
IDLdoc 3.3 Reference Guide

Michael Galloy

Abstract This reference guide simply lists options available for running IDLdoc and documenting code.
See the tutorial for a more friendly introduction to using IDLdoc.

IDLDOC routine keywords

There are quite a few keywords to IDLdoc to set various specifications for the output. Also see the “Cus-
tomizing Output” section for using templates for customized output.

Table 1 – Keywords for the IDLDOC routine

Keyword Description

ASSISTANT obsolete; no longer used
BROWSE_ROUTINES obsolete; no longer used
CHARSET set to the character set to be used for the output, default is “utf-8”
COLOR_OUTPUTLOG set to color output log messages, i.e., warning messages are dis-

played in red; IDLdoc will attempt to detect whether it is running
from a terminal capable of displaying color text, but this keyword
can force IDLdoc to attempt color display

COMMENT_STYLE output format for comments (“html”, “rst”, or “latex”); default is
“html”

COMPLEXITY_CUTOFFS McCabe complexity to exceed for a warning or flagged; default is
[10, 20]

DEBUG set to allow crashes with a stack trace instead of the default simple
message

EMBED embed CSS stylesheet instead of linking to it (useful for documen-
tation where individual pages must stand by themselves)

ERROR set to a named variable to return the error state of the IDLdoc call; 0
indicates no error, anything else is an error

FOOTER filename of file to insert into the bottom of each page of docs
... continued on next page

1

2 IDLDOC routine keywords

Table 1 – Keywords for the IDLDOC routine (... continued)

Keyword Description

FORMAT_STYLE style to use to parse file and routine comments (“idl”, “idldoc”, “ver-
batim”, or “rst”); default is “idldoc”

HELP set to print out the syntax of an IDLdoc call
LOG_FILE if present, send messages to this filename instead of stdout
MARKUP_STYLE markup used in comments (“rst” or “verbatim”); default is “verba-

tim” unless FORMAT_STYLE is set to “rst”, in which case, the
default is “rst”

N_WARNINGS set to a named variable to return the number of warnings for the
IDLdoc run

NONAVBAR set to not display the navbar
NOSOURCE set to not put source code into output
OUTPUT directory to place output; if not present, output will be placed in the

ROOT directory
OVERVIEW filename of overview text and directory information
PREFORMAT obsolete; no longer used
QUIET if set, don’t print info messages, only print warnings and errors
ROOT root of directory hierarchy to document; this is the only required

keyword
SILENT if set, don’t print any messages
ROUTINE_LINE_CUTOFFS number of lines in a routine before warning or flagged; default is

[75, 150]
SOURCE_LINK by default, IDLdoc copies the source code into the output; if this

keyword is set to 1 (relative link) or 2 (absolute link), then the output
documentation will point to the ROOT location of the original source
code

STATISTICS set to generate complexity statistics for routines
SUBTITLE subtitle for docs
TEMPLATE_PREFIX prefix for template’s names
TEMPLATE_LOCATION set to directory to find templates in
TITLE title of docs
USER set to generate user-level docs (private parameters, files are not

shown); the default is developer-level docs showing files and pa-
rameters

USE_LATEX set to use MathJax to automatically typeset any LaTeX style equa-
tions in comments

... continued on next page

rst format style 3

Table 1 – Keywords for the IDLDOC routine (... continued)

Keyword Description

VERSION set to print out the version of IDLdoc

Format styles

rst format style

The following tags are available in file comments, i.e., comment headers not immediately preceeding/fol-
lowing a routine header.

Table 2 – rst format style file tags

Tag name Arguments Attributes Description

:Author: comments none specifies the author of the file
:Copyright: comments none specifies the copyright information for the file
:Examples: comments none specifies examples of usage
:Hidden: none none if present, indicates the file is not to be shown

in the documentation
:History: comments none lists the history for the file
:Private: none none if present, indicates the file should not be

shown in user-level documentation (set with
the USER keyword to IDLdoc)

:Properties: property name,
comments

none describes properties of a class, i.e., a keyword
to getProperty, setProperty, or init

:Version: comments none specifies the version of the file

The following tags are available for comments immediately preceding or following a routine header.

