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Cyclotron amplification of whistler waves by electron
beams in an inhomogeneous magnetic field
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Abstract. Cyclotron wave-particle interactions in the case of well-organized
distributions of cnergetic electrons under an inhomogeneous magnetic ficld are
studied. Step-like and ¢ function distributions over the field-aligned velocity are
considered. The one-hop amplification of whistler waves is calculated by simple
analytical solution and numerical computation based on strict approach. The strict
consideration, taking into account third-order expansion of the spatial dependence
of the electron phase with respect to the wave, reveals some new important features
of the onc-hop amplification I' as a function of frequency and electron beam
parameters. The main result is that T' exhibits a quasi-periodic structurc as a
function of wave frequency or characteristic clectron parallel velocity, remaining
always positive in the casc of the step-like distribution but being sign alternative
for é-function. Dependence of T' on the parameters of cnergetic electrons such as
their total energy, characteristic parallel velocity, position of the injection point in

relation to the equator, and dispersion in parallel velocity is discussed.

1. Introduction

The cyclotron interaction of whistler waves with well-
organized beams of energetic electrons in the inhomoge-
neous magnetic field attracts a lot of interest in connec-
tion with some important problems of magnetospheric
physics. The first problem is triggered ELF/VLF emis-
sions; quasi-monochromatic whistler signals are excited
by beams of energetic electrons produced in the process
of interaction between a monochromatic whistler wave
packet and electrons in the radiation belt [e.g., Karp-
man et al., 1974; Nunn, 1974]. The problem closely
associated with this problem is chorus generation when
whistler signals with discrete frequency spectrum are
excited under the natural conditions of the magneto-
sphere [Hattori et al., 1989, 1991]. Another problem
that demands the consideration of interaction between
waves and a well-organized beam of electrons in an in-
homogeneous magnetic field is wave generation in the
auroral zone, where a strong acceleration of charged
particles by a field-aligned electric field takes place. By
well-organized beams we mean the groups of energetic
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electrons with small velocity dispersion, where the hy-
drodynamic stage of the instability is realized in the
case of homogeneous magnetic field. Examples of such
beams are energetic electrons with velocity distribution
along the magnetic field as a step-like function or Dirac
function. Formation of such distribution functions in
the magnetosphere is quite real (indeed, the step-like
distribution is formed by the quasi-linear relaxation of
beam plasma and cyclotron instabilities [Ivanov, 1977;
Trakhtengerts et al., 1986]), and calculations performed
in the framework of quasi-linear theory show a very
large increase of amplification during the formation of
a step [Trakhtengerts et al., 1996]. The real situation
with the 6 distribution function is beam formation by
cyclotron interaction of a quasi-monochromatic whistler
wave packet with radiation belt electrons [Karpman
et al., 1974; Nunn, 1974].

In this paper we shall analyze the effects of cyclotron
instability in the presence of such beams in an inho-
mogeneous magnetic field. Some new effects are found
to be important, and they determine the cyclotron in-
stability development. The hydrodynamic stage of the
instability is modified in the inhomogeneous magnetic
field, and certain new specific wave generation regimes
can take place [ Trakhtengerts, 1995]. The most impor-
tant effect in the inhomogeneous magnetic field is the
mismatching of the cyclotron resonance condition,

W —wyg :k‘l/'” (1)
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where w and k are frequency and wave vector of a
whistler wave (k || H, H is the geomagnetic field), wg is
the electron gyrofrequency, and v is the electron veloc-
ity component along the magnetic field. In (1), wy, &k
and v depend on the coordinate 7z along H. When w is
fixed, the resonance condition (1) is fulfilled in the linear
stage of the instability only at one point. Under these
conditions the second-order cyclotron resonance [Helli-
well, 1967; Nunn, 1974; Villalén and Burke, 1997] can
be important when the frequency of the whistler wave
packet depends on z and ¢, and this dependence com-
pensates the mismatching caused by the magnetic field
inhomogeneity. The mismatch from the resonance con-
dition (1) can be compensated also for a wave with fixed
frequency by suitable gradients of the magnetic field and
cold plasma density if the electron velocity changes un-
der the action of the wave field are taken into account;
such compensation can occur for a small group of par-
ticles and depends on the whistler wave amplitude, its
contribution to the cyclotron resonant interactions be-
tween particles and whistler waves being yet to be de-
termined [Erokhin et al., 1996]. In this paper we analyze
the cyclotron instability of a well-organized beam in the
regime of stationary amplification [ Trakhtengerts et al.,
1996], when the density of the beam is relatively small
and second-order cyclotron resonance effects are absent.
This problem was discussed earlier for a step-like dis-
tribution function [Trakhtengerts et al., 1996; Bespalov
and Trakhtengerts, 1986; Nunn and Sazhin, 1991; Vil-
lalén and Burke, 1997]. Here we discuss some new pe-
culiarities of this problem. Together with the step-like
distribution function we consider a distribution with &
function over v. To be close to the realistic situation,
we consider the injection of a beam at an arbitrary point
along the magnetic flux tube and take into account a
dispersion over v).

