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What we know?

Charged Particle Motions in Earth’s Magnetic Field
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e Gyromotion motion: u=p?,/2mB (Ist), T g~10- sec
« Bounce Motion: J= prds (2nd), T b~10° sec
 Drift motion: ®=/BdA (3rd) , T d~10° sec




2-6 MeV electrons in the magnetosphere
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What else we know?

2-6 MeV electrons in the magnetosphere

TRAJECTORY OF
TRAPPED PARTICLE

PROTONS

e A charged particle will gain energy 1f transported to a
stronger magnetic field region.

e The observed electron population is the net result of a
balance among energization, transport, and loss.

e It is difficult to determine the relative contribution of radial
transport and in situ heating to the observed electron enhancements.




* Some observations and models, however, do provide
insight into acceleration mechanisms.

Energetic electrons during the CRRES mission
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Limited success in modeling, but relying assumptions that have
not been verified due to the single point measurement of CRRES.

Energetic Electron, Electric and Magnetic Fields
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e Other shock-associated events, but usually not long lasting.

SAMPEX measurements of 10-20 MeV electrons mirroring near 475 km, 1992-2005

(Looper et al., 2006)




11/07/2004

~ (Zong et al., 2007)




CLUSTER E-field

Energetic
electrons:
10s-100s keV
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e where do the 100s’ keV to ~1 MeV electrons come from?

e 10s’ keV electrons in the solar wind are not the direct source

(Liet al., 1997).
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Polar/Hist Eectrons

90-0B-20 (Selesnick and Blake, 1997)
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WIND /3D Electrons

(Courtesy of D. Larson)
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e Radial diffusion model were developed to predict MeV electrons at

geosynchronus orbit.
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So is the diffusion coeff.

The difference between the predicted results and the measurements is
minimized by least square fitting x? defined as:
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A comparison between measured and predicted
MeV electrons at Geosynchronous orbit
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e Simultaneous observations at geosynchronous orbit and L=4.2
(GPS) show that the phase space density is almost always higher
and increases first at geosynchronous orbit, and then enhances
at L=4.2 Hilmer et al. 2000).

* Phase space density analysis on Polar/HIST data (Selesnick and
Blake, 2000; Green and Kivelson, 2004) suggested that a peak of the
phase space density usually occurs between GEO orbit and
L=4.2 ==> The electrons can be energized in situ (violating their

first adiabatic invariant) inside GEO orbit. . :
reen and Kivelson, 2004

‘Multi-point measurements’ are
required to examine the
evolution of PSD.

‘Multi-point measurements’ of E
and B fields are required to
examine the pitch angle
scattering, as well as in situ
acceleration.
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Correlation of solar wind and electrons over a
broad energy ran at geosynchronous orbit
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Substorm Particle Injections

= particles from plasma sheet are

injected into the inner magnetosphere,

enhancements of energetic particles

(10s—100s keV) are often observed by N i ne. | mcesm
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An electric field and magnetic field pulse
passes through a background model field
produces particle spectra that evolve from
one THEMIS probe to another. Field
variations and spectral index and fluxes will
be compared against THEMIS data.
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LWS/RBSP (2012) Science Objectives:

e Differentiate among competing process affecting the
acceleration, transport and loss of radiation belt electrons.

* Phase space density, PSD, measurements at different L are required to
differentiate in-situ acceleration vs. radial transport

* Wide local time and L coverage allow observations of the global wave
fields associated with acceleration and loss.

ORBITALS

The final triumph: THEMIS stays healthy and RBSP & ORBITALS & ERG
are launched on ‘schedule’ !!




