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Abstract. On the basis of quasi-linear theory, the parallel and perpendicular
wave heating and acceleration rates for gyrotropic particle velocity distribution
functions are derived. These rates can be used in anisotropic multicomponent
fluid equations, in order to describe the wave-particle interactions of ions with,
for examples, kinetic Alfvén and electromagnetic or electrostatic ion cyclotron,
respectively, magnetosonic waves propagating along or obliquely to the mean
magnetic field. The waves of coronal origin propagating away from the Sun into the
interplanetary medium can resonantly heat the solar wind ions and accelerate minor
ions preferentially with respect to the protons. Such processes are required in order
to explain and understand the measured characteristics of ion velocity distributions
in the solar wind and to interpret the recent spectroscopic evidence obtained from
EUV emission line measurements made by the Solar and Heliospheric Observatory

(SOHO) spacecraft, which indicate cyclotron-resonance-related line broadenings

and shifts.

1. Introduction

In this introduction we provide the main empiri-
cal motivation for the subsequent algabraic and formal
derivations made in this essentially theoretical paper.
Many observations in the fast solar wind have revealed
clear evidence for interplanetary heating (7} > 105 K)
and preferential acceleration of heavy ions with respect
to the protons [Schmidt et al., 1980; Marsch et al.,
1982b, 1982c; Bochsler et al., 1985; von Steiger et al.,
1995; Hefti et al., 1998]. In the data there is a clear
statistical trend for the temperature ratio, T;/7}, to
be mostly proportional to the heavy ion mass ratio,
mj/mp, and sometimes even more than mass propor-
tional [Collier et al., 1996; Cohen et al., 1996]. Fur-
thermore, their differential speeds, (U; — U,), with
respect to He?' are highly correlated [Schmidt et al.,
1980; von Steiger et al., 1995] and about equal. Since
in fast streams Helium ions travel by about the local
Alfvén speed faster than protons [Marsch et al., 1982b,
1982c; Neugebauer et al., 1996], one can conclude that
all heavy ions move faster than protons in fast solar
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wind. For reviews of these phenomena, see, for exam-
ple, the work of Marsch [1991] and von Steiger et al.
[1995].

Recent spectroscopic observations of the widths and
shifts of extreme ultraviolet (EUV) emission lines of
heavy ions, as obtained from measurements made on
the Solar and Heliospheric Observatory (SOHO), also
indicate that the minor ions [Kohl et al., 1997, 1998; Li
et al., 1999; Cranmer et al., 1999a, 1999b] have exces-
sively high kinetic temperatures in coronal holes and
stream differentially. In particular, O5% is found to
travel much faster than the protons in coronal holes
[Cranmer et al., 1999a]. Generally, the coronal minor
ions coming in various ionization stages are rather hot
[Seely et al., 1997; Kohl et al., 1997; Wilhelm et al.,
1998], particularly in the polar coronal holes, where the
electrons are observed, on the contrary, to be rather
cold [David et al., 1998; Wilhelm et al., 1998]. The
ions show some ordering of their kinetic temperatures
according to the local gyrofrequencies [Tu et al., 1998].

Tu et al. [1998, 1999] found a trend for the minor
ion temperatures in the lower corona to increase with
the mass-per-charge number. This was interpreted as a
possible indication for cyclotron resonant processes to
influence the heavy ion thermal speeds. All these Ultra-
violet Coronagraph Spectrometer (UVCS) and Solar Ul-
traviolet Measurement of Emitted Radiation (SUMER)
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observations suggest the relevance of wave-particle in-
teractions in the corona for the ion heating and accel-
eration, which may be explained by high-frequency cy-
clotron wave resonance by analogy to the model pro-
posed for the solar wind by Marsch et al. [1982a]. How
the high-frequency waves are generated in the corona
remains an open problem.