2. Formulation of the Problem
(Simplified Consideration)

The problem of whistler wave amplification in an in-
homogeneous magnetic field in its full form is rather
difficult and has no general analytical solution. Be-
low we shall consider the case when a beam density
is sufficiently small and change of phase between wave
and particle is determined by mismatching of the cy-
clotron resonance condition (1) along the particle tra-
jectory (along z) in an inhomogeneous magnetic field.
In this case the one-hop amplification I' = InAf/4,
(A; and Ay are the final (z = I) and initial (z = -I)
whistler wave amplitudes, and z = +[ are the ends of
the magnetic flux tube) can be presented in the form
[Trakhtengerts et al., 1996]

IlH2deI_L 0Fy
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where

l z 2
= ’/ dz exp (i/édz') (3)

-1 0
and A=w — wy — kv). The limit of integration in (2)
is determined from the condition that the lowest reso-
nant energy Wgry, = mupgr/2 is achieved at the eqator
(vrr = (wgr — w)/kr, where subscript L refers to any
value at the equatorial plane). Further, m is the elec-
tron mass, e is magnitude of electron charge, and c is
the light velocity. Like Trakhtengerts et al. [1996], we
have used in (2) the variables of energy W and the first
adiabatic invariant I |,

'\’Iz

IV— (U“+UJ_) I_J_=

2
_J-

H’ (4)

U” = ——(VV - I_LH)I/2 (%)]/2

N, is the whistler wave refractive index, H is the mag-
netic field amplitude, and the stationary point z,, is
determined from the equality A=0. We shall consider
the case of the stationary particle injection for two types
of distribution functions Fy of energetic electrons. The
first one, a step-like distribution function, appears un-
der the cyclotron interaction of smooth distributions
with noise-like whistler emissions [T'rakhtengerts et al.,
1986, 1996; Nunn and Sazhin, 1991] and can be writ-
ten as

Fstep = bst.ep . @(VV* -W+ IJ_H])
0, 2z<0

where the step-like feature corresponds to the boundary
of the resonant and nonresonant particles in the velocity
space satisfying the equalities v = v. = (2W./ m)'/? at
the injection point. The step height bsep can be deter-
mined from the normalization condition [Trakhiengerts
et al., 1996],

3/2
m IJ_H] W
bst.ep ~Np (27FWO) "VO exp <— VVO) (6)

where Wy = mv3 /2 is the characteristic energy and n,
is the beam density. The value H; is equal to the mag-
netic field amplitude in an injection point; when H; is
equal to the equatorial value H, we have the case con-
sidered earlier by Trakhtengerts et al. [1986, 1996] and
Villalén and Burke [1997]. The second type of a distri-
bution function as ¢ function over v is important for
triggered ELF/VLF emissions and appears under cy-
clotron interaction of electrons with a packet of quasi-
monochromatic whistler waves. We take this distribu-
tion in the following form:

Fy=bs - 6(W.—W + I, Hy) (7)

where
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The function (6) corresponds to the stationary injection
from the point z;, where Hy = H(z). Substituting (5)-
(6) into (2) and using new variables,

X=1,H, and Y=W-X 9)

we get the following amplification for the step:
1/2 2 o0 ;
™ e“ny (WH1 . >

Fse= (———1)/ (W, =Y

tep <8mI'V(§’> Ny \ w 0 (. )

Lo ) vt
X
A min Hl }/’ + ‘X‘ (1 - %)

X+Y
X exp (— XI; ) IdXdY
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2em Ny, w

2 — )\
x* exp(—z)da T (10)