Table 3 – rst format style routine tags

Tag name Arguments Attributes Description

:Abstract: none none if present, indicates the method is not imple-
mented and present only to specify the inter-
face to subclasses’ implementations

... continued on next page

4 rst format style

Table 3 – rst format style routine tags (... continued)

Tag name Arguments Attributes Description

:Author: comments none specifies the author of the routine
:Bugs: comments none specifies any issues found in the routine
:Categories: list none specifies a comma-separated list of category

names
:Copyright: comments none specifies the copyright for the routine
:Customer_id: comments none specifies a customer ID for the routine
:Description: comments none a tag for the standard comments for a rou-

tine; will be appended to standard comments
if both are present

:Examples: comments none specifies examples of using the routine
:Fields: fields none specifies the names of the field followed by

a description of the field
:File_comments: comments none equivalent to the main section in file-level

comments
:Hidden: none none if present, indicate the routine should not be

shown in the documentation
:Hidden_file: none none if present, indicates the file containing this

routine should not be shown in the documen-
tation

:History: comments none specifies the history of the routine
:Inherits: none none not used
:Keywords: params see below documents keywords of the routine
:Obsolete: none none if present, indicates the routine is obsolete
:Params: params see below documents positional parameters of the rou-

tine
:Post: comments none specifies any post-conditions of the routine
:Pre: comments none specifies any pre-conditions of the routine
:Private: none none if present, indicates the routine should not be

shown in user-level documentation (set with
the USER keyword to IDLdoc)

:Private_file: comments none if present, indicates the file containing this
routine should not shown in user-level doc-
umentation (set with the USER keyword to
IDLdoc)

... continued on next page

rst format style 5

Table 3 – rst format style routine tags (... continued)

Tag name Arguments Attributes Description

:Requires: comments none specifies the IDL version of the routine;
IDLdoc finds the routines requiring the high-
est IDL version and reports them on the
warnings page

:Returns: comments none specifies the return value of the function
:Todo: comments none specifies any todo items left for the routine
:Uses: comments none specifies any other routines, classes, etc.

needed by the routine
:Version: comments none specifies the version of the routine

The keyword and param tags above accept attributes. The available attributes are shown below.

Table 4 – rst format style tag attributes

Attribute name Syntax Description

in in indicates the parameter is an input
out out indicates the parameter is an output
optional optional indicates argument is optional
private private indicates argument is not shown if IDLdoc is run

in user mode (USER keyword to IDLdoc is set)
hidden hidden indicates the argument is not to be shown
required required indicates argument is required
type type=comments IDL data type of the argument
default default=comments default value of the argument

The tags available in an overview file describe the entire library. There are a few tags shared with the file
tags and the additional :Dirs: tag which provides a simple table of contents for the directories in the library.

Table 5 – rst format style tags for overview files

Tag name Arguments Attributes Description

:Author: comments none specifies the author of the library
:Copyright: comments none specifies the copyright for the library

... continued on next page

6 IDLdoc format style

Table 5 – rst format style tags for overview files (... continued)

Tag name Arguments Attributes Description

:Dirs: dirs none lists directories in the library along with a
description for each; excepts private and
hidden attributes in the same manner as the
:Params: and :Keywords: tags for routines

:History: comments none specifies the history of the library
:Version: comments none specifies the version of the library

A file named .idldoc placed in a directory is a “directory overview” file. It can contain properties of the
entire directory, but does not affect subdirectories. Directory overview files also have a few tags shared with
file tags.

Table 6 – rst format style tags for directory overview files

Tag name Arguments Attributes Description

:Author: comments none specifies the author of the files in the direc-
tory

:Copyright: comments none specifies the copyright for the files in the di-
rectory

:Hidden: none none if present, indicate the routine should not be
shown in the documentation

:History: comments none specifies the history of the library
:Private: none none if present, indicates the directory should not

be shown in user-level documentation (set
with the USER keyword to IDLdoc)

IDLdoc format style

The following tags are available in file comments, i.e. comment headers not immediately preceeding/fol-
lowing a routine header.

