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Auroral Electron acceleration by Alfvén waves
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Abstract. We present a two-dimensional numerical model for the formation
of discrete auroral arcs. This model describes the evolution of shear Alfvén
waves generated by a growing force near the equatorial plane, and the transition
to electrostatic fields when the force becomes stationary. The parallel electric
fields on auroral field lines may be regarded as shear Alfvén waves driven by a
magnetospheric generator at zero frequency. In our collisionless model, precipitating
auroral electrons are accelerated to an energy of 350 eV when the upward current
is 3.1 pAm~2. We also find that the electrostatic potential drop is proportional to

the square of the current density.

1. Introduction

Discrete auroral arcs are perhaps the most spectac-
ular phenomenon that regularly can be observed on
the night sky. They have been studied intensely by
space scientists for several decades, but as indicated
in a review of 22 different theories for auroral arcs by
Borovsky [1993], our understanding of the mechanisms
behind the formation of discrete auroral arcs is still
rather fragmented and uncertain.

Discrete arcs, in contrast to diffuse aurora, are char-
acterized by the precipitation of field-aligned electrons
with a rather well defined peak in their energy spec-
trum, and it is generally agreed that these electrons
have been accelerated by a parallel electric field. Since
the magnetospheric plasma is collisionless its paral-
lel conductivity is expected to be very high, and any
parallel electric fields should be short-circuited. Sev-
eral theories have been proposed to explain how par-
allel potential drops reaching up to 10 kV can exist
along auroral field lines, in spite of the high conductiv-
ity. Anomalous resistivity caused by wave turbulence
le.g., Papadopolous, 1977] and electrostatic double lay-
ers [e.g., Block, 1972] have been suggested, but much of
the discussion has recently revolved around two main
groups of models for the parallel electric fields. One
of these groups is purely electrostatic models, such as
the kinetic models in which the magnetic mirror force
prevents short-circuiting of the potential drop [Knight,
1973; Fridman and Lemaire, 1980; Janhunen and Ols-
son, 1998], and self-consistent fluid models [Mitchell et
al., 1992; Ganguli et al., 1993; Rénnmark, 1999]. In the
other group the parallel electric field associated with
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shear Alfvén waves is invoked to accelerate the auroral
electrons [Goertz and Boswell, 1979; Haerendel, 1983;
Lysak and Dum, 1983; Lysak, 1991; Kletzing, 1994;
Streltsov and Lotko, 1995; 1999; Génot et al., 1999;
Streltsov, 1999]. The model presented here combines
features from these two groups into a common frame-
work.

In this study we argue that the auroral display is
powered by mechanical forces in the outer magneto-
sphere. These forces result from the braking of earth-
ward plasma flows and the pressure gradients and an-
isotropies built up in this process. In a stationary state
the forces drive an MHD generator that generates field-
aligned currents to and from the auroral ionosphere
[e.g., Birn et al., 1999]. Information about changes in
the driving force is transmitted by shear Alfvén waves
that adjust the field-aligned currents. To carry the up-
going current from the ionosphere, downgoing electrons
are accelerated to keV energies [Ronnmark, 1999], and
the precipitation of these accelerated electrons causes
the discrete aurora.

In our model a prescribed force is applied to the equa-
torial part of an auroral flux tube that initially is in
static equilibrium. The equations defining the model
are first derived, and the boundary conditions and pa-
rameter values used in this study are specified. In sec-
tion 3 we follow the dynamic response of the flux tube
in terms of electromagnetic fields, currents, and elec-
tron acceleration. Finally, we discuss some properties
of the model and its implications for our understanding
of auroral arc formation. Some numerical details are
treated in Appendix A.

2. The Auroral Circuit Model

2.1. Model Equations

The geometry of the auroral current circuit and the
generator region in the equatorial magnetosphere is
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Figure 1. The geometry of the auroral current cir-
cuit and the generator region in the equatorial magne-
tosphere.

sketched in Figure 1. To derive our numerical model we
introduce a coordinate system based on the flux tube
geometry, with z along the magnetic field lines, z point-
ing to the earth and y increasing to the west. The origin
of these coordinates is at a point where an auroral field
line crosses the equatorial plane. Since z and y are con-
stant along field lines, a distance dl is related to these
coordinates by the metric

B
= (da® +dy*) 35> + d2, (1)

where B,(z) is the local, time-independent, magnetic
field and By is the field strength at z = 0 in the equa-
torial plane. We neglect the curvature of the field lines,
and assume homogeneity in the y direction. The current
density j = jX + j,z will then according to Maxwell’s
equations couple to the electric field components E,
E,, and the magnetic field By. Ampere’s and Fara-
day’s laws for these fields are in our coordinate system
expressed as