% /0O Hst :
Zmin H,
where Hy, = H(zy), ¢ = X/Wy, @iy is determined
below (equation (14)), and

] H,
Vst = \/vz + zv3 (1 - H:)l

-

In the case of § function (7) we get the following ex-
pression for I's by using the new variables (9):

> 9[8(W. — Y]
o) [

2
Yllst

_ 7re2nhW,}/2v (1
- \/§cm1/2W'0Nu,

/°° (Hs¢)2 X exp (—X/W,)
X
X VHU ) v 4 X (1—%71)

Ts

7 dX dY(11)

In the case of z,, # 0 we can use the simplified form for
T [Trakhtengerts et al., 1996],

Ta - ’I,?H st

I= 1/2 2 1/2
2k(vlll — URL) [WHL/’“*‘"~’J_L/(2‘U||L)]

(12)

where a = \/§R0L/3 (Ro is the Earth radius and L
stands for L value for the dipole magnetic field). The
value of z; is equal to

. —a U“L-‘URL ]/2
~st — WHL/IC+U§H1,:C/(2U“L H1) ?

YL —vrr 20

(13)
In (12) and (13) vy is the function of X and is equal

to
/ AH
v = ¢/v2 4 zvi ——
I 0 H1

where AH = Hy — Hyp. The values of z,,in in (10) and
Xmin in (11) are determined from the following rela-
tions:
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‘UE + mminvg% =vgrr, if vpy > v (14)
Tmin =0 if vrr < v,
Substituting (12) into (11), we get

T 7rnh62 v*vg a (le - w)
e k(kwgp)/2

« /x Hst 2
Zmin H,
X (1 +

In the case of AH—O0 (the equatorial injection) the par-
allel velocity of the particles at the equator is v,. The
amplification I'y;ep for the step from (10) is positive
and singular as (v, — vgr)~'/2. So the Ty, for parti-
cles whose equatorial parallel velocity coincides with the
minimum parallel cyclotron resonance velocity goes to
infinity as a result of the simple consideration in terms
of (12), while only damping can be expected for the
6 function in the simple consideration (15) and is sin-
gular as (v — vrr)~3/2. Only the contribution for
the amplification from the particles taking the energy
from the wave is revealed. For the step as well as for
the ¢ function, injection out of the equator (AH #0)
puts some dispersion over x, meaning that the particle
parallel velocity varies in accordance with the perpen-
dicular velocity at the equator. This dispersion removes
the singularity in the case of the step-like function but
not in the case of the § function. Apparently, the more
strict consideration is required in the case AH —0 and
for the ¢ function by taking a more precise form of the
phase mismatching of the cyclotron resonance condition
A, which is given in the next two sections, 3 and 4.

T's=
8 4 m

zrexp(—z)dz

32
Vst v (v — vRL)
k‘Ug HL

~1/2
—_— 15
2y LwyrH ) (15)

3. The Case of Step-like Distribution
(Strict Consideration)

Asis shown in (10), one-hop amplification for the step
function has a singularity in the case of AH— 0, which
arises from the term (v — vrr) /% in Z(12). Here we
pay much more careful attention to (3) instead of using
(12) to evaluate the wave amplification. We take the
Taylor series for the function A(z) near the stationary
point zg to estimate Z, and we get

! 8 (23 . ?
I=4 /0 dz cos [a_3 <§ - :f,:)] dz (16)
where 2 H
WHLA U1
= 14+ z 17
o Vst ( 2vwrrH ) (D

Equation (16) can be rewritten in the simple form by
using the Airy function Ai(—P) as follows:

T = 4x%a? 37273 4i* [- P(z)] (18)
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where
P(z) = 3%/ (20 /a)’

_ (ka)2/3 V|| — VRL

1/3
L
||t k 2oy H™

(19)

Now we can rewrite (10), using (17) and (18):

.2 _‘2 2, . ;
Dypep =777 T g, L vm—e exp(—v2/v3)
m voC w
o H?,  A?[-P(z))
2 _—u st B
X T — : dx (20
'/l‘min re H]Z ]Vu,['))?/3(‘vl|st/’l)g)2 ! ( )

This form can be used even under the condition AH—
0 and/or vy = vr. Note that equations (16) and
(18) for the interaction efficiency factor 7 take into ac-
count the existence of two resonance points symmetri-
cally placed at both sides of the equator. The value
of 7 depends on the electron-wave phase difference be-
tween these points, which is evidently a function of the
electron parallel and perpendicular velocities and wave
frequency. This is the cause of the oscillatory depen-
dence of T on P{2), which results in oscillations of the
amplification as dependent on v.—vgy, or w (see helow).

