;+
;PROCEDURE: sel_matrix_make
;
;Purpose:
; Creates a set of matrices that will rotate data from SSE coordinate to SEL coordinate
;Arguments:
;Inputs:
; name_lun_att_x: Name of the tplot variable(s) storing the SEL-X basis vectors in
; GEI coords. Vector data can also be input and should be of the
; form [t,x,y,z] .
;
; name_lun_att_z: Name of the tplot variable(s) storing the SEL-Z basis vectors in
; GEI coords. Vector data can also be input and should be of the
; form [t,x,y,z].
;
; Input names can have globbing or can be arrays of names, but number of elements for
; lun_att_x and and lun_att_z after globbing must match.
;
;Outputs:
; fail: Will be set to 1 if operation failed, returns 0 if operation succeeded. Will not signal failure if
; at least one input was processed.
;
;
;Keywords
; suffix: The suffix to be appended to the tplot variables that the output matrices will be stored in.
; (Default: sse_sel_mat)
; newname: The name of the output matrix. If this keyword is used with multiple input values, the outputs
; may overwrite each other. So you should only set this keyword if there is
; a single value for the state input. This variable should be used if
; vector data is input
; ignore_dlimits: If set, will force routine to generate matrix, even if inputs are
; labeled as the wrong coordinate system. This flag is ignored if vector
; data in input.
;
;Example:
;
; timespan,'2007-03-23'
; thm_load_slp
; sel_matrix_make,'slp_lun_att_x','slp_lun_att_z',newname='sel_mat'
; thm_load_state,probe='a'
; thm_cotrans,'tha_pos',out_coord='sse',out_suff='_sse'
; tvector_rotate,'sel_mat','tha_state_pos_sse'
;
; Or if using vector data
;
; sel_matrix_make,lun_att_x,lun_att_z,newname=sel_mat
;
;
;NOTES:
; #1 SEL is defined as:
; X: TBD
; Y: TBD
; Z: TBD
;
;
;Adapted from sse_matrix_make, written by Jenni Kissinger and Patrick Cruce
;
;
;
; $LastChangedBy: cgoethel $
; $LastChangedDate: 2011-11-15 12:50:08 -0800 (Tue, 15 Nov 2011) $
; $LastChangedRevision: 9298 $
; $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/trunk/general/cotrans/special/sse/sel_matrix_make.pro $
;-
pro sel_matrix_make,name_sun_pos,name_moon_pos,name_lun_att_x,name_lun_att_z,newname=newname,suffix=suffix,fail=fail,ignore_dlimits=ignore_dlimits
fail = 1
if n_params() ne 4 then begin
dprint,'ERROR: Requires two parameters'
return
endif
if size(name_sun_pos, /type) eq 7 then tplotvar=1 else tplotvar=0
if tplotvar then begin
att_x_varnames = tnames(name_lun_att_x)
if n_elements(att_x_varnames) eq 1 && att_x_varnames[0] eq '' then begin
dprint,'ERROR: name_lun_att_x not a valid tplot variable'
return
endif
att_z_varnames = tnames(name_lun_att_z)
if n_elements(att_z_varnames) eq 1 && att_z_varnames[0] eq '' then begin
dprint,'ERROR: name_lun_att_z not a valid tplot variable'
return
endif
if n_elements(att_x_varnames) ne n_elements(att_z_varnames) then begin
dprint,'ERROR: Number of solar and lunar positions does not match'
return
endif
if ~keyword_set(suffix) then begin
suffix = '_sel_mat'
endif
for i = 0,n_elements(att_x_varnames)-1 do begin
coord = cotrans_get_coord(att_x_varnames[i])
if coord[0] eq 'unknown' then begin
dprint,'Warning: ' + att_x_varnames[i] + ' coordinate system unknown. Please be certain input is in GEI coordinates.'
endif else if coord[0] ne 'gei' then begin
dprint,att_x_varnames[i] + ' is not in GEI coordinates. Skipping variable.'
continue
endif
coord = cotrans_get_coord(att_z_varnames[i])
if coord[0] eq 'unknown' then begin
dprint,'Warning: ' + att_z_varnames[i] + ' coordinate system unknown. Please be certain input is in GEI coordinates.'
endif else if coord[0] ne 'gei' then begin
dprint,att_z_varnames[i] + ' is not in GEI coordinates. Skipping variable.'