Many years ago, Marsch et al. [1982a] and Isenberg
and Hollweg [1983] already modeled alpha particle and
heavy ion temperatures and speeds in the near-Sun so-
lar wind at distances beyond 10Rg, thereby employ-
ing the quasi-linear rates. Recently, Marsch [1999] has
again applied these model equations to show that mi-
nor ions, such as oxygen and iron, can be strongly ac-
celerated by left- and right-handed waves near the ion
gyrofrequency to the in situ observed differential speeds
and temperatures. In the past years, Hu et al. [1997],
Li et al. [1997] and Czechowski et al. [1998] have done
anisotropic multifluid calculations, using ad hoc mass-
proportional heating functions for the heavy ions in the
corona and wind or relative heating functions, in which
the heat is shared between the ions according to the
quasi-linear rates with a fixed wave power spectrum
density (PSD).

In this paper we derive from quasi-linear theory (QLT)
the heating and acceleration rates for particles inter-
acting with broadband waves either in Landau or cy-
clotron resonance. These rates are the relevant trans-
port terms, which supplement and, in the collisionless
solar corona and wind, dominate the Coulomb collision-
related momentum and energy transfer terms used in
standard MHD or multifluid equations. We establish
for any particle’s species the rates, which must be used
in the anisotropic multifluid equations, in order to de-
scribe adequately the resonant interactions of ions with,
for example, parallel Alfvén and ion cyclotron waves or
with oblique fast magnetosonic waves in the solar wind
and the Sun’s corona. These waves are most likely gen-
erated by violent small-scale reconnection events [Az-
ford and McKenzie, 1997] in the magnetic network of
the Sun, either directly or through inhomogeneity ef-
fects, or may be assumed to be fed from MHD-range
fluctuations by a turbulent cascade to the kinetic dissi-
pation domain [Tu et al., 1984; Tu and Marsch, 1995;
Marsch, 1999; Leamon et al., 1998a, 1998b). This paper
addresses the microphysics of the dissipation domain of
the solar corona and wind plasma.

The inclusion of Landau damping with acoustic or cy-
clotron resonance with right-handed fast waves is very
important (Landau damping was already considered by
Barnes and Hung [1973], not only because these waves
are emitted from the solar corona as well as their left-
handed counterparts [Behannon, 1976; Goldstein et al.,
1994] but also because they provide a limiting mecha-
nism for the differential velocity U; — U, [Marsch et
al., 1982a; Marsch, 1999]. They become increasingly
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more important when the tails of the minor ion dis-
tributions move into resonance with these waves. The
prominent role of the fast mode in regulating the ion dif-
ferential speed has long been recognized [Montgomery et
al., 1976; Gary et al., 1976; Schwartz, 1980; Dum et al.,
1980]. The nearly nondispersive magnetosonic waves
may actually lead to a “trapping” of the bulk velocity
at about the wave phase speed [see, e.g., Marsch, 1998,
1999], an effect which explains naturally the observed
close correlation of U, — U, with V4 and the radial
decrease in the He?t differential speed as observed by
Helios [Marsch et al., 1982b, 1982c] between 0.3 and 1
AU.

Gomberoff et al. [1996] and Gomberoff and Astudillo
[1999] have suggested the idea that it is the self-consist-
ent evolution of the dispersion relation that could es-
sentially control the acceleration and heating processes.
The preferential acceleration of minor ions is shown to
change the topology of the dispersion relation in a way
which favors species with a low mass-per-charge ratio
and allows at last only the protons to resonate with
the waves [Tu and Marsch, 1999]. Isenberg and Hollweg
(1982] and McKenzie [1994] have also analyzed the dis-
persion relation from the multiion fluid point of view.
Hu et al. [1997, 2000] generalized the concept of wave
action conservation to a multifluid situation.

