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Abstract. In attempting to understand the dissipation of MHD scale fluctuation energy in the solar wind, the challenge
is to harness kinetic theory (1, 2) effects in a way that is consistent with the presence of an active spectral cascade
in a collisionless plasma. Recent observational studies (3, 4) have begun the task of sorting out the constraints that
spacecraft observations place on dissipation range dynamical processes. Here we examine some implications of inertial-
and dissipation-range correlation and spectral analyses extracted from 33 intervals of WIND magnetic field data (4).
When field polarity and signatures of cross helicity and magnetic helicity are examined most of the data sets suggest
some role of resonant dissipative processes involving thermal protons. Here we seek an explanation for this effect
by postulating that an active spectral cascade into the dissipation range is balanced by a combination of resonant and
nonresonant kinetic dissipation mechanisms. By solving a pair of rate equations, and employing constraints from the
data, this theory suggests that the ratio of the two methods of dissipation is of order unity. With an additional assumption
that mixed cross helicity corresponds to random directional sweeping, the theory approximates the relationship between
magnetic and cross helicities seen in the WIND datasets. Although highly simplified, this approach appears to account for
several observed features, and explains why complete absorption, and the corresponding pure signature in the magnetic
helicity spectrum, is usually not observed. The results of the theory are consistent with magnetic fluctuations having
oblique wave vectors, which is strongly supported by the inability of models based on parallel-propagating waves to
adequately predict the onset of the dissipation range.

INTRODUCTION

A number of presentations were made at the SW9 con-
ference on the subject of collisionless heating, both in the
solar corona and in the solar wind. The present paper
employsin situ observations of magnetic dissipation that
heats the solar wind to demonstrate the inconsistency be-
tween the prevailing “slab” model of parallel-propagating
Alfvén waves and observations. As such, we constrain
the nature of the magnetic fluctuations whose damping
provides thein situ heating. In the process, we demon-
strate the limitation of the popular ion cyclotron instabil-
ity in the prediction of the onset of dissipation.

In this paper we again make use of the 33 one-hour
intervals of magnetic field and plasma data recorded by
the WIND spacecraft in near-Earth orbit first presented in
Leamonet al. (4). Figure 1 shows the trace of the power
spectral density matrix for Hour 13UT on January 30,

1995, which is typical in most regards of the collection
of events used. At 0.44 Hz, the inertial range terminates
in a sharp break to a steeper spectral index (the dissipa-
tion range). In all the events studied, this break frequency
is comparable to, but always above, the proton cyclotron
frequency (4, Figure 3).

The lower panel of Figure 1 shows the reduced mag-
netic helicity spectrumσm for that interval. Sinceσm

is negative andhBRi is also negative (the radial compo-
nent of the field is directed inwards), this implies either a
predominance of outward propagating, right-hand polar-
ized waves or of inward propagating, left-hand polarized
waves. We can determine which of these two possibilities
is correct by comparing the normalized magnetic helicity
spectrumσm in the dissipation range to the normalized
cross helicityσc in the inertial range, which we do in Fig-
ure 2.

Magnetic helicity is a measure of the twist, or hand-
edness of magnetic fields, and was first defined by



FIGURE 1. Typical interplanetary power spectrum showing the
inertial and dissipation ranges. (a) Trace of the spectral ma-
trix with a break at� 0:4 Hz where the dissipation sets in. (b)
The corresponding magnetic helicity spectrum. For this period,
B= 6:4 nT,βp= 0:71,VSW= 692 km s�1 andΘBV = 23�. Re-
produced from (4).

Matthaeus and Golstein (5). Cross helicity can be defined
in terms of the Elsässer energies (6). Bothσc andσm are
contrained to lie between�1 and+1.

The cross helicity can only be computed at inertial
range frequencies because of limited sampling rates for
plasma data; we use the inertial rangeσc as a proxy for
the same quantity in the dissipation range. In effect, we
are assuming that the direction of propagation of fluc-
tuations is the same in both the inertial and dissipation
ranges.