... continued on next page

IDLdoc format style 7

Table 7 – IDLdoc format style file tags (... continued)

Tag name Arguments Attributes Description

Table 7 – IDLdoc format style file tags

Tag name Arguments Attributes Description

@author comments none specifies the author of the file
@copyright comments none specifies the copyright information for the

file
@examples comments none specifies examples of usage
@hidden none none if present, indicates the file is not to be

shown in the documentation
@history comments none lists the history for the file
@private none none if present, indicates the file should not be

shown in user-level documentation (set with
the USER keyword to IDLdoc)

@property property name,
comments

none describes a property of a class, i.e., a key-
word to getProperty, setProperty, or init

@version comments none specifies the version of the file

The following tags are available for comments immediately preceding or following a routine header.

Table 8 – IDLdoc format style routine tags

Tag name Arguments Attributes Description

@abstract none none if present, indicates the method is not imple-
mented and present only to specify the inter-
face to subclasses’ implementations

@author comments none specifies the author of the routine
@bugs comments none specifies any issues found in the routine
@categories list none specifies a comma-separated list of category

names
@copyright comments none specifies the copyright for the routine
@customer_id comments none specifies a customer ID for the routine

... continued on next page

8 IDLdoc format style

Table 8 – IDLdoc format style routine tags (... continued)

Tag name Arguments Attributes Description

@description comments none a tag for the standard comments for a rou-
tine; will be appended to standard comments
if both are present

@examples comments none specifies examples of using the routine
@field fieldname and

comments
none specifies the name of the field followed by a

description of the field
@file_comments comments none equivalent to the main section in file-level

comments
@hidden none none if present, indicate the routine should not be

shown in the documentation
@hidden_file none none if present, indicates the file containing this

routine should not be shown in the documen-
tation

@history comments none specifies the history of the routine
@inherits none none not used
@keyword keyword name see below documents a keyword of the routine
@obsolete none none if present, indicates the routine is obsolete
@param param name see below documents a positional parameter of the rou-

tine
@post comments none specifies any post-conditions of the routine
@pre comments none specifies any pre-conditions of the routine
@private none none if present, indicates the routine should not be

shown in user-level documentation (set with
the USER keyword to IDLdoc)

@private_file comments none if present, indicates the file containing this
routine should not shown in user-level doc-
umentation (set with the USER keyword to
IDLdoc)

@requires comments none specifies the IDL version of the routine;
IDLdoc finds the routines requiring the high-
est IDL version and reports them on the
warnings page

@returns comments none specifies the return value of the function
@todo comments none specifies any todo items left for the routine

... continued on next page

IDLdoc format style 9

Table 8 – IDLdoc format style routine tags (... continued)

Tag name Arguments Attributes Description

@uses comments none specifies any other routines, classes, etc.
needed by the routine

@Version comments none specifies the version of the routine

The keyword and param tags above accept attributes. The available attributes are shown below.

Table 9 – IDLdoc format style tag attributes

Attribute name Syntax Description

in in indicates the parameter is an input
out out indicates the parameter is an output
optional optional indicates argument is optional
private private indicates argument is not shown if IDLdoc is run

in user mode (USER keyword to IDLdoc is set)
hidden hidden indicates the argument is not to be shown
required required indicates argument is required
type type=comments IDL data type of the argument
default default=comments default value of the argument

The tags available in an overview file describe the entire library. There are a few tags shared with the file
tags and the additional @dir tag which provides a simple table of contents for the directories in the library.

Table 10 – rst format style tags for overview files

Tag name Arguments Attributes Description

@author comments none specifies the author of the library
@copyright comments none specifies the copyright for the library
@dir dir none lists directory in the library along with a de-

scription for each
@history comments none specifies the history of the library
@version comments none specifies the version of the library

Directory overview files also have a few tags shared with file tags.

10 IDL format style

Table 11 – rst format style tags for overview files

Tag name Arguments Attributes Description

@author comments none specifies the author of the files in the direc-
tory

@copyright comments none specifies the copyright for the files in the di-
rectory

@hidden none none if present, indicate the routine should not be
shown in the documentation

@history comments none specifies the history of the library
@private none none if present, indicates the directory should not

be shown in user-level documentation (set
with the USER keyword to IDLdoc)

IDL format style

The IDL format style attempts to extract information from code using the IDL template, i.e., the form shown
in template.pro in the examples directory of the IDL distribution.

;+

; NAME:

; ROUTINE_NAME

;

; PURPOSE:

; Tell what your routine does here. I like to start with the words:

; "This function (or procedure) ..."