Self-consistency of the model wave PSD calculations
is quite important. Namely, if one speaks about ion cy-
clotron wave heating and acceleration of minor ions, one
has to consider simultaneously the drastic perpendicu-
lar heating or parallel cooling caused by these waves in
the proton distribution. This heating leads to an erosion
of the original wave power spectrum in the frequency
range corresponding to proton resonant speeds of a few
thermal speeds. The eroded power is then not available
anymore for affecting the heavy ions. Therefore the
evolution of the wave PSD is inextricably linked with
the evolution of all parameters that characterize the
energy and momentum state of solar wind and coronal
ions (see the recent paper by Tu and Marsch, Cyclotron
wave heating and acceleration of solar wind ions in the
corona, submitted to Journal of Geophysical Research,
2000) (hereinafter referred to as Tu and Marsch, sub-
mitted manuscript, 2000).

Following Tu et al. [1984], the low-frequency-wave
cascade was first considered as a viable mechanism of
coronal heating and solar wind acceleration by Hollweg
(1986] and Hollweg and Johnson [1988]. Recently, Hu et
al. [1999] discussed the differences between the models
using the Kolmogorov- or Kraichnan-type cascade for
the corona heating. Matthaeus et al. [1999] pointed out
that quasi two-dimensional (2-D) turbulence, which is
perpendicular to the main field and implies 2-D mag-
neétic reconnection, may help in cascading energy from
the low-frequency to the high-frequency range. Such
a mechanism would also require considering Landau
damping for wave dissipation.
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2. Anisotropic Fluid Models Including
Wave-Particle Interactions

The main idea of all the models mentioned so far is
that preferential acceleration and heating of solar wind
minor ions can be achieved via resonant interaction with
ion cyclotron waves [Hollweg and Turner, 1978; Dusen-
bery and Hollweg, 1981; McKenzie and Marsch, 1982;
Marsch et al., 1982a] and also with magnetosonic waves
[Barnes and Hung, 1973; Marsch et al., 1982a]. Dusen-
bery and Hollweg [1981] did a comprehensive parame-
ter study on the heating and acceleration of heavy ions
by left-handed polarized waves for model wave power
spectra prescribed according to observations [Behan-
non, 1976; Denskat and Neubauer, 1982]. These works
assumed drifting bi-Maxwellians for the particle veloc-
ity distribution functions (VDFs) and found encourag-
ing trends of the calculations in agreement with ob-
served ion characteristics, showing T} /T, > m;/m, and
U; > U,. These ideas were further advanced by Marsch
et al. [1982a]. Recently, Marsch [1999] and Tu and
Marsch (submitted manuscript, 2000) have again con-
sidered a self-consistent fluid-type model, in which the
radial evolution of wave spectra was calculated by tak-
ing local wave growth or damping into account within
the framework of QLT as described in sections 3 and 4.
We only quote here the stationary equations of motion
for particles in a simple spherical geometry, where the
distance from the Sun is denoted by r. The continuity
equation reads

%(T2ijj||) =0.
In the momentum equation, gravity and the electric
field, stemming from the electron pressure gradient,
need to be considered in the coronal hole and near-Sun
solar wind, although the interplanetary electric field,
E), is usually smaller (since observations of SOHO and
Helios indicate that T, < T, < Tj) than the partial ion
pressure gradient. For spherical symmetry we have the
following set:

V2 d 2V2 d
_ A g Ly - 2 Sy
( sz”> Ui 3-Usi = ==+ Vil

e; 0
T m—JjEn = 5;Vil- (2)

(1)

The two energy equations, here in terms of the perpen-
dicular and parallel thermal speeds squared, are

d vy o,
Uyl <fd—rvﬁ ) = 5V (3)
d o ond 0,
Uit g7 Vil + 2Vin g7Vl = ¢ Vil - (4)
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The right-hand sides are the big unknowns. In a col-
lisionless medium these terms must be related to wave-
particle interactions. These terms are generally nonlin-
ear functions of the three moments, Uy, Vj, and V1,
and functionals of the wave PSD. Even when assuming
a rigid drifting bi-Maxwellian model velocity distribu-
tion function, the resulting set of equations is highly
nonlinear. It evolves on multiple spatial scales, varying
between the shortest scale, which is the wave length be-
ing typically of the order of A s(= Va/Qp) or larger, and
the largest scale, which is the solar radius, Rs, as the
typical fluid scale in the corona and wind. These model
equations comprise the standard double-adiabatic fluid
equations but also include energy (temperature) and
momentum (differential speed) transfer rates, which are
obtained as integrals over the quasi-linear diffusion op-
erator as shown in section 4.

