

Hardi Peter, Sven Bingert, Pia Zacharias

Kiepenheuer-Institut für Sonnenphysik, Freiburg

peter@kis.uni-freiburg.de

1D vs 3D

1D lop models

- + good description of thermal evolution (heat conduction & radiative losses)
- limited self-consistent heating
- assumes loops are individuals

3D models

- + account for spatial complexity: interaction of structures
- + heat input as fct of space and time (but...)
- limited resolution (heat conduction...)

Tool to study coronal structure & dynamics

field line braiding or flux tube tectonics

- Parker (1972) ApJ 174, 499
- Priest et al (2002) ApJ 576, 533

braiding of magnetic field lines through **random motions** on the stellar surface

- → braided magnetic field in chromosphere and corona
- → currents

$$\boldsymbol{j} \sim \nabla \times \boldsymbol{B}$$

- \rightarrow Ohmic dissipation $H \sim \eta j^2$
- → heating of the corona through continuous reconnection

can be studied in 3D MHD models:

- resolution cannot match1D loop models (of course)
- self consistent description of structure, dynamics and evolution

Gudiksen & Nordlund (2002, 2005) ApJ 572, L113; 618, 1020

3D MHD model including spectral synthesis

3D MHD model: The Pencil Code

Brandenburg & Dobler (2002) Comp Phys Comm 147, 471

- high-order finite-difference code for compressible 3D MHD
- highly modular
- efficiently under MPI on massively parallel shared- or distributed-memory computers

- ► Box: 256³ grid : 50 x 50 x 30 Mm³ horizontally periodic, open top
- horitontal motions in photosphere close to solar convevtion pattern
- Ohmic heating concentrated in chromsophere and low corona

proper inclusion of energy balance:

- ▶ radiative losses
- ► heat conduction essential to get proper coronal pressure
- → only then reliable determination of EUV and X-ray emission!

- emissivity at each grid point (CHIANTI)
- integration of EUV and X-ray spectral line profiles
- → maps in intensity and Doppler shift
- → direct comparison to observations

Overview

- -- global properties / ensemble averages
- -- individual loops
- -- what are loops -- or what can they be?

Ensemble averages

Doppler shifts

spatial averages

- very good match in TR
- overall trend $v_{\rm D}$ vs. T quite good
- still no match in low corona
 - → boundary conditions?
 - → missing physics?

temporal variability

- high variability as observed
- for some times almost net blueshifts in low corona.

no "fine-tuning" applied!

best over-all match of models so far

Emission measure

$$DEM = n_{\rm e}^2 \frac{\mathrm{d}h}{\mathrm{d}T}$$

DEM inversion using CHIANTI:

- 1 using synthetic spectra derived from 3D MHD model
- 2 using solar observations (SUMER, same lines)
- good match to observations!!
 DEM increases
 towards low T in the model!

Supporting suggestions that numerous cool structures cause increase of DEM to low *T*AND:

velocities reduce grad T!

Emission measure

Supporting suggestions that numerous cool structures cause increase of DEM to low *T*AND:

velocities reduce grad T!

Temporal variability: average properties

observations:

[Brković, Peter & Solanki (2003), A&A 403, 725]

- > rms intensity fluctuations have pronounced peak at ~10⁵ K
- > rms Doppler shift variations increase monotonically

synthetic spectra from 3D model

- very good match of observed trend(s)
- correct description of "overall" variability
- real Sun shows variations
 on much shorter times (seconds)
 - → lack of spatial resolution in 3D MHD model?

638, 1086 Peter, Gudiksen & Nordlund (2006) ApJ

Individual loops

Loop heating and temperatures

Heating:

in coronal part: exponentially decay of heating rate

individual spikes: "nanoflares" (individual heating events)

Thermal structure:

coronal loops with flat T-profile some loops show condensations

3D models as input for 1D loops

Exponentially decreasing heating rate is very robust !!!

- -- independent of photospheric driver heating rate drops exponentially (when smoothed)
- -- what about different heating mechanisms?
- -- using exp.decay heating rate in 1D loop models seems meaningful

Do loops keep their identity?

- some fieldlines are "breathing"
- some fieldlines are jumping

(approx 40 min)

→ is the concept of loops / strands always justified?

What are loops?

Are loops seen in emission always along the magnetic field lines?

Run a numerical experiment...

Two different coronal setups

scaled-down active region

- ► two main polarities
- ▶ no magnetic network

magnetically complex region

scaled-down AR plus enhanced magnetic network

Two different coronal setups

scaled-down active region

- ► two main polarities
- ▶ no magnetic network
- → large loops systems form connecting the main polarities

(similar to Gudiksen & Nordlund 2002, 2005)

magnetically complex region

- scaled-down AR plus enhanced magnetic network
- → very fine threads of coronal loops
- → much finer than in previous 3D models
- → fine structures due to high complexity
- → at first sight better match to TRACE

iLoops - intensity loops in quit Sun network

iLoops – a projection effect

- ▶ we do *not* see loops rotate (or at least not clearly / some might be there...)
- ▶ we see iLoops forming and disappearing while the box rotates
 - → these iLoops are (mainly) a projection effect!

looking at the box horizontally from all around...

Emission in Ne VIII (770 Å) at log $T \sim 5.8$ (close to TRACE 171 Å)

Solar coronal loops

dominated by few magnetic patches

- (large) active regions –
- ▶ **bLoops** following magnetic field lines connecting opposite polarities

magnetically complex structure:

- magnetic network –
- ► iLoops as projection effects

Conclusions

- ➤ 3D models for accounting for spatial complexity can account for average properties
 - → Doppler shifts
 - → Emission Measure
 - → temporal variability

- → exponential decay of heating rate
- → spatial distribution of heating not sensitive to details of photospheric driver

→ "iLoops"