0.B,
OB, = (8 B By 2B, +ﬂ0]w) 5
OE, = e ( 'B_z amBy - .U'sz) s (2)
V Bo
B, 0, B,
0B, = || 0:E. - D

We use two fluids to describe the electrons, and let the
subscript s = M denote magnetospheric electrons while
s = I denotes the ionospheric population. The perpen-
dicular motion of the electrons is given by the E x B
drift and can be neglected, since it gives no contribution
to the current. The motion along the field lines of an
electron component with density ns and velocity vs is
described by the continuity equation

0. B
Ogns = —0;nsvs + nsvs—z‘—z (3)

B,
and the equation of motion. We assume that in a static
equilibrium with density ngs and temperature T, the

RONNMARK AND HAMRIN: ALFVEN WAVES AND ELECTROSTATIC FIELDS

pressure gradients 0,mngs7s are balanced by external
forces Fys, that is, Fos = 0,n9sTs. The electron ve-
locity vs is then determined by the equation

vy, — =g, — Ozl Fos

at’Us = .
Me NsMMle NosMe

(4)

The ion motion along the field lines is neglected, and
we assume that the ion velocity u, in the y direction is
given by the E x B drift. We will consider the ions to
be cold, which implies that the kinetic effects on Alfvén
wave propagation are neglected, although they may be
significant at altitudes above a few Rg. Including a pre-
scribed mechanical force Fy that drives the generator,
the y component of the equation of motion for the ions
is

e F,
diuy = ——uz B, + (5)
m; nim;
Inserting u, = —E, /B, allows us to calculate the ion
velocity u, in the z direction as
m; O e
Us = g . ©)
z]1— eﬂfs'? B 0. B,

The perpendicular current, which essentially is the ion
polarization current, can then be written as

- OBy + 2=
HoJz = Vy
— eB“/ 3 E,

where V4 = B, /\/fonim; is the Alfvén velocity. Insert-
ing this in Ampere’s law, we find

(7)

0.B, B

—_ __A2.2 _ _ A2 z
OB, = —A2c (aB ~Byog” ) (1= A== F,,
(8)

where
8—7 8 E
A2 = V2 By )
@+ VR~ &%, /8 8,B,)

We now introduce new dimensionless independent
variables through

X = %z, z= %z, t =yt (10)
where ); = eBy/m;, and the dimensionless fields
Ex = EI/ V CQBOBZ 5
E, = E./(cBy),
B = B,/vB¢B;, 11)
ns = nsm;/(e0BoB:),
T, = Ts/(m.c?).
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We also define

Vs HoC

Js = ns—c' = —mh ,
Ns = ns—ngs, (12)
F = -———Fy .

en;c\/ By B,

We can then collect equations (2), (3), (4), and (8) in
the form

&Ex = -A%9,B-(1-A%F,
B, . )

ath = F (8XB + jm +JI) ,

0
0B = 0OE, -0k, (13)
ONs = —04s, -

. -2

A (NsTs + J—S) MV,

Me Ns nos

Here it may be useful to point out some physical pro-
cesses and how they are described by equations (13).
Eliminating B between the first and third equations of
(13), we obtain

(67 — A%82) Ex + A%8,0,E, = —(1 - A")OF,  (14)

which describes driven shear Alfvén waves. While F is
growing during the early stages of our simulations, the
dynamics will mainly be determined by (14), and when
F becomes stationary, the Alfvén waves are decoupled
from the force. If we assume a stationary state and
eliminate B from the first two equations of (13) we find,
with j =jm +]i,

d,j = —(1—-A"2HF. (15)

Equation (15) describes an MHD generator. The shear
in the mechanical force generates a field-aligned current.
During the later stages of our simulations the current
from (15) determines E, via the momentum equations,
and in the electrostatic limit, 9,Ex = 9«E; gives the per-
pendicular electric field.

