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Abstract. Magnetic fluctuations in the solar wind show an
f−5/3 power-law spectrum below the Doppler-shifted pro-
ton cyclotron frequency but steepen to f−s with s ≥ 3 for
higher frequencies. The origin of this steepening, however,
remains unclear. The purpose of this study is to evaluate
critically the often-employed assumption that the steepen-
ing is caused by dissipation via kinetic wave damping. For
both Alfvén and magnetosonic waves and for a broad range
of propagation angles, we show that the wave damping rate
usually increases very strongly with wavenumber k. Con-
sequently, the wave energy transfer always becomes slower
than the damping at sufficiently high k, resulting in a strong
cutoff in the power spectra rather than a steepened power-
law. This result suggests that collisionless dissipation can
not be the only physical basis for explaining the steepening.
Furthermore, it casts serious doubts on the basic approach
of treating magnetic fluctuations as an ensemble of linear
waves.

1. Introduction

An ubiquitous feature of the solar wind is magnetic fluc-
tuations, which are observed over a broad range of frequen-
cies, from well below the proton cyclotron frequency Ωp
(∼ 0.1− 1 Hz) to several hundred Hz [Coleman, 1968; Gur-
nett, 1991]. The observed power spectrum of the spacecraft
rest frame frequency f typically shows a power-law f−5/3

between ∼ 0.001 and 1 Hz but steepens to roughly f−3 to
several hundred Hz [cf. Denskat et al., 1983; Goldstein et
al., 1994; Leamon et al., 1998]. It is widely accepted that
the f−5/3 spectrum is the “inertial range” of MHD turbu-
lence in the solar wind, presumably resulting from cascade
processes from longer to shorter wavelengths.
The nature of the steepening near 1 Hz, however, has

been a subject for intensive studies. This frequency is cu-
riously close to the Doppler-shifted proton cyclotron fre-
quency Ωp. One school of thought, which is summarized
nicely in Ghosh et al. [1996], appeals to change of invari-
ants in controlling the flow of spectral energy transfer in the
cascade process. In this picture, no dissipation is needed to
explain the steepening. Furthermore, it is now believed that
the MHD turbulence cascade is highly anisotropic, with a
significant fraction of turbulent energy cascades mostly in
a quasi-2D fashion, perpendicular to the background mag-
netic field B0 [Shebalin et al., 1983; Matthaeus et al., 1998].
How magnetic energy dissipates in this anisotropic energy
cascade still remains an open question.
Another school of thought, which is referred to as the

“linear damping approach” in this paper, is that this break
indicates the onset of dissipation. In fact, using magnetic
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fluctuations to heat the solar wind plasma is a long-held
hypothesis that is partly supported by the observed highly
nonadiabatic proton temperature profile going away from
the Sun [cf. Richardson et al., 1995]. Several recent works
have specifically used the collisionless damping of linear
Alfvén and magnetosonic waves to account for this dissi-
pation process [Leamon et al., 1998; Gary, 1999; Marsch,
1999].
There is a subtle yet fundamental assumption in the lin-

ear damping approach, namely, that the observed magnetic
fluctuations can be represented by an ensemble of linear
waves near or in the dissipation range. Consequently, each
linear wave, whether it is Alfvén or magnetosonic, will be
damped according to its respective wave-particle interaction
mechanism.
The main purpose of this study is to examine critically

this linear damping approach. The basic idea is that, if the
linear damping indeed serves as the dissipation mechanism,
we should be able to calculate the turbulence power spec-
trum in the dissipation range which can then be compared
with observations. We organize our paper as follows: In sec-
tion 2, we describe an evolution equation for the turbulent
energy W (k) in wavenumber space,1 following the study by
Zhou and Matthaeus [1990]. We then calculate the collision-
less damping rates for both Alfvén and magnetosonic waves
with a wide range of parameters in section 3. In section 4,
we solve the evolution equation for W (k) by including three
key physical processes: wave injection, cascade in k space,
and collisionless damping as a function of k. The calculated
W (k), spanning both the inertial and dissipation ranges, is
compared with the observed spectra. We then test the va-
lidity of the input physics assumptions. Implications of our
results are discussed in section 5.

2. A Diffusion Approximation for
Energy Transfer

Zhou and Matthaeus [1990] introduced a diffusion approx-
imation to model the spectral energy transfer in wavenum-
ber space. For isotropic turbulence the diffusion equation
for the omnidirectional spectral density W (k) is

∂W̃ (k)

∂τ
=
∂

∂k̃

[
k̃2D̃(k)

∂

∂k̃

(
k̃−2W̃ (k)

)]
+ γ̃(k)W̃ (k)+S(k) ,

(1)
where the last two terms of the right-hand side represent col-
lisionless dissipation of the fluctuations and a source func-
tion S(k) for wave energy injection, respectively [see also
Miller et al., 1996]. We use S(k) = S(k0)δ(k−k0) in this pa-
per where k0 is the injection wavenumber. We have written

