Function temp_dtx_test, dtx0, min_dtx_fraction = min_dtx_fraction, _extra = _extra
; Function to get an effective minimum value for dtx, this will reject
; any negative or unduly small values, that show up fewer times than
; min_dtx_fraction (default is 0.10) times the peak value
;No zero values are allowed
If(keyword_set(min_dtx_fraction)) Then mf = min_dtx_fraction Else mf = 0.10
xxx = where(dtx0 Gt 0)
If(xxx[0] Eq -1) Then Return, 1.0 ;you've got troubles
;Get a histogram of log(dtx)
dtx = alog10(dtx0[xxx]) ;bin in orders of magnitude
minv = double(long(min(dtx)))-1.0d0
maxv = double(long(max(dtx)))+1.0d0 ;note that there should always be 3 bins
h = histogram(dtx, min = minv, max = maxv, binsize = 1.0)
edges = minv+findgen(n_elements(h)+1)
lowest_reasonable_bin = min(where(h Ge mf*max(h)))
otp = min(dtx[where(dtx Ge edges[lowest_reasonable_bin])])
otp = 10.0^otp
Return, otp
End
Function temp_t_integration, array, n
;simulate a time integration using the smooth function
;at each point,
;result = n*smooth(array, n)/(n-1)-shift(array,
;-n/2)/(2.0*(n-1))-shift(array, n/2)/(2.0*(n-1))
;put n values on either side of the array to avoid edge issues
narr = n_elements(array)
first = array[0]
last = array[narr-1]
array_x = [replicate(first, n), temporary(array), replicate(last, n)]
array_x = n*smooth(array_x, n)/(n-1)-$
shift(array_x,-n/2)/(2.0*(n-1))-$
shift(array_x, n/2)/(2.0*(n-1))
return, array_x[n:n+narr-1]
End
;+
;NAME:
; smooth_in_time
;PURPOSE:
; Runs smooth for irregular grids, after regularising grid
;CALLING SEQUENCE:
; ts = smooth_in_time(array, time_array, dt, /backward, /forward,
; /double, /no_time_interp)
;INPUT:
; array = a data array, can be 2-d (ntimes, n_something_else), the
; first index is smoothed or averaged.
; time_array = a time array (in units of seconds)
; dt = the averaging time (in seconds)
;KEYWORDS:
; backward = if set, perform an average over the previous dt, the
; default is to average from t-dt/2 to t_dt/2
; forward = if set, perform an average over the next dt
; double = if set, do calculation in double precision
; regardless of input type. (If input data is double
; calculation is always done in double precision)
; no_time_interp = if set, do *not* interpolate the data to the
; minimum time resolution. The default procedure is
; to interpolate the data to a regularly spaced grid,
; and then use ts_smooth to get the running
; average. This alternative can be slow.
; smooth_nans = if set, replace Nan values in the input array with the
; average values calculated using the ts_smooth
; process. This has not been implemented for the
; no_time_interp option.
; true_t_integration = if set, subtract 1/2 of the end points of the
; integration from each value, to obtain the
; value for an integration over time of the
; appropriate interval. This has not been
; implemented for the no_time_interp option.
; Ths is created for the high_pass_filter.
; interp_resolution = If time interpolation is being used, set this
; option to control the number of seconds between
; interpolated samples. The default is to use
; the value of the smallest separation between
; samples. Any number higher than this will sacrifice
; output resolution to save memory. (NOTE: This option
; will not be applied if no interpolation is being
; performed because either (1) no_time_interp is set or
; (2) the sample rate of the data is constant)
; dtx_min_fraction = When interp_resolution is not set, the default is to use
; the value of the smallest separation between
; samples, with the caveat that this value of smallest
; separation has to occur relatively
; frequently. Dtx_min_fraction is used to get an
; effective value for the minimum of the input time
; resolution. If a suspected minimum value occurs
; less than dtx_min_fraction times the peak of a
; histogram of time resolutions, it is
; discarded. The default value is 0.10
; interactive_warning = if keyword is set pops up a message box if there are memory problems and asks
; the user if they would like to continue
; interactive_varname = set this to a string indicating the name of the quantity to be used in the warning message.
; warning_result = assign a named variable to this keyword to determine the result of the computation
; display_object = Object reference to be passed to dprint for output.