The equations of (13) describe the propagation of
shear Alfvén waves and the formation of electrostatic
structures but also high-frequency waves such as elec-
trostatic oscillations at the plasma frequency w, and
electromagnetic radiation. These high-frequency modes
will cause severe problems if we try to integrate the
equations with a time step At > w, ! and a perpendic-
ular resolution Az <« cAt, suitable for the slow, short-
scale processes we are interested in. In related numer-
ical models [e.g., Goertz and Boswell, 1979; Lysak and
Dum, 1983; Streltsov and Lotko, 1999] this problem is
handled by neglecting the parallel displacement current,
€00:E,. If we in Ampere’s law replace ¢g by a dielectric
tensor according to

00
10 |, (16)
0

1
[3N) 0
0 €2
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where £, = 1 in a normal vacuum, the second equation
in (13) becomes

B
OE, = —2
thz EzBO

(0B +jm +1) - (17)
We see that neglecting the parallel displacement current
corresponds to €, — 0, or w2, = w2/e; = oo, which
means that the current is assumed to adjust instanta-
neously to any changes in the magnetic field. When
B, varies on a perpendicular scale comparable to the
electron inertial length A\; = c/wy, it becomes difficult
to justify this approximation, since the time it takes to
build up a strong current increases as the plasma den-
sity decreases.

Rather than neglecting the displacement current by
letting wy, — oo, we will here use a less drastic method.
We will instead increase the vacuum polarizability e,
and slow down the plasma oscillations to a frequency
that permits the numerical integration to converge. We
choose

€, = max (wpAt, 1), (18)
which allows us to resolve the normal plasma oscilla-
tions whenever w,At S 1. When w,At > 1, the fre-
quency of the plasma oscillations is brought down to
wpz ~ At~ which can be handled by the numerical
integration. As long as the timescales we are interested
in are well resolved by our At, it should not matter
whether the plasma frequency is wy, or wp, since they
are both very high compared to the frequencies of in-
terest. Notice that the phase velocity of electromag-
netic radiation in the ordinary mode is also reduced to
¢; = ¢/\/€;. This means that the perpendicular resolu-
tion is improved to Az ~ ¢, At, which is comparable to
Ai = ¢/wp = ¢, /wp;. When an anisotropic vacuum is
introduced with a dielectric constant defined as in (18),
the set of equations (13) becomes very convenient for
numerical integration. These equations are integrated
by a fully implicit method. Further details about the
numerical method are given in Appendix A.

2.2. Model Parameters and Boundary
Conditions

Although the model contains several parameters that
can be varied, we will use a single set of values for
most of them in this first study. We simulate a region
—L; < x < L, where L, is 500 km at the generator
and 21.1 km in the ionosphere. The length of the sim-
ulation box is L, = 3 x 10* km, which is a few Rg less
than the distance from the ionosphere to the equato-
rial plane along a typical auroral field line. Since we
neglect kinetic effects, the dispersion of short perpen-
dicular wavelength Alfvén waves at higher altitudes is
not described in detail by our model [Lysak and Lotko,
1996]. This shortening will lead to slightly shorter par-
ticle and Alfvén wave transit times but has little ef-
fect on the overall physics. Shortening the system saves
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computer time and makes the interesting parts of the
resulting plots easier to read by minimizing the feature-
less section between the generator and the acceleration
region.

The magnetic field strength along an auroral field line
is rather well approximated by

B,(z) = Byexp {z2/[L§ In(Br/Bo))}, (19)
where we will use the ionospheric field strength By =
56uT and By = 0.1uT. This magnetic field model,
which is justified by noticing that a logarithmic plot
of the dipolar field strength on auroral latitudes versus
z resembles a parabola, implies that the distance be-
tween field lines increases by 1/ Bj/Bp = 23.6 from the
ionosphere to the generator.

The force F), applied in the generator region has the
form

exp(—22/L%;) t*
Fo 2 2 42
cosh®(z/Leg) ¥° +1g

Fy(r,z,t) = (20)

where L, = 6 x 102 km and L,g = 50 km. The
maximum force Fy will be 1.5 x 10717 N m~3, and in
this study we will use the generator timescale t¢ = 10s.

The density of the magnetospheric electrons is ini-
tially set to

1

B, (B,\1
e 10°m™3 21
1+B1(Bo) 3x10°m™°,  (21)

Mo M(z) =
which is roughly constant down to below the acceler-
ation region and then increases to 1.76 x 10°m~3 near
the ionosphere. The temperature of the magnetospheric
electron component is kept constant at Thr = 1 keV.

In terms of the height h = L, — z above the lower

boundary, the density of ionospheric electrons is given
by

nor(h) = {exp [mhﬁ—ﬁa] + 10’8} 109m‘:2.2)

Here, H = 400 km is the scale height in the ionosphere,
but the effective scale height increases slightly with al-
titude. The temperature of the ionospheric electrons
is set to T7(h) = 0.1e€V/nor(0)/nor(h), with an upper
limit of 100 eV.