; Try to use the active, present tense.

;

; CATEGORY:

; Put a category (or categories) here. For example:

; Widgets.

;

; CALLING SEQUENCE:

; Write the calling sequence here. Include only positional parameters

; (i.e., NO KEYWORDS). For procedures, use the form:

;

; ROUTINE_NAME, Parameter1, Parameter2, Foobar

;

; Note that the routine name is ALL CAPS and arguments have Initial

; Caps. For functions, use the form:

IDL format style 11

;

; Result = FUNCTION_NAME(Parameter1, Parameter2, Foobar)

;

; Always use the "Result = " part to begin. This makes it super-obvious

; to the user that this routine is a function!

;

; INPUTS:

; Parm1: Describe the positional input parameters here. Note again

; that positional parameters are shown with Initial Caps.

;

; OPTIONAL INPUTS:

; Parm2: Describe optional inputs here. If you don't have any, just

; delete this section.

;

; KEYWORD PARAMETERS:

; KEY1: Document keyword parameters like this. Note that the keyword

; is shown in ALL CAPS!

;

; KEY2: Yet another keyword. Try to use the active, present tense

; when describing your keywords. For example, if this keyword

; is just a set or unset flag, say something like:

; "Set this keyword to use foobar subfloatation. The default

; is foobar superfloatation."

;

; OUTPUTS:

; Describe any outputs here. For example, "This function returns the

; foobar superflimpt version of the input array." This is where you

; should also document the return value for functions.

;

; OPTIONAL OUTPUTS:

; Describe optional outputs here. If the routine doesn't have any,

; just delete this section.

;

; COMMON BLOCKS:

; BLOCK1: Describe any common blocks here. If there are no COMMON

; blocks, just delete this entry.

;

; SIDE EFFECTS:

; Describe "side effects" here. There aren't any? Well, just delete

; this entry.

;

; RESTRICTIONS:

12 IDL format style

; Describe any "restrictions" here. Delete this section if there are

; no important restrictions.

;

; PROCEDURE:

; You can describe the foobar superfloatation method being used here.

; You might not need this section for your routine.

;

; EXAMPLE:

; Please provide a simple example here. An example from the

; DIALOG_PICKFILE documentation is shown below. Please try to

; include examples that do not rely on variables or data files

; that are not defined in the example code. Your example should

; execute properly if typed in at the IDL command line with no

; other preparation.

;

; Create a DIALOG_PICKFILE dialog that lets users select only

; files with the extension `pro'. Use the `Select File to Read'

; title and store the name of the selected file in the variable

; file. Enter:

;

; file = DIALOG_PICKFILE(/READ, FILTER = '*.pro')

;

; MODIFICATION HISTORY:

; Written by: Your name here, Date.

; July, 1994 Any additional mods get described here. Remember to

; change the stuff above if you add a new keyword or

; something!

;-

The routine and file headings are shown in the table below.

Table 12 – IDL format style routine and file headings

Heading name Description

calling sequence calling sequence for the routine; unneeded since IDLdoc gets the
calling sequence from the routine declaration

category list of comma or period separated categories
common blocks List common blocks, as in:

BLOCK1: description.

... continued on next page

IDL format style 13

Table 12 – IDL format style routine and file headings (... continued)

Heading name Description

example list a simple example
inputs list positional input parameters here as:

Param1: describe param1 here

Param2: describe param2 here

keyword parameters document the keyword parameters here, listed as:

KEY1: key1 description

KEY2: key2 description

modification history list history of modifications to the routine:

Written by: author name

July 1994 Describe modifications done on this

date

name name of the routine; unneeded since IDLdoc gets the name of
the routine from the routine declaration

optional inputs list optional input parameters here, like:

Param3: describe param3 here

optional outputs describe the optional outputs here
outputs documentation of the return value
procedure describe/cite any algorithms being used in this routine
purpose main description of the routine
restrictions describe restrictions
side effects describe side effects

There are no special headers for overview files or directory overview files using the IDL format style.

14 Markup styles

Markup styles

Markup styles specify annotations of text comments. The valid markup styles are: “rst”, “verbatim”, and
“preformattted”.

rst markup style

The rst markup style is the default markup style for the rst format style.