;
;OUTPUT:
; ts = the data array smoothed or averaged
;
;
;HISTORY:
; 13-mar-2008, jmm, jimm@ssl.berkeley.edu, hacked from
; high_pass_filter.pro and added ts_smooth as the default
; 13-mar-2008, ts_smooth is way too slow, just uses smooth.pro now
; 6-may-2008, jmm, added sort for input data for cases with
; non-monotonic time_arrays
; 23-apr-2008, pcruce, Added padding for no_time_interp option, added _extra keyword
; 28-apr-2008, pcruce, Added interp_resolution option, added memory warning,
; mod to guarantee that precision of output is at least as
; large as precision of input
;$LastChangedBy: jimmpc1 $
;$LastChangedDate: 2012-06-28 13:25:02 -0700 (Thu, 28 Jun 2012) $
;$LastChangedRevision: 10658 $
;$URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/trunk/general/misc/smooth_in_time.pro $
;-
Function smooth_in_time, array, time_array, dt, $
backward = backward,$
forward = forward, $
double = double, $
no_time_interp = no_time_interp, $
smooth_nans = smooth_nans, $
true_t_integration = true_t_integration, $
interp_resolution = interp_resolution, $
interactive_warning = interactive_warning, $
interactive_varname = interactive_varname, $
warning_result = warning_result, $
display_object=display_object, $
_extra = _extra
out_array = -1 ;initialize
warning_result = 1
;; determine number of rows in input array
;; Note: this is a tplot array, reversed from
;; idl array
n = n_elements(array[*, 0])
;; Make sure time values exist for each entry
If(n_elements(time_array) Ne n) Then Begin
dprint, 'Array mismatch', display_object=display_object
return, out_array
Endif
;; Produces array of values, the first being the dimension of the array
;; which will later be used as a check
sz = size(array)
If(sz[0] Eq 2) Then nv = sz[2] Else nv = 1 ;the 2nd index will be looped over
;; Now declare output array, fill with NaN's
If(keyword_set(double)) || is_num(array,/double) Then Begin
out_array = double(array) & out_array[*] = !values.d_nan
Endif Else Begin
out_array = float(array) & out_array[*] = !values.f_nan
Endelse
;; Do the calculation
If(keyword_set(no_time_interp)) Then Begin
;; This for loop will take us through the full array of values; this
;; can be very slow
;Note: The loop below could probably be speed-optimized by use of the value_locate routine
;which would prevent the where function from being called on every iteration
;This might entail the need to allocate copies of the inputs for the duration
For j = 0l, n-1 Do Begin
;; Get subscripts of group to take running average over
;; nss is the number values returned
If(keyword_set(backward)) Then Begin
t0 = time_array[j]-dt
t1 = time_array[j]
Endif Else If(keyword_set(forward)) Then Begin
t0 = time_array[j]
t1 = time_array[j]+dt
Endif Else Begin
t0 = time_array[j]-dt/2.0
t1 = time_array[j]+dt/2.0
Endelse
;padding is done in-place. This probably entails a speed hit because the operation is repeated,
;But it is assumed that the /no_time_interp is being used because the user values space over time
ss = where([time_array[0]-dt/2.0, time_array, time_array[n-1]+dt/2.0] Lt t1 And $
[time_array[0]-dt/2.0, time_array, time_array[n-1]+dt/2.0] Ge t0, nss)
;; Check if subscripts available
If(nss Gt 0) Then Begin
For k = 0l, nv-1 Do Begin
ok = where(finite(([array[0, k], array[*, k], array[n-1, k]])[ss]), nok) ;Do not include NaN's
If(nok Gt 0) Then out_array[j, k] = total(([array[0, k], array[*, k], array[n-1, k]])[ss[ok]])/nok
Endfor
Endif
Endfor
Endif Else Begin ;default behavior is to interpolate
For k = 0, nv-1 Do Begin
ok = where(finite(array[*, k]), nok) ;Do not include NaN's
If(nok Gt 0) Then Begin
tx = time_array[ok] ;ok times
ax = array[ok, k] ;ok data points
dtx = tx[1:*]-tx
bad_dtx = where(dtx Le 0.0, nbad_dtx)
If(nbad_dtx Gt 0) Then Begin ;sort the data
dprint, 'Data is non-monotonic, Sorting...', display_object=display_object
