;+ ;FUNCTION: dm_3d_new(dat,ENERGY=en,ERANGE=er,EBINS=ebins,ANGLE=an,ARANGE=ar,BINS=bins) ;INPUT: ; dat: structure, 3d data structure filled by themis routines get_th?_p??? ;KEYWORDS ; ENERGY: fltarr(2), optional, min,max energy range for integration ; ERANGE: fltarr(2), optional, min,max energy bin numbers for integration ; EBINS: bytarr(na), optional, energy bins array for integration ; 0,1=exclude,include, ; na = dat.nenergy ; ANGLE: fltarr(2,2), optional, angle range for integration ; theta min,max (0,0),(1,0) -90<theta<90 ; phi min,max (0,1),(1,1) 0<phi<360 ; ARANGE: fltarr(2), optional, min,max angle bin numbers for integration ; BINS: bytarr(nb), optional, angle bins array for integration ; 0,1=exclude,include, ; nb = dat.ntheta ; BINS: bytarr(na,nb), optional, energy/angle bins array for integration ; 0,1=exclude,include ;PURPOSE: ; Returns the momentum tensor, [Mxx,Myy,Mzz,Mxy,Mxz,Myz], eV/cm^3 ;NOTES: ; Function normally called by "get_3dt" or "get_2dt" to ; generate time series data for "tplot.pro". ; ;CREATED BY: ; J.McFadden 10-03-13 ;LAST MODIFICATION: ; ; ;- function dm_3d_new,dat2,ENERGY=en,ERANGE=er,EBINS=ebins,ANGLE=an,ARANGE=ar,BINS=bins p3dxx = 0. & p3dyy = 0. & p3dzz = 0. & p3dxy = 0. & p3dxz = 0. & p3dyz = 0. if dat2.valid eq 0 then begin dprint, 'Invalid Data' return, [p3dxx,p3dyy,p3dzz,p3dxy,p3dxz,p3dyz] endif dat = dat2 dat1 = conv_units(dat,"counts",_extra=_extra) dat1.data(*)=1. ; make an array with 1 count in each bin dat = conv_units(dat,"df",_extra=_extra) ; Use distribution function dat1 = conv_units(dat1,"df",_extra=_extra) ; Use distribution function na = dat.nenergy nb = dat.nbins if dat.data_name eq 'Pesa High' and dat.nbins eq 97 then dat.data(*,96)=0. ebins2=replicate(1b,na) if keyword_set(en) then begin ebins2(*)=0 er2=[thm_energy_to_ebin(dat,en)] if er2(0) gt er2(1) then er2=reverse(er2) ebins2(er2(0):er2(1))=1 endif if keyword_set(er) then begin ebins2(*)=0 er2=er if er2(0) gt er2(1) then er2=reverse(er2) ebins2(er2(0):er2(1))=1 endif if keyword_set(ebins) then ebins2=ebins bins2=replicate(1b,nb) ;if keyword_set(an) then begin ; if ndimen(an) ne 2 then begin ; print,'Error - angle keyword must be (2,2)' ; endif else begin ; bins2=angle_to_bins(dat,an) ; endelse ;endif if keyword_set(an) then begin ; str_element,dat,'PHI',INDEX=tf_phi if ndimen(an) eq 2 then bins=angle_to_bins(dat,an) if ndimen(an) ne 2 then begin th=reform(dat.theta(0,*)/!radeg) ph=reform(dat.phi(fix(dat.nenergy/2),*)/!radeg) xx=cos(ph)*cos(th) yy=sin(ph)*cos(th) zz=sin(th) Bmag=(dat.magf(0)^2+dat.magf(1)^2+dat.magf(2)^2)^.5 pitch=acos((dat.magf(0)*xx+dat.magf(1)*yy+dat.magf(2)*zz)/Bmag)*!radeg if