The lower ionosphere is represented by a height-
integrated ionospheric Pedersen conductivity, which we
take to be p = 10 07!, Integrating Ohm’s law and
Ampere’s law across the ionospheric height leads to the
condition

By(L;) = poXpEs(L:) (23)
at the ionospheric boundary. For precipitating electrons
(is > 0) we demand 8.js = 0 at z = L,, which also
implies O;Ns(L,) = 0. However, we do not allow elec-
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trons to flow up from the boundary into the simulation
box, since that would add momentum to the system
in an uncontrolled way. Hence we set js(L,) = 0 and
9;Ns(L,) = 0 when j; < 0 inside the boundary. No
ionospheric boundary condition is needed for E,.

Since the force F), is symmetric around the equator,
we assume that E, and the densities ns also are sym-
metric. Their boundary conditions at z = 0 are thus
0,Ex = 9,Ng = 0. The remaining fields are then anti-
symmetric, so we set E;, = B = j; = 0 at the equatorial
plane. The fields are all set to zero on the boundaries
at z = +L,.

3. Results

To illustrate the response of the auroral plasma to a
force applied in the equatorial region, we will show plots
of selected fields at various times. The force F} is given
by (20) with Fy = 1.5 x 10717 N m™ and tg = 10 s.
When this force starts to pull the equatorial plasma
in the y direction, the divergence of the perpendicular
current causes a charge separation that sets up an elec-
tric field (E;, E,). The growth of E, and the current j,
driven by E, are coupled via the magnetic perturbation
By.
Figures 2a—2d show perspective plots of these fields
1 s after the force has been turned on. The fields
in physical units are plotted as functions of the field-
aligned coordinates (z,h), and the distances given on
the z axis refer to the ionospheric boundary (h = 0).
We show only |z| < 10 km, although the simulation
covers 21 km. The perpendicular electric field is still
confined to the equatorial region and is roughly pro-
portional to F,. There are peaks in B, and E, at the
altitude where 9, F, is large. A small E, is seen at
altitudes around 7200 km, where the Alfvén velocity
reaches its maximum value of ~ 1.1 x 108 m s71. A
significant current density, which causes a noticeable
magnetic perturbation, is already starting to build up
near the ionospheric boundary. Considering that the
time it takes an Alfvén wave to propagate through the

system,
N /Lz dz
L, — o CA7

is about 3.6 s, it may be surprising that information
about the generator has already reached the ionosphere.
However, signals can also propagate with the sound
speed 1.87 x 107 m s™! of the magnetospheric electrons.
By combining the two modes of propagation, a precur-
sor can reach the ionosphere in ~ 1 s. Other simulations
ran with tg = 0.1 s show that the main pulse reaches
the ionosphere at ¢t ~ t,, as expected.

In Figures 3a—3d we show the fields after 10 s, when
the force has grown to half its final value. The fields
are now much more concentrated to the lower part of
the flux tube. In particular, the magnetic perturbation
B, and the field-aligned current density j, = ja + jr

(24)
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reach their maxima at the ionospheric boundary where
the background magnetic field is strongest. The per-
pendicular electric field has a more complicated struc-
ture, which results from the combination of the growing
pulse coming down from the generator and the reflected
pulse from the ionosphere. The field-aligned electric
field is concentrated to altitudes around 7000 km, which
is roughly where the normalized density n = nm + nj has
its minimum.

After 60 s the generator force has reached 97.3 % of
its final strength, and the fields shown in Figures 4a—4d
have become rather stationary. The magnetic distur-
bance B, is roughly proportional to v/B;, and j, is
proportional to B,. This is what we expect, since (13)
indicates that 9,B = 0,js = 0 below the generator in a
stationary state. The strongest E, are found near the
acceleration region, between the peaks in E,. Notice the
ridges with E, > 0 at high altitudes, which indicate re-
gions where the plasma flow is in a direction opposite to
the applied force. In the upward current region there
is a strong negative E, accelerating the precipitating
magnetospheric electrons, but in the downward current
region the sign of E, changes with altitude. At lower al-
titudes a positive E, accelerates electrons upward from
the ionosphere. Above the acceleration region a nega-

E 107 V/m]

X

10\
0

3 0 -
h [10° km] 0
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tive E, is required to slow the electrons down as the
flux tube widens and n increases.

