function n_3d_new,dat2,ENERGY=en,ERANGE=er,EBINS=ebins,ANGLE=an,ARANGE=ar,BINS=bins,_extra=_extra
density = 0.
if dat2.valid eq 0 then begin
dprint, 'Invalid Data'
return, density
endif
dat = conv_units(dat2,"df",_extra=_extra)
na = dat.nenergy
nb = dat.nbins
ebins2=replicate(1b,na)
if keyword_set(en) then begin
ebins2[*]=0
er2=[thm_energy_to_ebin(dat,en)]
if er2[0] gt er2[1] then er2=reverse(er2)
ebins2[er2[0]:er2[1]]=1
endif
if keyword_set(er) then begin
ebins2[*]=0
er2=er
if er2[0] gt er2[1] then er2=reverse(er2)
ebins2[er2[0]:er2[1]]=1
endif
if keyword_set(ebins) then ebins2=ebins
bins2=replicate(1b,nb)
if keyword_set(an) then begin
if ndimen(an) eq 2 then bins=angle_to_bins(dat,an)
if ndimen(an) ne 2 then begin
th=reform(dat.theta[0,*]/!radeg)
ph=reform(dat.phi[fix(dat.nenergy/2),*]/!radeg)
xx=cos(ph)*cos(th)
yy=sin(ph)*cos(th)
zz=sin(th)
Bmag=(dat.magf[0]^2+dat.magf[1]^2+dat.magf[2]^2)^.5
pitch=acos((dat.magf[0]*xx+dat.magf[1]*yy+dat.magf[2]*zz)/Bmag)*!radeg
if an[0] gt an[1] then an=reverse(an)
bins= pitch gt an[0] and pitch lt an[1]
if total(bins) eq 0 then begin
tmp=min(abs(pitch-(an[0]+an[1])/2.),ind)
bins[ind]=1
endif
endif
endif
if keyword_set(ar) then begin
bins2[*]=0
if ar[0] gt ar[1] then begin
bins2[ar[0]:nb-1]=1
bins2[0:ar[1]]=1
endif else begin
bins2[ar[0]:ar[1]]=1
endelse
endif
if keyword_set(bins) then bins2=bins
if ndimen(bins2) ne 2 then bins2=ebins2#bins2
data = dat.data*bins2
energy = dat.energy
denergy = dat.denergy
theta = dat.theta/!radeg
phi = dat.phi/!radeg
dtheta = dat.dtheta/!radeg
dphi = dat.dphi/!radeg
mass = dat.mass
Const = (mass)^(-1.5)*(2.)^(.5)
charge=1.
value=0 & str_element,dat,'charge',value
if value ne 0 then charge=dat.charge
if ((value eq 0) and (dat.mass lt 0.00010438871)) then charge=-1.
value=0 & str_element,dat,'sc_pot',value
if value gt 0 or value lt 0 then energy=energy+(charge*dat.sc_pot/abs(charge))>0.
lin = 1
if charge eq -1. then begin
scale=.5
if dat.nbins eq 1 then begin
ind=where(energy[*] lt scale*denergy[*],count)
if count gt 0 then begin
mind = min(ind)
denergy[mind] = energy[mind]+denergy[mind]/2.
energy[ind] = 0.
energy[mind] = denergy[mind]/2.
if lin eq 1 then data[mind] = data[mind-1] + (energy[mind-1]-energy[mind])*(data[mind-1]-data[mind-2])/(energy[mind-2]-energy[mind-1])
if lin eq 0 then data[mind] = exp(alog(data[mind-1]) + (energy[mind-1]-energy[mind])*(alog(data[mind-1])-alog(data[mind-2]))/(energy[mind-2]-energy[mind-1]))
endif else begin
nrg=dat.nenergy-1
if lin eq 1 then data[nrg]=data[nrg]+(data[nrg]-data[nrg-1])/(energy[nrg]-energy[nrg-1])*(-energy[nrg]/2.+denergy[nrg]/4.)
if lin eq 0 then data[nrg]=exp(alog(data[nrg])+(alog(data[nrg])-alog(data[nrg-1]))/(energy[nrg]-energy[nrg-1])*(-energy[nrg]/2.+denergy[nrg]/4.))
denergy[nrg]=denergy[nrg]/2.+energy[nrg]
energy[nrg]=denergy[nrg]/2.
endelse
endif else begin
ind=where(energy[*,0] lt scale*denergy[*,0],count)
if count gt 0 then begin
mind=min(ind)
denergy[mind,*] = energy[mind,*]+denergy[mind,*]/2.
energy[ind,*] = 0.
energy[mind,*] = denergy[mind,*]/2.
if lin eq 1 then data[mind,*] = data[mind-1,*] + (energy[mind-1,*]-energy[mind,*])*(data[mind-1,*]-data[mind-2,*])/(energy[mind-2,*]-energy[mind-1,*])
if lin eq 0 then data[mind,*] = exp(alog(data[mind-1,*]) + (energy[mind-1,*]-energy[mind,*])*(alog(data[mind-1,*])-alog(data[mind-2,*]))/(energy[mind-2,*]-energy[mind-1,*]))
endif else begin
nrg=dat.nenergy-1
if lin eq 1 then data[nrg,*]=data[nrg,*]+(data[nrg,*]-data[nrg-1,*])/(energy[nrg,*]-energy[nrg-1,*])*(-energy[nrg,*]/2.+denergy[nrg,*]/4.)
if lin eq 0 then data[nrg,*]=exp(alog(data[nrg,*])+(alog(data[nrg,*])-alog(data[nrg-1,*]))/(energy[nrg,*]-energy[nrg-1,*])*(-energy[nrg,*]/2.+denergy[nrg,*]/4.))
denergy[nrg,*]=denergy[nrg,*]/2.+energy[nrg,*]
energy[nrg,*]=denergy[nrg,*]/2.
endelse
endelse
endif else if charge eq +1. then begin
if dat.sc_pot gt 20. then begin
if dat.nbins eq 1 then begin
ind=where(dat.energy lt dat.sc_pot/2.,count)
if count gt 0 then data[ind]=0.
endif else begin
ind=where(dat.energy[*,0] lt dat.sc_pot/2.,count)
if count gt 0 then data[ind,*]=0.
endelse
endif
endif
density = Const*total(denergy*(energy^(.5))*data*2.*cos(theta)*sin(dtheta/2.)*dphi)
return, density
end