Table 13 – rst markup style

Feature Description

paragraphs Paragraphs are created by simply skipping a line:

; Merges a string array into a single string separated by

; carriage return/linefeeds.

;

; Defaults to use just linefeed on UNIX platforms and both

; carriage returns and linefeeds on Windows platforms

; unless the UNIX or WINDOWS keywords are set to force a

; particular separator.

code To place a block of code into the documentation, end a line with ::, skip a
line, indent the block of code, and skip another line:

; Set the decomposed mode, if available in the current

; graphics device i.e. equivalent to::

;

; device, get_decomposed=oldDec

; device, decomposed=dec

;

; The main advantage of this routine is that it can be used

; with any graphics device; it will be ignored in devices

; which don't support it.

... continued on next page

rst markup style 15

Table 13 – rst markup style (... continued)

Feature Description

links Another common annotation is to place a link in the documentation. For ex-
ample, to link “http://michaelgalloy.com” to the phrase “my website”, simply
do:

; Check out `my website <http://michaelgalloy.com>`.

But often, links are to other items in the documentation. For example, the
comments for a routine, might briefly mention some of its keywords and it
would be convenient to link to the documentation for these keywords. In this
case, just put the method names in backticks like:

; :Returns:

; Returns a triple as a `bytarr(3)` or `bytarr(3, n)` by

; default if a single color name or n color names are

; given. Returns a decomposed color index as a long or

; lonarr(n) if `INDEX` keyword is set.

;

; Returns a string array for the names if `NAMES`

; keyword is set.

IDL will search for a name matching the quoted string and link to the closest
one it finds. If the name is not found, as in bytarr(3) above, it will simply
be displayed in a monospace space font as code.

headings Different level headers can be added to comments, particularly useful for .idl-
doc files. Just underline with -, =, or ~. For example, the following beginning
to an .idldoc file, creates a level 1 header “TxDAP API Introduction”, with a
level 2 header “Basic Use” immediately after:

TxDAP API Introduction

======================

Basic Use

The order of use of the underlining determines the level of the header: the first
underlined header is assumed to be level 1. The second, unless it is the same
as the first, is assumed to be level 2, etc. From then on, titles underlined with
“=” are level 1 headers and those underlined with “-” are level 2 headers.

... continued on next page

http://michaelgalloy.com

16 verbatim markup style

Table 13 – rst markup style (... continued)

Feature Description

images The “image” directive allows images to be placed into comments. To use, put
the following on the end of a line:

.. image:: filename

where filename is any image file format read by READ_IMAGE. The filename
specified will be copied into the output directory.

embed objects The “embed” directive allows .svg files to be embedded in the documentation.
To use, put the following on the end of a line:

.. embed:: filename

HTML include HTML can be included directly in the output via the HTML directive:

.. html:: example

page title The “title” directive is available to provide a title for .idldoc files:

.. title:: cpt-city color tables

This title is used for the .idldoc file in the table of contents of available docu-
mentation.

verbatim markup style

The verbatim markup style is the default markup style for the IDLdoc or IDL format styles.

preformatted style

The preformatted markup style must be specified as a markup style, it is not the default for any format style.
Comments are copied directly into the output and wrapped with markup to display them in a fixed width
font.

Customizing output

The output produced by IDLdoc can be customized by modifying the template files provides in the tem-
plates/ directory of the IDLdoc distribution.

Customizing output 17

Instead of modifying the existing templates, it is best to copy the templates and specify their location with
the TEMPLATE_LOCATION keyword to IDLDOC. If you have multiple template families, the TEM-
PLATE_PREFIX keyword can be used to specify a string that prefixes each filename of the template family.
For example, IDLdoc itself uses the “latex-” prefix to specify the templates used to produce LaTeX output.

If IDLdoc is intended to produce some type of output besides HTML, the COMMENT_STYLE keyword
must be used to specify the engine to produce that type of output. IDLdoc provides the “html”, “latex”, and
“rst” comment styles. Creating new comment style engines is beyond the scope of this reference guide.

	IDLDOC routine keywords
	Format styles
	rst format style
	IDLdoc format style
	IDL format style

	Markup styles
	rst markup style
	verbatim markup style
	preformatted style

	Customizing output