A persistent feature in our simulations is that the
downward currents are narrower and more intense than
the upward currents, as seen in Figure 4d. Even if we at
present cannot explain the reasons for this difference, it
is interesting to notice that a similar effect was observed
by the Fast Auroral SnapshoT (FAST) satellite [Elpic
et al., 1998].

Although our simulations are based on the electro-
magnetic fields, it is instructive to consider also the po-
tentials. In our case there are two straightforward ways
to calculate the scalar potential. Setting the potential
to zero in the ionosphere at * = —L,, we can integrate
the electric field to obtain

¢ (T, 2,t) = —/ E.(z',L,) ds' — / E.(z,2')d?.
—L, L.
(25)

The scalar potential ¢, corresponds to a particular
choice of gauge, in which the vector potential A = A,%
and the fields are given by E, = —0,¢, — 0;A;, E, =
—0,¢., and By = 0,A,. Alternatively, we can also com-
pute the potential by doing the integrals in the reverse
order as

E, [10™° V/m]

h [10° km] 0 -10

h [10° km] 0 -10

x [km]

Figure 2. Perspective plots 1 s after the generator was started of (a) the magnetic field per-
turbation, (b) the parallel electric field, (c) the perpendicular electric field, and (d) the parallel

current density.
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Figure 3. Perspective plots 10 s after the generator was started of (a) the magnetic field
perturbation, (b) the parallel electric field, (c) the perpendicular electric field, and (d) the parallel

current density.

¢z (z,2,t) = —/ E,(-L,,2')d? —/ E,(z',z)dx’,
Lz "Lz
(26)

and in this gauge the fields are E, = —0,¢,, E, =
—0.¢: — OtA;, and By = —0;A4,. In the stationary
limit these two scalar potentials will become equal, but
they include different parts of the time variations.
Figure 5a shows the shape of ¢, at ¢t = 90 s. The
general shape of ¢, becomes similar to this a few sec-
onds after the start, and it retains this shape while the
magnitude grows. At ¢t = 90 s the shape of ¢, shown
in Figure 5b is rather similar to that of ¢,, indicating
that the the field is mainly electrostatic. However, @,
also contains a significant oscillating component. Fig-
ure 6 shows ¢,(z,0,t) in the equatorial plane at times
t =71, 76, 81, and 86 s. We interpret this oscillation
as a field line resonance, a standing shear Alfvén wave
with period tg =~ 20 s that is excited by the growing
force and then decouples from the generator when F),
becomes stationary. The period tg remains constant
when t¢ is varied, which confirms the resonant charac-
ter of the oscillation. The time-dependent electric field
associated with this Alfvén resonance will be mainly in
the z direction, and depending on the gauge chosen, it
can be seen in either A, or ¢,, but hardly at all in ¢,.

The collisionless electrons in the auroral magneto-
sphere are in this study modeled by compressible fluids,
and the acceleration of a fluid is in some respects dif-
ferent from the acceleration of noninteracting particles.
Below the acceleration region, where the parallel elec-
tric field is short-circuited by the ionospheric plasma,
the magnetospheric electron fluid must be accelerated
by pressure gradients. Figure 7 shows the density per-
turbation profile at ¢ = 90 s along a field line that
reaches the ionosphere at £ = —1.3 km, which is in
the middle of the upward current region. As shown in
Figure 7, the density of magnetospheric electrons piles
up in the lower part of the acceleration region. The elec-
trons are then accelerated to their final energy by the
gradient below the density maximum. The final energy
of the precipitating electrons depends on the density of
the magnetospheric electrons at the ionospheric bound-
ary. Figure 8 shows the kinetic energy of the magneto-
spheric electrons along the field line at £ = —1.3 km at
t = 90 s. With the model we use for ngp; the kinetic
energy reached at the ionospheric boundary is very sim-
ilar to the energy eA¢ gained by falling through the
potential drop A¢ along the field line (compare Fig-
ure 5). We emphasize that although the compressibil-
ity of the magnetospheric electron fluid complicates the
picture of the acceleration process, the potential drop
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Figure 4. Perspective plots 60 s after the generator was started of (a) the magnetic field
perturbation, (b) the parallel electric field, (c) the perpendicular electric field, and (d) the parallel

current density.

in our simulations is supported by electron inertia and
the low plasma density above the auroral ionosphere as
discussed by Rénnmark [1999)].

The density of ionospheric electrons is strongly de-
pleted at altitudes around 9000 km in the upward cur-
rent region. To prevent numerical problems with neg-

ZIIII/‘/ R
i
il

2004 i

10
A [10° km] o 0

x [km]

ative densities (see Appendix A), we must limit this
density reduction to ~ 80 %. A density perturbation
profile for the ionospheric electrons along the field line
at £ = —1.3 km at ¢t = 90 s is shown in Figure 9.