ss_tx = sort(tx)
tx = tx[ss_tx]
ax = ax[ss_tx]
dtx = tx[1:*]-tx
Endif
if keyword_set(interp_resolution) then begin
dtx0 = interp_resolution[0] ;needs to be scalar
endif else begin
dtx0 = temp_dtx_test(dtx, _extra = _extra)
dtx0 = dtx0[0] ;needs to be scalar
endelse
; dtx0 = min(dtx[where(dtx Gt 0.0)]) ;min value of t resolution
not_min = where(abs(dtx-dtx0) Gt dtx0/100.0, cnot_min) ;small allowance
nrv = ceil(dt/dtx0)
;Note that for non-forward or backwards, this value must be an odd
;number gt 3
If(nrv Lt 3) Then begin
dprint, 'Number of smoothing points is LT 3, Smoothing over 3*minimum resolution', display_object=display_object
endif
nrv = nrv > 3
If(nrv Mod 2 Eq 0) Then Begin
dprint, 'Even number of smoothing points:'+strcompress(string(nrv))+', Adding 1', display_object=display_object
nrv = nrv+1
Endif
;Now do the smoothing
If(cnot_min Ne 0) Then Begin
;Create the regular grid
nr = ceil((tx[nok-1]-tx[0])/dtx0)
t1 = tx[0]+dtx0*dindgen(nr)
Endif Else Begin
t1 = tx
nr = nok
Endelse
;first loop warning on memory allocation
if k eq 0 then begin
if is_num(out_array,/double) then begin
vector_mem_factor = 2
endif else begin
vector_mem_factor = 1
endelse
;elements in target * 4 bytes/word * ((2 words per time element)+(1 or 2 words per data element))
;divided by 1024 bytes per kB and 1024 kB per mB
mem_usage_mb_interp = 4D*n_elements(t1)*(2D + vector_mem_factor)/(1024D^2)
if keyword_set(true_t_integration) then begin
;(padding elements(front and back) + n of data elements)*4 bytes/word*(1 or 2 bytes per data element)
;divided by 1024 bytes per kB and 1024 kB per mB
mem_usage_mb_smooth = (nrv * 2 + n_elements(t1))*4*vector_mem_factor*2/(1024D^2)
endif else begin
mem_usage_mb_smooth = 0
endelse
mem_usage_total = max([mem_usage_mb_smooth,mem_usage_mb_interp])
;only warn if memory usage is significant
if mem_usage_total gt 100 then begin
;because of temporary allocation during operations, memory allocation may be as much as double the declared usage
if keyword_set(interactive_warning) then begin
if keyword_set(interactive_varname) then begin
s = 'WARNING: Operation on ' + interactive_varname + ' will take between ' + strtrim(mem_usage_total,2) + ' MB and ' + strtrim(2*mem_usage_total,2) + ' MB of memory. Do you want to continue?'
endif else begin
s = 'WARNING: Operation will take between ' + strtrim(mem_usage_total,2) + ' MB and ' + strtrim(2*mem_usage_total,2) + ' MB of memory. Do you want to continue?'
endelse
ok = dialog_message(s,/question,/center)
if strlowcase(ok) eq 'no' then begin
warning_result = 0
return,out_array
endif
endif else begin
msg = 'WARNING: Operation will take between ' + strtrim(mem_usage_total,2) + ' MB and ' + strtrim(2*mem_usage_total,2) + ' MB of memory'
dprint, msg, display_object=display_object
endelse
endif
endif
out1 = interpol(temporary(ax), temporary(tx), t1) ;interp to hi-res
;get the average, pad backward and forwards if needed
If(keyword_set(backward)) Then Begin
out1 = [fltarr(nrv/2)+out1[0], out1]
If(keyword_set(true_t_integration)) Then Begin
rout1 = temp_t_integration(out1, nrv)
Endif Else rout1 = smooth(out1, nrv, /edge_truncate)
rout1 = rout1[0:nr-1]
Endif Else If(keyword_set(forward)) Then Begin
out1 = [out1, fltarr(nrv/2)+out1[nr-1]]
If(keyword_set(true_t_integration)) Then Begin
rout1 = temp_t_integration(out1, nrv)
Endif Else rout1 = smooth(out1, nrv, /edge_truncate)
rout1 = rout1[nrv/2:*]
Endif Else Begin
If(keyword_set(true_t_integration)) Then Begin
rout1 = temp_t_integration(out1, nrv)
Endif Else rout1 = smooth(out1, nrv, /edge_truncate)
Endelse
;And interpolate back to the full time_array
If(keyword_set(smooth_nans)) Then Begin
out_array[*, k] = interpol(rout1, t1, time_array)
Endif Else out_array[ok, k] = interpol(rout1, t1, time_array[ok])
Endif
Endfor
Endelse
Return, out_array
End