It is apparent from the data in Figure 2 that most in-
tervals for which the mean magnetic field is outwardly
directed haveσm > 0 andσc < 0. On the other hand, in-
wards directedB0 is associated withσm < 0 andσc > 0.
One can readily see that this is consistent with cyclotron-
resonant absorption of outward-propagating fluctuations
by thermal protons, as follows: A proton moving out-
ward along the magnetic field executes a left-handed he-
lical trajectory. Waves propagating outward at the Alfvén
speed will overtake most thermal particles (atβ� 1) and
therefore, on average, the thermal protons will be in res-
onance with such waves that have a right-handed spatial
structure (σm < 0). If the energy of these waves is as-
sumed to be damped by the resonant protons, the energy
that remains will preferentially reside in the undamped
fluctuations, which have a left-handed structure and pos-
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FIGURE 2. Scatter plot of the normalized cross-helicity in the
inertial range,σc, vs. the normalized magnetic helicity in the
dissipation range,σm. Triangles are intervals with outward
directed mean magnetic field, and bullets have inwards mean
fields. The dashed line corresponds to the best-fit line through
the origin,σc =�1:90σm. Reproduced from (7).

itive σm (8). Consequently, outwardB0 should be associ-
ated withσc < 0 (outward propagation) andσm > 0. Re-
versing the direction ofB0 but maintaining the assump-
tion of outward propagating waves (nowσc>0) produces
the conclusion thatσm< 0 in the dissipation range by the
same argument.

PARALLEL-PROPAGATING WAVES

Only 3 of the 33 intervals studied have helicity signa-
tures that are inconsistent with cyclotron-resonant damp-
ing of Alfvén waves. This naturally suggests such reso-
nant damping as a leading candidate for the formation of
the dissipation range.

Recall that the resonance condition for cyclotron
damping is

ω�k �v=�Ωp; (1)

wherev is the particle velocity. If we assume that the
particles move with the thermal speedvth and that damp-
ing sets in atω = kvA � Ωp, equation 1 becomeskd =
Ωp=(vA+vth). Once we know the wavenumber at which
dissipation starts, we may use the Doppler shift to con-
clude the frequency of an outward-propagating Alfvén
wave resonant with a particle with the mean thermal
speed:

νsc=
k �VSW

2π
+

ω
2π

: (2)

Alternatively, we could argue that dissipation sets in
at some critical wavenumberkd where γ=ω (where ω



FIGURE 3. Comparison of observed spectral breakpoint fre-
quency with predictions derived from the simple slab model
(triangles, top panel) and the numerical results forjγj= ωr=10
(squares, middle panel) andjγj= ωr=3 (circles, bottom panel).
Dashed lines represent equality. Although the predictions are
generally in order-of-magnitude agreement with the observa-
tions, the necessary linear scaling is not observed. Reproduced
from (4).

and γ are the real and imaginary parts of the wave fre-
quency, respectively, calculated via solution of the lin-
earized Vlasov-Maxwell equations) reaches some critical
value, say one-third or one-tenth. We can again use equa-
tion 2 to Doppler-shift to a spacecraft-frame frequency.

Figure 3 compares the observed spectral break fre-
quenciesνbf with the predictions of our three cyclotron-
resonance theoriesνth. All three models give order-of-
magnitude agreement with the observations, but none ex-
hibit any close correlation; the models are unsatisfactory.
This might only reflect the simplicity of these three mod-
els were it not for an underlying order in the results not
evident in this figure.

The systematic error of these theories is revealed in
Figure 4, where we plot the fractional error of the theory
relative to the observation,(νbf�νth)=νbf. Since we are
assuming parallel-propagating Alfvén waves, the vector

FIGURE 4. Fractional error for all three slab wave models dis-
cussed in the text as a function of field-to-flow angleΘBV. The
symbols are the same as in Figure 3. The error is largest at large
angles, true for all wave formulations. Reproduced from (4).

dot product in equation 2 implies a dependence onΘBV

for the dissipation onset frequency for both the slab cal-
culation and the numerical solutions. In fact, the break
frequency ought to decrease by an order of magnitude as
ΘBV ! 90�. (Since the solar wind speedVSW is typically
about 10 times faster than the Alfvén speedvA, the first
term on the RHS of equation 2 dominates the second ex-
cept whenΘBV ! 90�.) However, the spectral break fre-
quency remains almost constant and the percentage error
increases to 100% asΘBV ! 90�.