In the downward current region the density of iono-
spheric electrons grows and builds up to a sharp peak

> : gl
o . lj ""'lu,',""uu'im

i

I./!.’. N
Mgt
=gy

10
4
A [10* km] o ©
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Figure 5. Perspective plots 90 s after the generator was started of (a) the scalar potential ¢,

and (b) ¢,.
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Figure 6. Cross section of the scalar potential ¢, in the
equatorial plane at four times. The oscillation indicates
that a field line resonance with a period tg ~ 20 s is
excited.

near the reversal of E, at h = 8500 km. This peak
continues to move slowly upward throughout the sim-
ulation, while N; grows to almost 100 ng;y. The sepa-
ration of the electrons into two fluids is not so easily
justified in this region, and we are not convinced that
the physics is described in detail by our model.

The total potential drop along a field line, given by
Ad(z,t) = ¢.(z,L,,t) — ¢,(,0,t), is in Figure 10
plotted versus the current density jas(z, L,,t) carried

50 " - . . —

NM/nOM [%]

0 5 10 15 20 25 30
h [10° km]
Figure 7. The relative density perturbation Nas/nom

in the magnetospheric electrons along a field line at z =
—1.3km at t =90 s.
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Figure 8. The kinetic energy of magnetospheric elec-
trons along a field line at x = —1.3 km at t = 90 s.

into the ionosphere by the magnetospheric electrons.
This is the current-voltage relation a spacecraft passing
through the upward current region would observe at
t =90 s. The crosses show values from the simulation,
and a solid line shows the theoretical current-voltage
relation derived by Réonnmark [1999]

me .
Ag(z,t) = Wﬁw- (27)

NI/nOI [%]

4 P

0 5 10 15 20 25 30

h [10° km]

Figure 9. The relative density perturbation Ny/nor
in the ionospheric electrons along a field line at = =
—1.3km at ¢t =90 s.
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Figure 10. The current-voltage relation in the upward
current region. The crosses show the simulation results,
and the solid line is the theoretical result predicted by
equation (27).

Using the density n = 1.76 x 10 m~3 for the mag-
netospheric electrons, we find m./(2e*n?) = 3.576 x
10*® V A~2 while a least squares fit to the crosses gives
3.593 - 10'3 V A2 The agreement between the elec-
trostatic fluid model and our numerical simulations is
almost perfect, and our simulations strongly support
that the self-consistent potential drop on auroral field
lines is proportional to the square of the current density.

4. Discussion

The model developed in this study includes a gener-
ator that converts work done by equatorial, mechanical
forces into electromagnetic power. The propagation of
electromagnetic energy down to the acceleration region
is described both during the dynamic stage dominated
by Alfvén waves and during the electrostatic stage. In
the acceleration region, electromagnetic power is con-
verted back to mechanical energy in the form of an in-
tense flux of precipitating energetic electrons.

There are several mechanisms that contribute to the
appearance of parallel electric fields in shear Alfvén
waves. At altitudes above ~ 4 Rg, parallel electric fields
can be caused by finite Larmor radius effects [Hasegawa,
1976]. As discussed in section 2, these effects are not
included in our model, but this omission is not likely
to be important since most of the electron acceleration
is expected to occur at lower altitudes. At these lower
altitudes an E, is generated by electron inertia, that
is, by terms proportional to the electron mass in the
momentum equation

dimev, = Oimev, + mev,0,v, =~ —eF,. (28)
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In some studies [e.g., Goertz and Boswell, 1979; Streltsov
and Lotko, 1999; Streltsov, 1999] only the partial time
derivative 9;m.v, is included, but the convective term
is far more important in the auroral acceleration re-
gion for the slow, large-amplitude processes we con-
sider. The convective term is included by Lysak and
Dum [1983], but its effects are not seen since n/B is
constant in their model. As discussed by Rénnmark
[1999], the term m.v,0,v, alone can account for sta-
tionary, electrostatic potential drops of several kilovolts
when the variation of n/B along auroral field lines is
taken into account. The importance of the convective
term for electron acceleration by field line resonances
has also recently been stressed by A. N. Wright et al.
(Parallel electric fields in the auroral acceleration re-
gion of field line resonances, submitted to Journal of
Geophysical Research, 2000).