an(0) gt an(1) then an=reverse(an) bins= pitch gt an(0) and pitch lt an(1) if total(bins) eq 0 then begin tmp=min(abs(pitch-(an(0)+an(1))/2.),ind) bins(ind)=1 endif endif endif if keyword_set(ar) then begin bins2(*)=0 if ar(0) gt ar(1) then begin bins2(ar(0):nb-1)=1 bins2(0:ar(1))=1 endif else begin bins2(ar(0):ar(1))=1 endelse endif if keyword_set(bins) then bins2=bins if ndimen(bins2) ne 2 then bins2=ebins2#bins2 data = dat.data*bins2 data1 = dat1.data*bins2 energy = dat.energy denergy = dat.denergy theta = dat.theta/!radeg phi = dat.phi/!radeg dtheta = dat.dtheta/!radeg dphi = dat.dphi/!radeg ;domega = dat.domega ; if ndimen(domega) eq 1 then domega=replicate(1.,dat.nenergy)#domega mass = dat.mass Const = (1.d*mass)^(-1.5)*(2.)^1.5 charge=1. value=0 & str_element,dat,'charge',value if value ne 0 then charge=dat.charge if ((value eq 0) and (dat.mass lt 0.00010438871)) then charge=-1. ; this line works for Wind which does not have dat.charge value=0 & str_element,dat,'sc_pot',value if value ne 0 then energy=energy+(charge*dat.sc_pot/abs(charge))>0. ; energy/charge analyzer ; the following 15 lines were added to prevent photoelectron contamination when in the plasmasheet ; this section assumes the ESA energy steps go from high energy to low energy lin = 1 ; this line determines whether the data is df or log(df) interpolated to low energy if charge eq -1. then begin ; scale=1. scale=.5 if dat.nbins eq 1 then begin ind=where(energy[*] lt scale*denergy[*],count) ; if count gt 0 and charge lt 0 then begin if count gt 0 then begin mind = min(ind) denergy[mind] = energy[mind]+denergy[mind]/2. energy[ind] = 0. energy[mind] = denergy[mind]/2. if lin eq 1 then data[mind] = data[mind-1] + (energy[mind-1]-energy[mind])*(data[mind-1]-data[mind-2])/(energy[mind-2]-energy[mind-1]) if lin eq 0 then data[mind] = exp(alog(data[mind-1]) + (energy[mind-1]-energy[mind])*(alog(data[mind-1])-alog(data[mind-2]))/(energy[mind-2]-energy[mind-1])) endif else begin nrg=dat.nenergy-1 if lin eq 1 then data[nrg]=data[nrg]+(data[nrg]-data[nrg-1])/(energy[nrg]-energy[nrg-1])*(-energy[nrg]/2.+denergy[nrg]/4.) if lin eq 0 then data[nrg]=exp(alog(data[nrg])+(alog(data[nrg])-alog(data[nrg-1]))/(energy[nrg]-energy[nrg-1])*(-energy[nrg]/2.+denergy[nrg]/4.)) denergy[nrg]=denergy[nrg]/2.