continue
endif
get_data,att_x_varnames[i],data=att_x_gei,dlimits=dl,limits=l
str_element,att_x_gei,'y',success=s
if s eq 0 then begin
dprint,att_x_varnames[i] + ' is malformed tplot variable.(No Y component)
continue
endif
str_element,att_x_gei,'x',success=s
if s eq 0 then begin
dprint,att_x_varnames[i] + ' is malformed tplot variable.(No x component)
continue
endif
get_data,att_z_varnames[i],data=att_z_gei,dlimits=dl,limits=l
str_element,att_z_gei,'y',success=s
if s eq 0 then begin
dprint,att_z_varnames[i] + ' is malformed tplot variable.(No Y component)
continue
endif
str_element,att_z_gei,'x',success=s
if s eq 0 then begin
dprint,att_z_varnames[i] + ' is malformed tplot variable.(No x component)
continue
endif
att_x_dim = dimen(att_x_gei.y)
if n_elements(att_x_dim) ne 2 || att_x_dim[1] ne 3 then begin
dprint,att_x_varnames[i] + ' is malformed tplot variable.(Wrong dimensions)
continue
endif
att_z_dim = dimen(att_z_gei.y)
if n_elements(att_z_dim) ne 2 || att_z_dim[1] ne 3 then begin
dprint,att_z_varnames[i] + ' is malformed tplot variable.(Wrong dimensions)
continue
endif
out_data = dblarr(att_x_dim[0],3,3)
; original version, using angular rotation in the ecliptic plane
;
; lun_sun_distance_xy = SQRT((att_z_gei.y[*,1])^2+(att_x_gei.y[*,0]-att_z_gei.y[*,0])^2)
; xyangle = ASIN(att_z_gei.y[*,1]/lun_sun_distance_xy)
;
; ;X basis vector
; out_data[*,0,0] = cos(xyangle)
; out_data[*,0,1] = sin(xyangle)
; ;out_data[*,0,2] = 0 ;not needed, since initialized to 0, line here for clarity
; ;Y basis vector
; out_data[*,1,0] = -sin(xyangle)
; out_data[*,1,1] = cos(xyangle)
; ;out_data[*,1,2] = 0 ;not needed, since initialized to 0, line here for clarity
; ;Z basis vector
; ;out_data[*,2,0] = 0 ;not needed, since initialized to 0, line here for clarity
; ;out_data[*,2,1] = 0 ;not needed, since initialized to 0, line here for clarity
; out_data[*,2,2] = 1
; new version uses cross product methodology, will not necessarily
; rotate only in the ecliptic plane.
;X basis vector
;normalize X basis vector
tnormalize,att_x_varnames[i],newname='sel_x_gei'
cotrans,'sel_x_gei','sel_x_gse',/gei2gse
; Note that since sel_x_gse is *not* marked as a "position" variable
; via its dlimits, gse2sse will only do the rotation, and not
; the translation from geocentric to selenocentric coordinates.
; That happens to be exactly what we want here, and for
; sel_z_gse below.
gse2sse,'sel_x_gse',name_sun_pos,name_moon_pos,'sel_x_sse',ignore_dlimits=ignore_dlimits
get_data,'sel_x_sse',data=x_axis
out_data[*,0,*] = x_axis.y
;Z basis vector
tnormalize,att_z_varnames[i],newname='sel_z_gei'
cotrans,'sel_z_gei','sel_z_gse',/gei2gse
gse2sse,'sel_z_gse',name_sun_pos,name_moon_pos,'sel_z_sse',ignore_dlimits=ignore_dlimits
get_data,'sel_z_sse',data=z_axis
out_data[*,2,*] = z_axis.y
;Y basis vector
tcrossp,'sel_z_sse','sel_x_sse',newname='sel_y_sse'
get_data,'sel_y_sse',data=y_axis
out_data[*,1,*] = y_axis.y ;no need to normalize. Axes should already be orthogonal
str_element,dl,'labflag',value=0,/add_replace
str_element,dl,'data_att.coord_sys','sel',/add_replace
str_element,dl,'data_att.source_sys','sse',/add_replace
if ~keyword_set(newname) then begin
store_data,att_x_varnames[i]+suffix,data={x:att_x_gei.x,y:out_data},dlimits=dl,limits=l
endif else begin
store_data,newname,data={x:att_x_gei.x,y:out_data},dlimits=dl,limits=l
endelse
endfor
endif else begin ; end of tplot var
att_x_dim = dimen(name_lun_att_x)
out_data = dblarr(att_x_dim[0],3,3)
;X basis vector
;normalize X basis vector
tnormalize,name_lun_att_x[*,1:3],out=sel_x_gei
cotrans,sel_x_gei,sel_x_gse,name_lun_att_x[*,0],/gei2gse
sel_x = name_lun_att_x
sel_x[*,1:3]=sel_x_gse
gse2sse,sel_x,name_sun_pos,name_moon_pos,sel_x_sse, /rotation_only
out_data[*,0,*] = sel_x_sse[*,1:3]
;Z basis vector
tnormalize,name_lun_att_z[*,1:3],out=sel_z_gei
cotrans,sel_z_gei,sel_z_gse,name_lun_att_z[*,0],/gei2gse
sel_z = name_lun_att_z
sel_z[*,1:3]=sel_z_gse
gse2sse,sel_z,name_sun_pos,name_moon_pos,sel_z_sse,/rotation_only
out_data[*,2,*] = sel_z_sse[*,1:3]
;Y basis vector
tcrossp,sel_z_sse[*,1:3],sel_x_sse[*,1:3],out=sel_y_sse
out_data[*,1,*] = sel_y_sse ;no need to normalize. Axes should already be orthogonal
newname = out_data
endelse ; end of vector data
fail = 0
end