When describing the generator, we have assumed that
the force F, is independent of the convection velocity
uy = —E; /B, reached by the equatorial plasma. This
corresponds to a pure current generator, and this ide-
alized case was chosen for its simplicity. Mixtures be-
tween current and voltage generators can be modeled
by allowing the force F, to depend on u,y, but it is not
obvious how this dependence should be chosen. A self-
consistent treatment of the generator probably requires
a three-dimensional simulation.

In the simulations presented here the auroral cur-
rent sheets are ~ 1 km thick and separated by ~
2 km at ionospheric altitude. These scales, which are
determined by our choice of Fy, are typical for dis-
crete arc systems, which may split up into several finer
scale arcs when observed optically from the ground
[Borousky, 1993]. Our simulations show that the iono-
spheric resistance, which is essential for the large-scale
magnetosphere—ionosphere coupling, is almost negligi-
ble for such small structures. This is also easily con-
firmed by an order of magnitude estimate, which shows
that even if the ionospheric conductivity is as low as
1 Q! the potential drop in the ionosphere will be just
a few volts for an auroral current density of 3 A m=2
that yields a field-aligned potential drop ~ 350 V. This
makes it very unlikely that enhancements of the iono-
spheric conductivity can have significant effects on the
development of small-scale auroral structures.

The fluid model we use cannot fully describe the be-
havior of a collisionless plasma. As mentioned in sec-
tion 3, the magnetospheric electrons must be acceler-

ated by pressure gradients below the acceleration re-
gion. This limits the velocity they can reach to the
sound velocity, which in our isothermal model equals
their thermal velocity. The present version of the code
behaves well for potential drops less than ~ 400 V, but
for higher potentials it becomes difficult to control the
density fluctuations.

The results presented in Figure 10 strongly support
that the potential drop on auroral field lines is pro-
portional to the square of the current. This forces
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us to reconsider the observations that have been inter-
preted as supporting a linear current-voltage relation-
ship [Lyons et al., 1979; Weimer et al., 1987; Lu et al.,
1991; Haerendel et al., 1994]:

j. = —KAg. (29)
These are event studies, and they contain no statisti-
cal evidence indicating whether the data are best fitted
by a linear relation or some other function. In these
studies the Lyons-Evans-Lundin constant K [Fridman
and Lemaire, 1980] is a free parameter, which varies by
almost 2 orders of magnitude from event to event (and
sometimes is adjusted during an event). Considering
that the variation of the observed potential drop in each
event is rather limited, it is probably possible to find a
reasonable linear fit even if A¢ really is proportional to
2.

In a recent study of 22 events [Sakanoi et al., 1995]
the latitudinal distribution of the upward current den-
sity was found to have an inverted-U shape, rather than
the inverted-V shape of the potential. In many cases,
A¢/j, was ~ 5-10 times larger at the center of the
inverted-V potential than at the edges. Assuming that
the plasma density is independent of latitude during
each event, this result is expected if the potential drop
is proportional to the square of the current. In our opin-
ion, this study indicates that the observational support
for a linear current-voltage relationship is rather weak.

There are also reasons to question the theoretical ar-
guments in favor of a linear current-voltage relation.
The kinetic models that predict a linear relation are
not self-consistent but based on the adiabatic orbits of
test particles. Initially, the particle distributions at the
equatorial and ionospheric boundaries are specified in
a state which we may assume to be charge neutral and
without current. The adiabatic particle orbits will de-
termine the distribution function, and hence the den-
sity, along the flux tube. An essentially arbitrary elec-
trostatic potential is then prescribed, and new particle
orbits are calculated by taking this potential into ac-
count. The particle distributions are then integrated
to obtain the current, and the density can also be cal-
culated. If the test particles in the model were real
electrons, the densities calculated from the new orbits
would imply large deviations from charge neutrality.
Janhunen [1999] used this method to calculate the den-
sity in the presence of an upward electric field, and he
found that for eA¢ ~ 2T the density increase at low
altitudes was comparable to the total equatorial den-
sity. A corresponding increase in the number of real
electrons would cause a strong downward electric field,
which is not included in the calculation of the parti-
cle orbits. As long as the particle distribution function
calculated from the specified boundary conditions pro-
duces a charge density that is inconsistent with the po-
tential, we have no reason to expect it to predict the
correct current.
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Even if kinetic test particle models cannot be used to
obtain the current-voltage relation, they provide valu-
able information about the behavior of suprathermal
particles in the auroral acceleration region. As long as
the high-energy particles constitute a small fraction of
the density, they will behave approximately as predicted
by these models. In particular, the accelerated electrons
below the parallel electric field will behave as test parti-
cles. Therefore the theoretical studies of velocity space
boundaries between different particle populations, and
the observations that confirm these theories, are not
much affected by the lack of self-consistency. Some ex-
amples of such studies are discussed in the review by
Lundin and Eliasson [1991).