We carried out the numerical computation of (20).
We reduce the exact form (20) to a simplified one un-
der several realistic conditions. First, the injection
point and the stationary point z,, are located near the
. equatorial region, and hence H; ~ H, ~ Hj and
Vst = V. = v)j. Second, we consider the fixed wave
frequency around w ~ wgyy, /2 instead of varying v, as
a free parameter. Third, we assume the cold plasma
density n.=7 cm~3 and a=1.74x10* km for L = 6. Fi-
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nally, we suppose the characteristic velocity v >~ v... If
(v« —vgL)/vRL K 1, then

(ve — vRL)/VRL = (Ve — VRL) Vs = (W — we)/w. (21)

where w. = wyr — kv, is the angular frequency when
the equality vpy = v, is fulfilled. Now we shall move
on to the computational results. Figure 1 shows the
one-hop amplification versus (ka)?/3(v. — vgry)/vrr at
three different injection points (AH/H; = 0.0, 0.005
and 0.01).  First, in the case of the injection point
exactly at the equator (AH = 0.0) the variation shows
a sharp peak in growth near vg; = v. coinciding with
the stationary point being located near the equator fol-
lowed by an oscillating tail. But it turns into a smooth
decrease gradually when (ka)?/3(v. — vrr)/vRr > 1.
In the range of the smooth decrease the variation is
well fitted by (v. — vm,)“]/ 2 in accordance with ap-
proximate formulas obtained for the one-hop amplifi-
cation in the previous section by using (10) and (12).
Amplitude of the oscillating tail decreases with increas-
ing (v« — vgr)/vry (or increasing w); however, the sign
of the growth is positive over all the range considered.
When the injection point is slightly away from the equa-
tor but still in the equatorial region (0 < AH/H; < 1),
the maximum growth points shift toward smaller values
in (v. — vgy)/vrr (lower-frequency range), and those
peak values drop drastically when the injection point is
getting away from the equator. In addition the sharp-
ness of the peaks decreases when AH/H; increases.
The oscillating tail shifts toward larger (v. — vgy,)/VRI,
with the increase in AH/H; and produces an isolated
packet-like oscillation, which is seen significantly in the
case of AH/H;=0.01.

10 , | ' : | |
AH/H/ =0
T AH/H;, =0.005 —--~- -
8 AH/H, =0.01 ------ _
7 B —
(3 od _
= 5 - _
~
1| _
3 B —
2 B o
1 B —
0 —" B
-20 -10 0 10 20 30 40 50 60
kaz/g(p* — vRL)/pRL
Figure 1. One-hop cyclotron amplification with the step-like distribution localized at dif-

ferent points relative to the magnetic equator.

Amplification has been normalized to the

maximum possible value for a smooth distribution with anisotropy 7', /T — 1 = 1, Ty =

0.2(m/2) /%(ny, /n.)(a/vy)wpyr. Plasma parameters are chosen as follows: L = 6, n, = 7 cm ™3,
Wy = 1.84 keV(the latter corresponds to the condition vy = vgy), and w = 0.5wgyy. For these

parameters, (ka)?/3 ~ 431.5.
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Figure 2 shows the relation between the injection
point AH/H; and one-hop growth for different val-
ues of (v. —vrr)/vrr (0.0, 0.003 and 0.005) near the
first peak. In the case of v, = wvgy the maximum
growth point is slightly away from the equator around
AH/H; ~ 0.002. When (v. — vgy)/vRr increases, the
maximum point moves toward the smaller AH/Hy with
increasing peak value and has a global maximum at a
certain combination of AH/H; and (v. — vgrr)/vRyL.

The above mentioned peculiarities can be explained
in terms of the dispersive characteristics of the function
P(z). Originally, P(z) in (19) is a product of the inho-
mogeneity factor 3 and the stationary point =y /a, and
x represents the perpendicular energy of the energetic
particles.