Any wave mode thought to be associated with the
damping process and that propagates at less than the solar
wind speed will suffer from a systematic introduction of
error if the wave vector is required to be field-aligned. We
must conclude, therefore, that the geometry of the fluctu-
ations is not one-dimensional.

CASCADE AND DISSIPATION

While the exact nature of the oblique fluctuations is
beyond the scope of this paper (see (4) and the following
Leamonet al.paper in this volume), oblique wave fluctu-
ations are generally susceptible to Landau damping (1).

Landau damping affects both right-hand and left-hand
polarized fluctuations without regard for polarization, and
thus affects the scatter of points in Figure 2, as we shall
now show. The handedness argument used above ex-
plains the clustering of the observational points in the
upper-left and lower-right quadrants. However, if ki-
netic processes are assumed to be very rapid, why is the
signature in the magnetic helicity not pure (�1) as one
would expect for complete cyclotron absorption? We



must also include the contributions of Landau-resonant
or completely nonresonant absorption, as well as relax-
ing the assumption of purely outward propagating fluctu-
ations.

We can address these concerns by postulating a turbu-
lent cascade and associated dissipation processes that are
described by a pair of energy balance equations, as de-
scribed in Leamonet al. (7) and summarised as follows:

dEL

dt
=

S
2
� γ0EL�P(L)γr EL

dER

dt
=

S
2
� γ0ER�P(R)γrER: (3)

The energies in left- and right-handed spatial structures,
integrated over the dissipation range of the spectrum, are
designated asEL andER respectively. The rate of sup-
ply of energy (per unit mass) transferred into the dissi-
pation range from the inertial range is designated byS.
This supply rate is equally apportioned toL andRfluctu-
ations since inertial rangeσm is random. The quantityγ0

appears in bothL andR equations and represents decay
processes that produce no signature in the magnetic helic-
ity. Included inγ0 are contributions from Landau damp-
ing and other mechanisms that do not involve cyclotron
resonance. The remaining damping term,γr , represents a
decay rate due to cyclotron-resonant absorption by ther-
mal protons. Its contribution needs to be apportioned to
account for a distribution of propagation directions rel-
ative to the slower thermal protons. As such,P(L) is
the probability that fluctuations are propagating outward,
which produces a resonance between left-handed struc-
tures and thermal protons, and implies the appearance
of γr in the EL equation. P(R) = 1�P(L) is the prob-
ability of inward propagation and implies that resonance
between right-handed structures and thermal protons is
weighted accordingly.

We can manipulate equations 3 to get a theoretical re-
lationship betweenσc and σm to compare to Figure 2.
Firstly, we assume that the cascade is steady, so that
dEL;R=dt = 0. EL andER can be expressed in terms of
σm. Assuming that outward propagation is proportional
to the average outward-propagating energy,P(L) may be
written as(1+σc)=2. Finally, if we assume thatγ0 andγr

are independent ofσc andσm, we conclude

σc =�

�
1+2

γ0

γr

�
σm: (4)

The best-fit line forced through the origin in Figure 2 is
σc =�1:90σm. Putting this value into equation 4 implies
thatγr = 2:22γ0. Only whenγ0 = 0 do pure Alfvén waves
lead to purely helical states.

SUMMARY

This paper offers two complementary pieces of evi-
dence against the prevailing idea that interplanetary tur-
bulence is ‘slab’ waves.

The general ordering of the helicity data in Figure 2
suggests the dominant role of cyclotron-resonant damp-
ing. However, any model based on the damping of
parallel-propagating Alfvén waves cannot predict the on-
set of the dissipation range, and therefore, the geometry
of the fluctuations must be greater than one-dimensonal.

Oblique waves are susceptible to both cyclotron and
Landau damping. Using our cascade-and-dissipation
model outlined above, we can demonstrate the oblique
nature of IMF fluctuations via the inferred presence of
Landau damping. Our model is highly simplified and
idealised; nevertheless, it explains the finer details of Fig-
ure 2, by requiring that on average, about one-third of the
damping comes from such processes as Landau damping.
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