In the literature, auroral electron acceleration by an
electrostatic field has usually been treated as entirely
separated from acceleration by shear Alfvén waves.
Speaking about Alfvén wave models, Lysak and Dum
[1983, p. 365] stated that “One problem with such mod-
els is that they do not possess a steady state parallel
electric field to accelerate particles.” and it seems that
this opinion implicitly has been shared by most work-
ers in this field. However, our simulations demonstrate
that shear Alfvén waves build up an electric field that
becomes electrostatic when the driving force is station-
ary. Even in the absence of collisions, there is a smooth
transition from driven Alfvén waves to an electrostatic
field maintained by a magnetospheric generator.

Appendix A: Numerical Method

The set of equations in (13) is solved by a fully
implicit method, based on factorization of the two-
dimensional spatial differential operators. Algorithms
of this type are discussed by, for example, Degrez[1992].
If we for notational convenience collect all the fields in
a vector U = (E4, E;, By, Ns,js)T, we can after time dis-
cretization sum up (13) in the form

U(t + At) = U(t) + At {A(U(t + At/2)) + G}, (30)

where A(U) represents the U dependence of the right
hand side of (13) and G represents some inhomogeneous
terms involving the external force F and the densities
nos. We now linearize A in U(t + At) by a Taylor ex-
pansion:

A(U(t + At/2))

Q

AU(®) + 5 [U(t+ A1) ~ U] - B AU(H)
- -;- [U(t + At) + U®)] - duA(U(®), (31)

where the second step follows from the homogeneous
properties of A. This results in a linear set of equations:

[I - %&;A] U(t+At) = [I + %aUA] U(t)+AtG.
(32)
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The operator dy A, which contains both 8, and 8,, is
now split into two parts as 0y A = X+ Z, where X con-
tains only 8, and Z contains only d,. This decomposi-
tion is not unique, and it should be chosen in a way that
makes the product X-Z as small and simple as possible.
Neglecting a small term At%/4 X-Z-[U(t + At) — U(t)],
we then find

[I— %X] . [I— %—tZ} -U(t+ At) =

[1+ %x] : [I+ %z] U(t) + At G. (33)

Introducing U* = [I— At/2Z])- U(t + At) as a new
variable, we can solve (33) in two steps. First we solve

[1 - %x] U = (34)
[I + %X] . [I+ %EZ] -U) + At G.
for U*. Then we use
[I - %ZJ -U(t+ At) =U" (35)

to solve for the fields at ¢t + A¢t. When the operators X
and Z are expressed as centered finite differences, each
of these two steps consists of solving a block-tridiagonal
set of equations. The number of operations needed
for this scales linearly with the mesh size (N, x N;)
and hardly requires any extra memory, which makes
this algorithm very efficient. The number of operations
needed for a direct integration of (32) would typically
be proportional to (N, x N,)2.

The simulations presented here were all performed
on a rectangular, slightly nonuniform grid of size (N x
N.) = (51 x 120), and we used a time step At = 0.02 s.

The algorithm described above is numerically stable,
but the grid tends to become decoupled in the iono-
sphere where E, is small. To cure this, even and odd
grid points are coupled by averaging the fields E,ns,
and js as

U(z) = 0.9U(2) +0.05[U(z + Az) + U(z — Az)]. (36)

Some extra precautions are needed to ensure that the
code behaves well in simulations that should converge
to a quasi-stationary state with potential drops of hun-
dreds of volts. To prevent the densities from going to
zero near boundaries where the current is forced to van-
ish, we add a source term of the form —S(2)Ns to the
continuity equations. The function S(z) is exponen-
tially small away from the boundaries, except that it in
the upward current region includes a term 10~3(ng;/n;)3
which becomes significant for very small n;. If the
ionospheric electrons are allowed to become supersonic,
steep density gradients will form in the lower part of
the acceleration region, where their density already is
reduced by typically 80 %. To prevent this from making
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the density negative, we transfer some momentum from
ionospheric to magnetospheric electrons by subtracting
a force o 0.05 m.v?/T in the momentum equation for
the ionospheric electrons, and we conserve total current
by adding a corresponding term to the magnetospheric
component.
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