Figure 3 shows the = dependence of P(x) in several
different combinations of AH/H; and (v. — vrr)/vRL.-
First, we consider the case of equatorial injection (cases
1-(a) and 1-(b), (v. — vgry)/vrr =0.003 and 0.07, re-
spectively, under AH=0). P(z) decreases smoothly
with increasing = (P(x) oc x71/3) for arbitrary vgy, /v*,
and P(0) increases with increasing (v. — vgyr,)/vRr. As
is shown in curve 1-(a) (starting from vrz, ~ V. (Xinin=0)
), P(z) is nearly constant over the effective  range for
the integration (z ~ 2) determined by the x2 exp(—z)
term, and Ai(P(x)) exibits a small dependence in z
as well. Accordingly, the square of the Airy function,
which has a first peak at P(z) = 1.0, is simply the func-
tion of (ka)?/®(v. — vgrr)/vr until one or two periods
of the oscillation in A72. On the contrary, starting from
larger P(0) due to larger (v. — vgy)/vry (see the vari-
ation 1-(b)), the corresponding oscillation period of the
Airy function is smaller, and the phase difference of A:?
within the effective integral range cannot be neglected
anymore. As a result the net value integrated over x
is suppressed as a results of incoherent summation in
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phase of A%, which would diminish mainly the oscilla-
tion fringe. In addition to this effect, decreasing the am-
plitude of the Ai? in larger P also contributes to smaller
amplification in larger (v. — vgry)/vrr,. When the in-
jection point is located away from the equator, P(z)
has a local minimum whose = value ¥ = )7 increases
with decreasing AH/H; and decreases with increasing
(v, —vrr)/vRi- Examples are shown in curves 2-(a)-1,
2 and 2-(b)-1,2. In the case of (ka)?/3(v. —vrL)/VRL
~1, dP(x)/0x > 0 around x ~ 2, and this gradient in-
creases with increasing AH/H; (see curves 2-(a)-1 and
2, AH/H; = 0.003 and 0.01, respectively, under the
same (v, — vgpy)/vrr =0.003). Accordingly, the aver-
age effect over z by the integration is significant, and the
peak width would become larger. Also, (v. — vr1)/VRL
at the peak is getting smaller in larger AH/H; as a
result of the condition of the first peak in Ai? repre-
sented by the equality P(x) = 1.0. Meanwhile, the
larger (v. — vgr)/vRL becomes, the more the local min-
imum of P(z) plays an important role in the behav-
ior of the packet-like oscillation (see curves 2-(b)-1 and
2, AH/H;=0.003 and 0.01, respectively, under larger
(ve —vgrr)/vrL =0.07). Around the points near the lo-
cal minimum of P(z): = =z, Ai? values are summed
up coherently by integration over x, and the combi-
nation of AH/H; and (v. —"URL)/’URL under zp; ~ 2
would determine the peaks of the packet-like oscillat-
ing tail in AH/Hy-(v. — vrr)/vrL space. In fact, this
relation is represented roughly as follows:

AH 1lv, — VRL

—_—~ =

22
H, 8 UV (22)

The curve 2-(b)-2 satisfies the above conditions, and
generally, the peaks of the oscillating tail are well fitted
by (22).

T/To

| T
(ve —vrL)/vRL=0.0

(vs — vRL)/vRL=0.003 ====- -
(v« — vRL)/vRL=0.005 - -----

0o 0.002

0.004
AH/H;:

0.006 0.008 . 0.01

Figure 2. Dependencies of I' on AH/Hy, for different values of (ka)2/3(v* — vgr)/vRL near

unity.
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Figure 3. Dependence of P(x) for different combinations of AH/H; and (v. — vgr)/vrr. 1-(a)
and 1-(b): AH=0 (equatorial injection) (v. — vgr)/verr, =0.003 and 0.07 respectively; 2-(a)-1
and 2-(a)-2: AH/H; = 0.003 and 0.01, respectively, under (v. — vgr)/vrr, =0.003; 2-(b)-1 and
2-(b)-2: AH/H, = 0.003 and 0.01, respectively, under (v. — vgy)/vgr =0.07.

4. Electron Beam with a Velocity
Distribution of 4 Function

In this section we consider the more strict approach
for the amplification in the case of a § function type
distribution. Practically, we use the same approach as
we have shown in the case of the step-like function in
section 3. We can rewrite the form of the one-hop am-
plification for the ¢ function (11) with the Airy function
and its derivative, using (18):

The scale function P(x) follows the definition in (19).
We may use this form even in the case of AH— 0 and/or
(ve —vRr)/vRL < 1.