It is necessary to emphasize the importance of the
inhomogeneity of the expanding solar wind. An Alfvén
wave originating in the corona with a frequency w much
less than the local gyrofrequency there, conserves its
frequency propagating in the inertial frame away from
the Sun and thus becomes gradually an ion cyclotron
wave, which will at larger heliocentric distances, where
w = ,, be damped and deliver its energy and momen-
tum to the ions. This frequency sweeping mechanism
has, in the context of recent solar wind and coronal fun-
nel modeling, been shown to be capable of heating the
protons [Tu and Marsch, 1997; Marsch and Tu, 1997]
and also heavy ions [Tu and Marsch, 1999, submitted
manuscript, 2000]. In contrast, Matthaeus et al. [1999]
argued that it was not sufficient and some stronger tur-
bulent cascade was needed.

3. Electric and Magnetic Field
Fluctuations

Before we discuss the diffusion equation, we reiterate
some of the basic equations and definitions of quasi-
linear theory (QLT) needed subsequently. QLT has
been described in many articles [Kennel and Engel-
mann, 1966] and textbooks. Here we refer mainly to
the excellent books by Melrose [1986] and Stiz [1992],
and Melrose and McPhedran [1991]. QLT is quadrati-
cally nonlinear in the coupling terms between the fluc-
tuations of the velocity distribution functions and the
electromagnetic fields, but it is linear in the sense that
these two types of fluctuations enter linearly in their
product in the Vlasov equation. Hence the name QLT
has been coined for this weak kinetic turbulence theory,
in which only the reaction of the zeroth-order VDFs on
the broadband wave spectrum is considered, while the
wave-wave interactions and higher-order wave-particle
interactions are neglected. The wave properties (such
as dispersion and growth) are evaluated from linear dis-
persion theory with slowly time-varying VDFs and wave
spectra, implying weak wave growth or dissipation.
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In QLT it is assumed that the electromagnetic wave
fields can generally be Fourier-decomposed in plane
waves with the frequency, w = wp(k), and growth
rate, v (k), for a particular wave mode (index M) and
a given wave vector k, which is assumed here to be
directed arbitrarily with respect to the constant back-
ground field, Bg. The background electric field is taken
to be zero, and the background plasma may be multi-
component but is assumed to bear zero current and be
quasi-neutral. The full dispersion equation for any lin-
ear plasma wave mode M in a multicomponent plasma
can be found in the work of Melrose [1986]. Mann et al.
[1997] have recently studied in detail the polarization
properties of waves in a multicomponent plasma. QLT
assumes the validity of the random-phase approxima-
tion, which ensures that no constructive interference oc-
curs between the different waves modes, and thus these
modes can be simply superposed linearly. Therefore we
can write the Fourier-transformed electric field as

Ekw)=21r) dlw-wy®)]Exk). (5)
M

The Fourier components of the electric field vector can
be written in terms of the unimodular polarization vec-

tor, ep (k), as follows:

Eyn(k) = Ey(key (k) . (6)

Similar expressions hold for the magnetic field, B M (k),
which is through the induction equation given by

B (k) = ﬁ(k)k x By (k). (7)

The spectral energy density of the electric field of mode
M is given by Ep(k) =| Ep(k) |* /(87) and evolves
according to

%ma«) = 29 (K)Enr (k) |

which follows from the Fourier decomposition

(8)

