aligned four-probe conjunctions.

Alignment with NASA Strategic Objectives:

- How does our planet respond to solar variations? (Quest II of NASA SEC Theme).
- How does solar variability affect society? (Quest IV of NASA SEC Theme).

THEMIS is essential for understanding Earth's space environment and a prerequisite to understanding space weather.

Relationship to MMS:

THEMIS is a macroscale mission, with objectives and orbits complementary to those of micro/meso scale mission MMS.

Insti-	Science Team	Insti-	Science Team
tution	Ivienillei	tution	Mellibel
NASA Funded		Non-NASA funded	
UCB	V. Angelopoulos	TUBS	U. Auster
	C. W. Carlson ^{\dagger}		KH. Glassmeier
	G. T. Delory	IWF	W. Baumjohann
	R. P. Lin		R. Nakamura
	S. Mende		K. Schwingenschuh
	F. S. Mozer	MPAe	J. Buechner
	G. Parks	CETP	O. Le Contel
	T. D. Phan		A. Roux
	M. A. Temerin	UC	E. Donovan
NCLA	K. K. Khurana	ESTEC	P. Escoubet
	M. G. Kivelson		H. Laakso
	J. Raeder	TITech	M. Fujimoto
	C. T. Russell	CESR	C. J. Jacquey
CU	R. E. Ergun		D. LeQueau
	X. Li	UA	J. Samson
JHU/	A. T. Y. Lui		I. Voronkov
APL	D. Sibeck	USP	V. Sergeev
		NOAA	H. J. Singer
[†] Co-Is responsible for hardware delivery are italicized			

 Table B-1.
 THEMIS science team.

Mission Primary Objectives:

- Establish when and where substorms start.
- Determine how the individual substorm components interact macroscopically.
- Determine how substorms power the aurora.
- Identify how the substorm instability couples dynamically to local current disruption modes.

Mission Characteristics:

- Five-probe, 2yr lifetime baseline mission.
- Each tail-phase (winter) apogees align over US/Canada without routine stationkeeping.
- Ground-based determination of auroral onset.
- Instruments identical to ones recently built and flown by high-heritage institutions (Table B-1).
- Team members are leaders in substorm studies.

Science Payload:

- 3D FluxGate and Search Coil Magnetometers (FGM, SCM) obtain 1024 vector/s waveforms.
- 3D Electric Field Instrument (EFI) obtains DC to 1024 vector/s waveforms.
- Electrostatic Analyzer (ESA) measures i^+/e^- of energy 5eV-30keV (over 4π str once per spin).
- Solid State Telescope (SST) measures i⁺/e⁻ of 20keV-1MeV (over 108°×360° once per spin).

Spacecraft Characteristics:

- Spin-stabilized (T_{spin}=3s) probes.
- Dynamic stability maintained even during deployment fault scenarios.
- All components have flight heritage and are currently in production.
- Common instrument data processing unit built by single institution minimizes interfaces/risk
- Instrument and sub-system heritage coupled with LV capability provide for a mature design.

Payload Accommodation:

Figure B-3. Deployed THEMIS probe.

Education and Public Outreach:

- Ground observatories at rural schools permit project-based activities & science data access.
- UCB's mature SEGWay program develops informal education materials on main SEC themes and distributes them to large audiences through its established museum partnerships.

Management:

- PI Institution has a combined 150 person-years of successful track-record in management of NASA SEC instruments and missions.
- Probe busses built by Swales, a SMEX-Lite commercialization outfit, with demonstrated flight spacecraft development experience.
- Instruments provided by a small and experienced team with proven working relationships.
- Instrument and Mission I&T at Swales with participation of UCB mission operations team.
- International co-I team of leaders in substorm, radiation belt and magnetopause research and a rapid data dissemination plan stimulate high-quality interactions and optimal science return.

Launch:

- Delta II 2425-10 at CCAS.
- No epoch restriction on
- launch window.
 Inclination change ΔV accomplished via single apogee kick motor (AKM).
- Probe carrier assembly (PCA) permits standard (Marmon clamp) attach interfaces and release.
- Figure B-4. PCA on 3rd stage in DeltaII 2425-10 fairing.