Figure 4 shows the (v. —vgy)/vr, dependence of
one-hop amplification T’ for the two different injec-
tion points (one is at the equator and another is one
away from the equator). A remarkable difference of
this dependence from the step case is that I' is sign
alternative. In the case where the injection point is
exactly at the equator, the sign of the amplification
is positive at the point (ka)?/?(v. —vrr)/vrr =0.0.

2 2 FNV2 o at
Theam = — 72 Ame np ('1‘2‘ (W*) Lmz e While (ka)?/3(v, — vgrr)/vrr, increases, the one-hop
& \Wo WHL A amplification increases and reaches the first peak at
20 _ [H, 2 4i[-DP(x)] d;?(’i_,,l)’) (ka)2/3(v* —vrr,)/vrr ~ 0.5 and the second peak at
X / re < H, ) o2 0 (ka)?/3(v. — vrr)/vrr ~ 3.0 (largest among the peaks)
HLmin IS s/ 70 after one of the higgest dampings. Then the oscillations
% dzx (23) in T continue at larger (v. — vgr)/vgr, but their ampli-
1+ k'vﬁm /Qun LYr) tude decreases sharply with increasing (v. — vgr)/vRL.
8000 | T T T T, | T 1 T
wl . -
by
4000 |- ARty .
NITaETEey
2000 I h l:"l’:l'l nh ? A -
B U e g
lI||K|:::l::ll|ll:l:'|:|l:|,’“l\ TV
0 F""”' < I THIHI ,'|||,|,|l||,'l“'\'l‘,'l\/b‘,‘\/-1
(° \ Y
& 2000 | pn 7
~ Illll:l'll'”'lllﬂt'
-4000 |- vI'w:;:::H;'u' -
TR
Y
' -6000 [~ ' W f -
{
-8000 —
- = AH/H; =0 _
10000 AH/H; =0.01 —~---
12000 I I I I 1 1 1
-10 -5 0 5 10 15 20 25 30 35 40

Figure 4. Same as Figure 1 but for the beam-like distribution in parallel velocity (7).

(ka)2/3(v* —vgrL)/vRL
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k:a2/3(1,v, —vrL)/vRL

Figure 5. Influence of the parallel velocity dispersion on the one-hop cyclotron amplification

with the step-like distribution localized at the magnetic equator.

correspond to those in Figure 1.

One example in the case where the injection point is
away from the equator (AH/H; =0.01) is also shown
in Figure 4. As can be seen, the positive peaks shift to-
ward smaller (v. — vgr)/vrr, and the first peak has
disappeared in larger AH/H;, but all the peak val-
ues drop significantly in comparison with the case of
equatorial injection, and those peaks become broader.
Note that the packet-like oscillating tail is also seen
in larger (v. — vgr)/vRL, as is seen in the case of the
step function. But an individual peak inside the tail is
very sharp; the maximum amplitude within the peaks
is about 3 times higher than that of the first peak
and has either a positive or a negative sign.” Practi-
cally, the characteristics of the variation shown in Fig-

Plasma parameters chosen

ure 4 can be understood in the same manner as we
studied in the case of step, meaning that the function
P(z) and the term including the Airy function inte-
grated over x play the main role. However, the signif-
icant differences from the step case are that the term
Ai(—P) x 0Ai(—P)/d(—P) is the oscillating function
having an alternative sign and that its amplitude is al-
most constant over P. Hence there is a much slower
decrease in the amplitude of the oscillating tail in com-
parison with the step case in larger P, because only
the average effect by integration over x would suppress
the amplitude. Especially in the case of AH/H; =0.01
the amplitude of the packet-like oscillation is compa-
rable for the first and second peaks. The position

I/To

0 | | |

| |
AW, /W, = 0.0

AW, /W, =0.001 ——--- -
AW, /W, =0.002 ------

| | | 1

15 20 25 30 35

10
(ka)2/3(1)* —vgL)/vRL

Figure 6. Influence of the parallel velocity dispersion on the one-hop cyclotron amplification with
the step-like distribution localized away from the magnetic equator (AH/H; = 0.01). Plasma
parameters chosen correspond to those in Figure 1.
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of the peaks is well fitted by the function AH/Hy ~
—%—(v* ~ vpr)/vrL derived by the derivative of P(zx) by
T at ¥ ~ 1, nearly similar in the case of step.