1Throughout this paper we use the magnetic fluctuation en-
ergy W in wavenumber k space instead of frequency f , assuming
that there is a single correspondence between the two quantities,
though we consider a broad range of wave propagation angles.
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equation (1) in terms of the following dimensionless parame-
ters: W̃ (k) ≡ (ωp/c)W (k)/UB where UB = B

2
0/8π, τ = Ωpt,

k̃ = kc/ωp, D(k) = vA(ωp/c)
3D̃(k), γ(k) = Ωpγ̃(k), ωp is

the proton plasma frequency and vA is the Alfvén speed.
Even though equation (1) is derived from phenomeno-

logical and scaling arguments, it offers an attractive and
tractable way of modeling the energy cascade process in
wavenumber space. Assuming that damping is negligible
for k < kd, where kd is the dissipation wavenumber beyond
which γ(k) becomes important (to be quantified), the spec-
trum W (k) in this (inertial) range is mostly determined by
D(k), which depends upon the cascade phenomenology. For
the Kolmogorov phenomenology, Zhou and Matthaeus [1990]
proposed

D(k) = C2vAk
7/2

[
W (k)

2UB

]1/2
, (2)

where C2 is a dimensionless constant. Upon substituting
this into equation (1) and assuming a steady state with no
damping, we obtain the usual Kolmogorov spectrum in the
inertial range W (k) =W0k

−s, where s = 5/3.
When damping becomes important for k > kd, we can

still look for power-law solutions to equation (1), as strongly
suggested by the observations. Assuming that W (k) =
W0k

−s and using equation (2), we find, for a steady state
and k > kd � k0,

γ = (s+ 2)(5− 3s)Λk(3−s)/2 , (3)

where Λ = Λ(C2, vA,W0) is a positive constant. In other
words, a power-law spectrum of W (k) in the presence of
damping requires γ(k) to be a specific power-law. Let γ =
−γ0k

α, then we must have{
s = 3− 2α
γ0 = (s+ 2)(3s− 5)Λ

, (4)

to guarantee a power-law spectrum of W (k) in the dissipa-
tion range. For example, for s = 3, the index α has to be
0, i.e., a constant damping rate and it has to have the right
amplitude. For s ≥ 3, α has to be negative, which is not
consistent with most solutions of the linear Vlasov equation
(as we will see immediately).

3. Physics of Collisionless Damping

Since the solar wind plasma is observed to be Maxwellian-
like to a good approximation, we use the linear theory damp-
ing rates for γ(k), under the assumption of a collisionless, ho-
mogeneous, magnetized electron-proton Maxwellian plasma
with Te = Tp. Two modes are of interest here: Alfvén and
magnetosonic waves. The detailed damping physics depends
on the proton β and propagation angle θ, where θ is the an-
gle between k and B0,.
The primary damping for Alfvén mode is via the proton

cyclotron resonance, which is very weak at long wavelength
but becomes strong when kc/ωp ∼ 1 [e.g., Gary, 1993, Fig-
ure 6.4; Leamon et al., 1998, Figure 5]. By fitting the damp-
ing rates of different βp and θ, we obtain a useful analytic
expression

γ(k)

Ωp
= −m1

(
kc

ωp

)m2
exp(−m3ω

2
p/k

2c2) , (5)

where themj are fitting parameters. The upper panel of Fig-
ure 1 illustrates representative linear Vlasov solutions (solid

dots) for γ(k)/Ωp of the Alfvén mode at three different θ,
and corresponding fits (solid lines) using equation (5).
Magnetosonic mode damping is via Landau resonance

ωr = k‖v‖ [Barnes, 1966]. At oblique propagation, the

damping is the strongest. At kc/ωp >∼ 1, this mode usually

satisfies γ ∼ kα where 1 <∼ α
<
∼ 3, so that its short wave-

length damping is similar to that of the Alfvén mode. This
is illustrated in the bottom panel of Figure 1. At parallel
propagation, however, damping is very weak and is limited
to a finite range of k, as shown in the middle panel of Figure
1.
For the damping rates shown in Figure 1 that are calcu-

lated using βp = 0.5, we consider them to be close to the
lower limits of γ(k) for the usual solar wind parameters. The
damping rates for both Alfvén and magnetosonic waves in-
crease with βp. The key point we want to emphasize is the
strong k dependence of γ(k), i.e., γ ∝ kα with 1 <∼ α

<
∼ 3.