Ey(x,t) = / dakEM(k)eik'xe_ifot dt' 2z (k,t') 7 (9)

where x is the spatial coordinate and t is the time.
The growth rate, yas(k), or damping rate if it is nega-
tive, together with the real frequency, wys(k), give the
complex frequency, zp (k) = wps (k) + ivar (k), whereby
one has wyr (k) = —wp (—k), ym (k) = +ym(=k), and
thus 2},(k) = —zm(—k). The asterisk indicates the
complex conjugate number. Also, E},(k) = Ep(—k),
since the electric field in (9) must be real, so that
Emk) = Em(=k) by definition. It is often conve-
nient to use the Doppler-shifted frequency denoted by
a prime, wy,(k) = wy (k) — kyUj;, as measured in a
frame of reference moving with the bulk speed compo-
nent, Uy, of species j along Bo.
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4. Quasi-linear Diffusion Operator

The quasi-linear diffusion equation describes the evo-
lution of the velocity distribution function of any par-
ticle species in an inertial frame of reference, in which
the particles and waves are supposed to propagate. For
magnetic-field-aligned waves it has been given, for ex-
ample, by Davidson [1972] and applied by Marsch et al.
[1982a] to solar wind ions. The general diffusion equa-
tion for any type of waves in a magnetized plasma and
for gyrotropic background velocity distribution func-
tions, f;(v),vL), has been derived originally by Kennel
and Engelmann [1966] and is derived explicitly in the
book of Stiz [1992] or by Melrose [1986], who uses an
elegant semiclassical treatment of radiation processes in
plasma. We will throughout the paper assume that the
VDF is normalized to a density of unity. The diffusion
equation reads

1 0 0 0
= ol {'UJ_ (D_L N + Dy II@T},,) fj(vlav”)}

9 P 5
+—8T|| { (D” L8u, + Dy “a—v,,) fj(v_L7U||)} . (10)

In the diffusion tensor elements the species index j has
been suppressed to ease the notation. It is evident that
they depend on j. The velocities in the proper frame
of species j are obtained by replacing the inertial frame
coordinates as follows: v; — w,, and v = = Uy =
w). Equation (10) is quoted here without derivation as
the starting point of our paper.

Before we give the details of the diffusion tensor, we

will define several quantities. Note that the Cartesian
components of the wave vector (with gyrophase angle

¥) are k = (ki cos(¥), kL sin(), k), and the velocity
vector is v = (v cos(¢),vy sin(¢),v;) (with gyrophase
angle ¢). When calculating the Fourier transform of
the current density, one needs to consider the following
expressions, which are obtained by using the generating
function for Bessel functions:

+00
vetlkivi /Q5)sin(e—v) _ Z eis(‘z’_w)V(k,v,s). (11)

§=—00

The new vector introduced here is defined as

1 . ,
V(k,v,s) = [ime%_l +e o),

1 ) )
Q—ivl(ez¢c]s—l - e-“p']s-',-l)y U|]Js] . (12)

The Bessel functions depend on the argument z =
(k1v1)/9Qy, 1e., J; = Js(z), and they obey the symme-
try relation Js(—z) = (—1)*J,(z). The following defini-
tions hold: The ion charge is e}, mass is m;, density is

nj, and the plasma frequency is wjz = (477'6?”]')/""]“
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The ion gyrofrequency, which by the definition car-
ries the sign of the charge, reads as follows: ; =
(ejBo)/(mjc). The fractional mass density of species j
is defined as p; = n;m;/p, with the total mass density
p =3 ;njm;. The Alfvén velocity is Vi = B3 /(47p).

These definitions allow one to express concisely the
dielectric as well as the diffusion tensor [Melrose, 1986,
which can be generally written as

( Dyy Dy )

Dy Dy.

= 828 2 1 oo

= w (D [ s

X Z 5 wM —-SQ —k”vn] (13)
. vis) 2 ki kuv

x |eyk) Vjik;v;s) | b l) .