5. Effects of Small Dispersion in
Parallel Velocity

Although formation of the distribution functions with
step-like or 6-like features is theoretically predicted in
space plasma conditions [Karpman et al., 1974; Nunn,
1974; Trakhtengerts et al., 1986, 1996], we do not know
how sharp those gradients are. Thus it is worthwhile to
investigate the influence of their smoothing over parallel
velocity on the whistler wave amplification. From equa-
tions (10), (11), and (16)-(19) one can see that without
the dispersion in v at the injection point the smallest
scale in v)| in the integrands comes from the argument

of the Airy function P(z) = 3%/3(z4/a)?:

AU|,/'U|| ~ (ka)_2/3 <1 (24)
Equation (24) determines which particles are almost
synchronous with the wave at the stationary phase
point zy. Thus the idealized step-like or beam-like dis-
tribution, (5) or (7), respectively, will give the correct
result for the amplification unless the dispersion in the
parallel velocity does not exceed the value (24).

For the numerical calculations we used the following
smooth approximation for the § function:

~

i 1
Y - W)~ WV—“ exp

2
- 925
AW, ) } (25)
Here, AW|| = muv| Av) is the dispersion in parallel en-

ergy. We substituted this representation into equation
(10), for the step-like distribution, and into equation

_(xf—wx
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(11), for the beam-like distribution in parallel velocity,
and performed numerical integration for different values

“of the parallel energy dispersion AW). Results of our

calculations are shown in Figures 5-8. For the param-
eters chosen (see the caption in Figure 1), (ka) = 430;
thus the idealized distributions (5) and (7) should pro-
vide correct amplitude values until

A'I)|[/'l}|| = AVV”/QVVH <2X 1073

This estimation is in good agreement with our numeri-
cal results.

6. Discussion and Conclusion

The calculations presented in the previous sections re-
veal some novel peculiarities of cyclotron wave-particle
interactions in the case of well-organized distributions of
energetic electrons. Analytical and numerical study has
been performed on the basis of the third order expan-
sion of the spatial dependence of the electron phase near
the stationary phase point. For a step-like distribution
the strict consideration provides a more complicated
picture of the one-hop whistler wave amplification, in
comparison with the earlier results [ Trakhtengerts et al.,
1996; Villalén and Burke, 1997]. Cyclotron instability
of the beam-like distribution in v in an inhomogeneous
magnetic field has been considered for the first time.
For both distributions we have investigated the effects
of the finite dispersion in parallel velocity and the case
when the sharp distribution is formed away from the
equator.

The results obtained can be summarized as follows:

1. The one-hop whistler wave amplification is a sign-
alternative function of the characteristic velocity v. (or
w) for the beam-like distribution function (7), whereas
it remains positive for the step-like distribution function

8000
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-2000
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-6000
-8000
-10000

T
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AW, W, =0

-12000
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(ka)2/3(v* bl URL)/'”RL

Figure 7. Influence of the parallel velocity dispersion on the one-hop cyclotron amplification with
the beam-like distribution localized at the magnetic equator (AH/H, = 0). Plasma parameters

chosen correspond to those in Figure 1.
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Figure 8. Influence of the parallel velocity dispersion on the one-hop cyclotron amplification
with the beam-like distribution localized away from the magnetic equator (AH/Hy = 0.01).

Plasma parameters chosen correspond to those

(5) (cf. Figures 1 and 4). The sign-alternative behavior
for the beam could not be obtained with a simplified ap-
proach using the second order expansion of the electron
phase spatial dependence (cf. sections 2 and 4).

2. The amplification T for step-like and beam-like
distributions in v exhibits an oscillatory dependence
on v, (or w); the characteristic frequency scale of oscil-
lations is

Aw A'I,’RL

w VRL

~ 8(ka)~%/3 (26)
where the numerical coefficient § ~ 3 for the first two
maxima (Figures 1 and 4- 8). Under the typical values
L~6and w=wyr/2, N.~7cm™3, Av/w ~ 1072,
and Af = Aw/27 ~ 20 Hz.

3. A packet-like oscillating tail appears in addition
to the peaks in T near (v. — vgy)/vgry, = 0 in the case
of injection of the beam at a finite distance from the
equator (AH # 0, Figures 1 and 4). Near the exact
resonance, (v. — vgr)/vrr = 0, I' decreases with AH
in both (step and ¢) cases. However, T of the oscillating
tail decreases in step case and grows in the & case for
small AH.