+energy[nrg] energy[nrg]=denergy[nrg]/2. endelse endif else begin ind=where(energy[*,0] lt scale*denergy[*,0],count) ; if count gt 0 and charge lt 0 then begin if count gt 0 then begin mind=min(ind) denergy[mind,*] = energy[mind,*]+denergy[mind,*]/2. energy[ind,*] = 0. energy[mind,*] = denergy[mind,*]/2. if lin eq 1 then data[mind,*] = data[mind-1,*] + (energy[mind-1,*]-energy[mind,*])*(data[mind-1,*]-data[mind-2,*])/(energy[mind-2,*]-energy[mind-1,*]) if lin eq 0 then data[mind,*] = exp(alog(data[mind-1,*]) + (energy[mind-1,*]-energy[mind,*])*(alog(data[mind-1,*])-alog(data[mind-2,*]))/(energy[mind-2,*]-energy[mind-1,*])) endif else begin nrg=dat.nenergy-1 if lin eq 1 then data[nrg,*]=data[nrg,*]+(data[nrg,*]-data[nrg-1,*])/(energy[nrg,*]-energy[nrg-1,*])*(-energy[nrg,*]/2.+denergy[nrg,*]/4.) if lin eq 0 then data[nrg,*]=exp(alog(data[nrg,*])+(alog(data[nrg,*])-alog(data[nrg-1,*]))/(energy[nrg,*]-energy[nrg-1,*])*(-energy[nrg,*]/2.+denergy[nrg,*]/4.)) denergy[nrg,*]=denergy[nrg,*]/2.+energy[nrg,*] energy[nrg,*]=denergy[nrg,*]/2. endelse endelse ; this section throws away background counts in the lowest ion energy channels in low density plasmas as determined from sc_pot endif else if charge eq +1. then begin if dat.sc_pot gt 20. then begin if dat.nbins eq 1 then begin ind=where(dat.energy lt dat.sc_pot/2.,count) if count gt 0 then data[ind]=0. endif else begin ind=where(dat.energy[*,0] lt dat.sc_pot/2.,count) if count gt 0 then data[ind,*]=0. endelse endif endif th1=theta-dtheta/2. th2=theta+dtheta/2. ph1=phi-dphi/2. ph2=phi+dphi/2. cth1 = cos(th1) cth2 = cos(th2) sth1 = sin(th1) sth2 = sin(th2) cph1 = cos(ph1) cph2 = cos(ph2) sph1 = sin(ph1) sph2 = sin(ph2) s_2ph1 = sin(2.*ph1) s_2ph2 = sin(2.*ph2) s2_ph1 = sph1^2 s2_ph2 = sph2^2 s3_th1 = sth1^3 s3_th2 = sth2^3 c3_th1 = cth1^3 c3_th2 = cth2^3 p3dxx = (Const^2*total(denergy*(energy^(1.5))*data*((ph2-ph1)/2.+(s_2ph2-s_2ph1)/4.)*(sth2-sth1-(s3_th2-s3_th1)/3.)*denergy*(energy^(1.5))*data1*((ph2-ph1)/2.+(s_2ph2-s_2ph1)/4.)*(sth2-sth1-(s3_th2-s3_th1)/3.)))^.5 p3dyy = (Const^2*total(denergy*(energy^(1.5))*data*((ph2-ph1)/2.-(s_2ph2-s_2ph1)/4.)*(sth2-sth1-(s3_th2-s3_th1)/3.)*denergy*(energy^(1.5))*data1*((ph2-ph1)/2.-(s_2ph2-s_2ph1)/4.)*(sth2-sth1-(s3_th2-s3_th1)/3.)))^.5 p3dzz = (Const^2*total(denergy*(energy^(1.5))*data*dphi*(s3_th2-s3_th1)/3.*denergy*(energy^(1.5))*data1*dphi*(s3_th2-s3_th1)/3.))^.5 p3dxy = (Const^2*total(denergy*(energy^(1.5))*data*((s2_ph2-s2_ph1)/2.)*(sth2-sth1-(s3_th2-s3_th1)/3.)*denergy*(energy^(1.5))*data1*((s2_ph2-s2_ph1)/2.)*(sth2-sth1-(s3_th2-s3_th1)/3.)))^.5 p3dxz = (Const^2*total(denergy*(energy^(1.5))*data*(sph2-sph1)*((c3_th1-c3_th2)/3.)*denergy*(energy^(1.5))*data1*(sph2-sph1)*((c3_th1-c3_th2)/3.)))^.5 p3dyz = (Const^2*total(denergy*(energy^(1.5))*data*(cph1-cph2)*((c3_th1-c3_th2)/3.)*denergy*(energy^(1.5))*data1*(cph1-cph2)*((c3_th1-c3_th2)/3.)))^.5 ; Momentum tensor M is in units of eV/cm^3, Pressure P = M - mass*vel*flux/1.e10 return, [p3dxx,p3dyy,p3dzz,p3dxy,p3dxz,p3dyz] end