5. Heating and Acceleration Rates as
Velocity Moments

We can now take velocity moments of 8/8t f; as given
by the diffusion equation (10). The zeroth moment ex-
presses the conservation of particle number density n;.
The first moment gives the bulk acceleration. The mean
speed along By is given by Ujj =< v >. The heating
rates are defined by the second parallel and perpendic-
ular moments. We recall that the mean thermal speeds
parallel and perpendicular to the field are defined by the
second moments, V3 =< w} > and V? =< wi /2 >,
where the brackets stand for the full velocity space inte-
gration over the respective VDF of species j. Therefore
we have

0 *° o 0
<§fj >—271‘/0 de_wJ_/_oodw”afj—O, (14)

expressing conservation of nj, or of normalization to
unity in our case. Note that the distribution function
vanishes at infinity, which implies that f;(w.,£00) =0
and f;(oo,w)) = 0. The first moment of (10) gives after
a partial integration the bulk acceleration:

0 0
507l =<z fi >

8 8
- < <Dn 1557 D ngv—“) Filvr,vy) >

The heating rates are, after a partial integration, given
by the following moments:

0 3f
ot VJ” <wﬁ ot

(15)

Y
=-2< (v~ Uy) (Dn L 500

+Dy ugi—”) fitve,vp) > (16)

0

0 2o
>=
(9’1)_1_

8tV’ <'2_ ot

9
+D, ngv—”> fitvr,vy) >

- <y (D_L L
(17)

Note that the combination of diffusion coefficients and
partial derivatives appearing in (16) and (17) yields
terms transforming into the pitch angle gradient:

ANV
81)“ k” 6UJ_ '
(18)

o} 0
DJ__La +D_L”6H = (vJ_

The diffusion coefficients involve a sum over the wave
modes, the wave vectors, and the spectrum. They in-
volve a delta function describing the cyclotron or Lan-
dau resonance condition and a matrix element of the
current density vector projected onto the polarization
vector of the wave mode considered. These factors cor-
respond, in the quantum language, to a transition prob-
ability for the wave-particle interaction [Melrose, 1986],
and they express energy conservation in this micropro-
cess.

Upon inserting (13) into (15), we can finally write the
acceleration rate in the concise form

pjg,ngn = @ /_:o d3k%:€M(k) (w;fm)?
SN

§=—00

v—TM(k v,s8), (19)

where we have introduced the specific “transition proba-
bility”, Tar (per velocity space volume unit). Note that
by considering the defining equation, T has indeed
the correct dimension (s™!) and refers to the cyclotron
(s # 0) and Landau (s = 0) resonant wave-particle in-
teractions. We obtain

TM(kavaS) =
—2m6 [war (k) — sQ; — kyvy] | ejsr(k) - Vj(k;v;s) 2
0 wi(k 0
Xk“ [vl v i ( Ali|(| ) —v”> Ovy ]f](vl’v“) (20)

The velocity distribution function is normalized to unity,
whereby the density is absorbed in the plasma frequency
w; of species 5. With T the heating functions can sim-
ilarly be written as

9 o _ @/jmzw (Jfk))z

Pi 5 Vil
3 2vu
X Z d —Tu(k,v,s),

§=—00

(21)
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d 1 [t 2
i = | e ()
X Z / k“vJ—TM(kvs) (22)

§=—00

Because of the delta function, the parallel intergra-
tion in the velocity space integrals can be carried out,
whereby we introduce the s-order parallel resonant speed
in the bulk frame of species j through

wiy (k) —

SQ]‘
ky

wji(k,s) = (23)

It is convenient to introduce an s-order contribution to
the antihermitian part (see again, Melrose [1986]) of the
dielectric tensor (DT) via

R VR N
e wuk) /) |kl

x/ dwiVjk;v;s)Vi(k;v;s)
0

o (Y O
X {uu. 8w|| + < k“ w”) awi_]