4. An increase of the dispersion Av in the beam
source leads to smoothing all oscillations and decrease
of the peak growth rate; these effects become signifi-
cant if the dispersion approaches and exceeds the value
determined by equation (24) (see also Figures 5 8).

The discrepancy in sign of T' for § function between
the simple and strict approach suggests the fact that
careful consideration of the term 7, whose derivative
in the parallel energy of particles determines the sign
of the wave growth, is required. When the stationary
point is located near the equator, the second term of the
expansion in A(z) including (82A/02?%) plays the main
role in Z, as can be seen in (18), and gives rise to the

in Figure 1.

oscillatory dependence as a function of =z, proportional

o (v - I;RL)1/2 (i.e., that the relative contribution
for the amplification from the particles giving their en-
ergy to the wave and taking the energy from the wave
changes alternatively as a function of z4,), which would
not be seen in (12). In other words, an inhomogeneity
near the equator should be given precisely, making sig-
nificant the effect in the variation of amplification. The
oscillations in the amplification coefficient can give rise
to narrow spectral peaks of whistler waves at the initial
stage of instability; these peaks might serve as a seed for
the sidebands seen in nonlinear computer simulations
le.g., Nunn, 1993]; however, the frequency separation
between these nonlinear sidebands is controlled by the
whistler wave amplitude, so there is no direct relation-
ship between the peaks of the linear amplification and
the sidebands.

For the ¢ function the amplification I' is formally
much greater than that for the step-like function with
the same beam density: T's ~ (ka)z/ 3I‘5tep. However,
in the real situation, when the beam as ¢ function is
created by electron trapping in a quasi-monochromatic
whistler wave packet [Karpman et al., 1974; Nunn,
1974], its density n; is much less than the full density
ny, of the radiation belt electrons:

¢ (kv iowrr h)'/?

np~—Lpy, ~———22 7y

27
kvg WHT — W (27)

where h = by/Hy is the ratio of the wave magnetic
field amplitude to the external magnetic field value and
Qq, is the trapping frequency of electrons. Taking, for
example, L = 6, kv /w ~ 1, w = wy/2, and by ~
10 m~, we obtain ny/nj ~ (2h)'/2 ~ 1072,

Injection of the beam out of the equator leads to the
velocity dispersion over vy, which appears in the pro-
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cess of the beam expansion; this effect decreases the
maximum value of I', but simplified estimations of T’
according to (11) and (15) are still not correct, and rig-
orous consideration, as in sections 3 and 4, is necessary.
The 6 distribution is more sensitive to the velocity dis-
persion than the step-like distribution. For example, if
AH/Hj, = 1072 (this corresponds to the distance of the
injection point from the equator Az ~ 0.1a ~ 10* km),
I's decreases by a factor of 47 (Figure 4), and I'gep in-
creases only by a factor of 3 (Figure 1).

The sensitivity of the amplification to the resonance
velocity, revealed in calculations (Figures 1 and 4),
makes the second-order cyclotron resonance effects im-
portant. These effects appear in nonstationary formula-
tion of the amplification problem and are not described
by the basic formula (2). Thus the estimations of these
effects made by Villaldn and Burke [1997] in the frame-
work of equation (2) seem to be not fully correct, and a
more strict approach, taking into account nonstationary
effects, is required. Such consideration is also important
because, as a result of the very narrow amplification line
in the case of well-organized distributions considered in
this paper, the instability can become hydrodynamic
under a rather small beam density. All these problems
demand special consideration.

In summary, the results obtained indicate that am-
plification of narrowband emissions closely spaced in
frequency is favored at the linear stage of the whistler
cyclotron instability of the electron distribution func-
tions with sharp features such as step or 6 deformations,
which are formed in the magnetosphere under electron-
cyclotron interactions with noise-like emissions hav-
ing upper frequency cutoff and quasi-monochromatic
whistler signals, respectively. The characteristic fre-
quency scale of these emissions in magnetospheric con-
ditions has been found to be of the order of 20 Hz.
The influence of the finite velocity dispersion on the
amplification has been studied. The role of this initial
stage of instability in the observed magnetospheric dis-
crete emissions deserves future quantitative study in the
framework of nonlinear analysis and simulations.
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