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A possible geometry for the SWEA detector is shown below. The design is basically the 
as other top hat analyzers except the outer hemisphere here is allowed to have a variable po
The outer (toroidal) grid is held at spacecraft ground. The inner toroidal grid is held at the s
potential as the outer hemisphere, Vo. The deflection voltages, Vd1 and Vd2 are held at Vo when no
deflection is required. When deflection is used, only one of Vd1 or Vd2 is changed, the other is
held at Vo. If no attenuation is desired then Vo is set to ground and the instrument behaves the
same as a top hat in normal operation. With qVo set to a positive value, incoming particles are
decelerated in the region between the two entrance grids. Deflectors can be used to guide p
into the entrance aperature, and then the hemispherical analyzer is used to select an energ
pass. The geometric factor is lower and the relative energy resolution is reduced.

The toroidal entrance grids are required in order to use the deceleration and angle deflec
the same time. If no deflection is desired, then these entrance grids could be avoided.

The reponse characteristics of this analyzer are easily estimated. With Vi and Vo defined as the
potential of the inner and outer hemispheres, we define:

The passband energy and energy resolution are easily determined:
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Hereka andw are characteristics of the geometry of a top hat analyzer and we have defin

. For typical Berkeley analyzers,ka~7 andw~0.1 (10%). By varying the value ofα
the relative energy resolution can be varied:

Geometric factor can be calculated by modelling a detector, calculating trajectories of pa
cles, and summing over the trajectories that succesfully reach the MCP plane.

Here the Response function, R(...) is either 1 or 0 depending upon whether or not a traje
starting outside the detector, passes through the given phase space coordinates and stops
MCP plane.

Conservation of phase space volume provides the following useful result:

This can be used to calculate how the geometric factor, G, will vary withα. Assuming the
energy bandpass of the detector is narrow:

where G0 is the geometric factor of the instrument forα=0:

The effective geometric factor is defined as:

Thus the net effect of the retarding potential is to decrease (improve) the energy resolution

factor of (1+α/ka) and lower the geometric factor by (1+α/ka)
2.

Although the SWEA detector is strictly for electrons, this scheme can be used for ions as
Typically the solar wind E/q spectrum is very narrow and intense at the proton peak. When
suring the narrow portion of the ion spectrum, attenuation can be used to avoid saturation o
detector and improve the energy resolution at the same time.

If α is negative, then the geometric factor is increased. This may be useful for improving
counting statistics of minor ion species that typically have higher E/q values than protons. H
ever this is done at the expense of energy (and angle) resolution.

The geometric factor is dependent upon Vi-Vo, which can be very small compared to the ma
nitude of either Vi or Vo. Thus small uncertainties in Vi or Vo can produce large uncertainties in
the overall geometric factor. High voltage supplies need to be fairly precise (at least very w
understood). Perhaps the inner hemisphere potential (Vi) and both deflector supplies (Vd1, Vd2)
can  be referenced to Vo instead of spacecraft ground.

The following pages show instrumental responses.
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f)
Response vs α/Ka with no deflection
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Instrument characteristics as a function ofα=Vo/(Vo-Vi). a) Poloidal response. b) Azi-
muthal response. c) Energy bandpass. d) Relative energy resolution. e) Geometric factor.
Normalized geometric factor.  Dashed lines represent one sigma.
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Response vs deflection, α/Ka = 0
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Instrument characteristics vs. deflection voltage. Deflections upto ~65o degrees are
possible with little loss of geometric factor.  Note: Deflectors are not operated symme
rically: either Vd1=Vo or Vd2=Vo.

ka=6.5



Response vs deflection, α/Ka = 4
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Deflection response with attenuation on. A 65o deflection is not quite attained, however
this can be fixed on future designs.


