;+ ;FUNCTION: je_4d(dat,ENERGY=en,ERANGE=er,EBINS=ebins,ANGLE=an,ARANGE=ar,BINS=bins,MASS=ms,m_int=mi,q=q,mincnt=mincnt) ;INPUT: ; dat: structure, 4d data structure filled by themis routines mvn_sta_c6.pro, mvn_sta_d0.pro, etc. ;KEYWORDS ; ENERGY: fltarr(2), optional, min,max energy range for integration ; ERANGE: fltarr(2), optional, min,max energy bin numbers for integration ; EBINS: bytarr(na), optional, energy bins array for integration ; 0,1=exclude,include, ; na = dat.nenergy ; ANGLE: fltarr(2,2), optional, angle range for integration ; theta min,max (0,0),(1,0) -90<theta<90 ; phi min,max (0,1),(1,1) 0<phi<360 ; ARANGE: fltarr(2), optional, min,max angle bin numbers for integration ; BINS: bytarr(nb), optional, angle bins array for integration ; 0,1=exclude,include, ; nb = dat.ntheta ; BINS: bytarr(na,nb), optional, energy/angle bins array for integration ; 0,1=exclude,include ; MASS: intarr(nm) optional, ;PURPOSE: ; Returns the energy flux, Je in eV/cm^2-s, corrects for spacecraft potential if dat.sc_pot exists ;NOTES: ; Function normally called by "get_4dt" to ; generate time series data for "tplot.pro". ; ;CREATED BY: ; J.McFadden 2014-02-26 ;LAST MODIFICATION: ;- function je_4d,dat2,ENERGY=en,ERANGE=er,EBINS=ebins,ANGLE=an,ARANGE=ar,BINS=bins,MASS=ms,m_int=mi,q=q,mincnt=mincnt eflux = 0. if dat2.valid eq 0 then begin print,'Invalid Data' return, eflux endif dat = conv_units(dat2,"counts") ; initially use counts na = dat.nenergy nb = dat.nbins nm = dat.nmass data = dat.data energy = dat.energy denergy = dat.denergy theta = dat.theta/!radeg phi = dat.phi/!radeg dtheta = dat.dtheta/!radeg dphi = dat.dphi/!radeg domega = dat.domega if ndimen(domega) eq 0 then domega=replicate(1.,dat.nenergy)#domega mass = dat.mass*dat.mass_arr if keyword_set(en) then begin ind = where(energy lt en[0] or energy gt en[1],count) if count ne 0 then data[ind]=0. endif if keyword_set(ms) then begin ind = where(dat.mass_arr lt ms[0] or dat.mass_arr gt ms[1],count) if count ne 0 then data[ind]=0. endif if keyword_set(mi) then begin dat.mass_arr[*]=mi & mass=dat.mass*dat.mass_arr endif else begin dat.mass_arr[*]=round(dat.mass_arr-.1)>1. & mass=dat.mass*dat.mass_arr ; the minus 0.1 helps account for straggling at low mass endelse if keyword_set(mincnt) then if total(data) lt mincnt then return,0 dat.data=data dat = conv_units(dat,"df") ; Use distribution function data=dat.data Const = 2./mass/mass*1e5 charge=dat.charge if keyword_set(q) then charge=q energy=(dat.energy+charge*dat.sc_pot/abs(charge))>0. ; energy/charge analyzer, require positive energy if dat.nbins eq 1 then begin ; assume you want the omni-directional flux if keyword_set(ms) then return,total(Const*denergy*(energy)^2*data) else return,total(Const*denergy*(energy)^2*data,1) endif else begin eflux3dx = total(total(Const*denergy*(energy)^2*data*(dtheta/2.+cos(2*theta)*sin(dtheta)/2.)*(2.*sin(dphi/2.)*cos(phi)),1),1) eflux3dy = total(total(Const*denergy*(energy)^2*data*(dtheta/2.+cos(2*theta)*sin(dtheta)/2.)*(2.*sin(dphi/2.)*sin(phi)),1),1) eflux3dz = total(total(Const*denergy*(energy)^2*data*(2.*sin(theta)*cos(theta)*sin(dtheta/2.)*cos(dtheta/2.))*dphi,1),1) endelse if keyword_set(ms) then begin eflux3dx = total(eflux3dx) eflux3dy = total(eflux3dy) eflux3dz = total(eflux3dz) endif ; units are eV/cm^2-s return, transpose([[eflux3dx],[eflux3dy],[eflux3dz]]) end