This dependence will strongly damp out the waves at higher
k.
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Figure 1. Linear Vlasov theory results. (Top) The damping
rate of the Alfvén mode at βp = 0.50 at three different angles of
propagation as labeled (individual dots). The lines indicate the
corresponding fits using Equation (5). At θ = 0o, m1 = 0.45,
m2 = 1.49, and m3 = 0.49; at θ = 45o, m1 = 0.34, m2 = 1.68,
andm3 = 0.63; at θ = 60o,m1 = 0.35,m2 = 1.36, andm3 = 1.66.
(Middle) The damping rate of the magnetosonic/whistler mode
at θ = 0o and βp = 0.50, 1, and 2, respectively. The βp = 0.5
curve is very close to 0. (Bottom) The damping rate of the magne-
tosonic/whistler mode at two different angles of propagation as la-
beled (individual dots). Although we stop our plots at kc/ωp = 4,
the strong increase in |γ| continues to at least kc/ωp ∼ 10.
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Figure 2. Computational model results from solving Equation
(1). (Top) The temporal evolution of the power spectrum W (k)
as a function of wavenumber k, using the Kolmogorov diffusion
coefficient (equation [2]) and the Alfvén wave damping rate of
θ = 60o and βp = 0.5. The dark curve represents the steady state
solution. (Middle) The steady state power spectrum W (k) using
the magnetosonic wave damping rates for θ = 0o and βp = 0.5
(solid line) and βp = 2 (dashed line). (Bottom) Similar to the
top panel except for using the magnetosonic wave damping rate
at θ = 30o and βp = 0.5. The dark curve represents the steady
state solution.

4. Numerical Calculations

We used a Crank-Nicholson method to solve equation
(1) numerically until a steady-state is attained. We choose
B0 = 10

−4 Gauss and vA/c = 10
−4. The fluctuation energy

is injected at k0c/ωp = 0.002 at a rate of 10
−15 erg cm−3

s−1 through the source function S(k0). The Kolmogorov
diffusion coefficient D(k) (equation [2] with C2 = 1) is used.
We have used a large set of damping rates, depending on the
choice of the modes, βp and propagation angle (cf. Figure
1).
Figure 2 summarizes our main results whereW (k) indeed

follows a k−5/3 power-law in the inertial range but always
shows an exponential cutoff (or a steep roll-over) towards
higher k, in contrast to an observed steepened power-law.
In the top panel of Figure 2, we have used the Alfvén wave
damping rate at θ = 60o with βp = 0.5. The spectrum
cascades successively to higher k until damping cuts it off.
In fact, as discussed in §2, γ(k) given in equation (5) does
not satisfy the conditions given in equation (4) for obtain-
ing a power-law. The exponential cutoff in W (k) is easily
understood from the fact that the energy transfer rate in
wavenumber space via diffusion always becomes slower than
the strongly increasing damping rate.

For the magnetosonic waves, as long as there is appre-
ciable damping, the resulting W (k) is very similar to the
Alfvén case. This is shown in the bottom panel of Figure 2,
where θ = 30o and βp = 0.5. Since the damping rate in this
case is smaller than that of the Alfvén wave, the “cutoff”
k in W (k) is larger. But the qualitative behavior of strong
roll-over in W (k) remains.
For the magnetosonic waves with very small damping

(i.e., θ = 0 and βp < 1), there is no break in the steady
state power spectrum W (k). This is shown in the middle
panel of Figure 2. For βp = 2 where a low level of damping
is present within a small range of k (cf. the middle panel of
Figure 1), the steady state power spectrum W (k) shows a
drop but quickly recovers, continuing on with a k−5/3 power-
law since γ(k) becomes negligible again.
One caveat in relating Figure 2 to the observations is that

the observed power spectrum represents a summation over
all directions of wave propagation, whereas our calculations
are one-dimensional, even though we have considered the
damping as a function of θ. We do not expect, however,
that a summation of our results over different θ could yield
a power-law spectrum in the dissipation range.
To summarize, among all the mode choices, propagation

angles, and proton β, we find no regime of parameters that
yield a broken power-law behavior in W (k), going from the
inertial to the dissipation range. Instead, we always find that
W (k) exhibits a strong roll-over in the high wavenumber
regime (kc/ωp ≥ 1). This is in sharp contrast to the often-
observed power-law spectra.

5. Conclusions

We have used a simple model of Kolmogorov energy
transfer in wavenumber space of magnetic fluctuations to
calculate the dissipation range power spectrum in collision-
less, homogeneous, isotropic, magnetized plasmas. Dissipa-
tion is provided by the linear Vlasov theory. We find that
W (k) shows a steep cutoff in k rather than a steepened
power-law. The key physical reason for this result is the
mismatch between the energy cascade rate that is governed
by the diffusion coefficient D(k) and the dissipation which is
determined by the collisionless damping rate γ(k). Except
for the magnetosonic waves propagating parallel to B0 in
βp < 1 plasmas, the damping increases very strongly with k
so that it completely damps out the spectral energy input
from the cascade. Generally, if magnetic fluctuations can
be regarded as an ensemble of linear modes, these modes
will be so strongly damped near kc/ωp and beyond, that
one would not expect to obtain a “residual” power-law ex-
tending to much shorter wavelengths (or higher frequencies),
in contrast to the observations. These results cast serious
doubts on the fundamental assumption of treating magnetic
fluctuations as an ensemble of linear waves.
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