X fj(wJ-awll) Iwuzwj(k,s) > (24)

which appears in the integrands of (19), (21), and (22).
It is well known that the antihermitian part of the DT
determines the wave absorption and thus the wave en-
ergy dissipation (see again the book by Melrose [1986],
or the classical text by Stiz [1992]). What matters in
the heating and acceleration rates are indeed the com-
ponents of EJ s, which represent the absorption coef-
ficients. This tensor when being contracted with the
polarization matrix, eps (k)e}, (k), of wave mode M de-
fines the strength of the absorption. We introduce the
absorption coefficient or resonance function of species j
through

wj
WM (k)

510 T(ef,) - eae() = [

which only depends on k and, as a functional, on the
VDF. Note that summation over all indices s and over
species j gives the full antihermitian part of the dielec-
tric tensor: . e, = e*wm(k),k]. The resonance
function is by definition dimensionless and reads

k o0
27r2¢/ dw
( )|klllo -

X 0 Q 0
X [I ey (k) Vjk;v;s) |2 (wLBw—”+sk” an_>

Rj(k,é‘) =

- (wl,wln] (26)

wy =w; (k,s)

Finally, one can write the rates as follows:
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Pj'aizUjgn
p]fgtVJ“
Paatvu
1 +00 wWa 2
A AN k< ) )
= 2 e\ 5
+00 k:”
x> Ryk,s) | 2kjw;(k,s) (27)
s=—00 sQ;

To calculate these rates explicitly, one must know the
VDF and the wave dispersion relation and spectral in-
tensity. From a strictly theoretical point of view, it is
clear that assuming f;(w) and €y (k) to be given is not
a good approach and not self-consistent, since the elec-
tric PSD and particle VDF are expected to evolve sub-
stantially within a linear growth time, which is given by
1/vam (k). Yet this assumption has been made in most
of the applications to the solar corona and wind. Note
that, in general, the wave heating of the particles will be
anisotropic, depending on the wave dispersion and in-
tensity in dependence on the parallel and perpendicular
wave vector components.

6. Energy Considerations and Dielectric
Properties

By summing up (19), (21), and (22) we obtain the
total rate of change of the thermal and kinetic energy
for the particles of species j. This relation can be fur-
ther summed up over all particle species and, by using
the dispersion relation, modified to obtain the total en-
ergy conservation law within QLT for a multicomponent
plasma [see, e.g., Davidson, 1972]. We sum up the com-
ponents in the columns of the rates in (27) to obtain the
change in total kinetic energy density of species j. By
exploiting (23) and (25) this gives

10 )
Kj = 5p5 5 (U + Vi +2Vi1)

= —(—é—711-—)~/+ dSngM

2Im {e}, (k) -7 [wM(k),k] cem(k)} .

X

(28)

This relation can also be directly obtained by calculat-
ing the work done by the electric field on the current
density associated with species j:

li !
TV oo (27)3

[5 ] 5 i B0)].

Here the angle brackets mean space-time averaging in
the limit of infinite volume V' and time period T'. Since
the current density is related to the electric field through
the conductivity tensor and hence the dielectric ten-

K; =< J(x,t) -E(x,t) >=

(29)



MARSCH AND TU: WAVE HEATING AND ACCELERATION RATES 233

sor (see, e.g., the general sections by Melrose [1986], or
any other plasma physics textbook such as that by Stiz
[1992]), we can write the last equation as

I VB« @nE ) T ) V &
x 2Im [w E*(k,w).sf(k,w)q?:(k,w)] . (30)

By making use of (5) and (6), the formal relation
[276(w)])? = T27wé(w), and the symmetry properties of
the Fourier amplitudes, we retain by inserting all these
relations the previous result (equation (28)) . Simi-
larly, one obtains the volumetric acceleration rate, R;,
of species j from the equation

1
m;R; =< pi(x, )E(x,t) > +- < J;(x,t) x B(x,t) >
j(kaw)’

3
lm /dw/g—kkE*kw)
T V—oo (27r
(31)

whereby the charge density is denoted as p§(= e;n;)
and the continuity equation for the charge conservation
has been used. It is thus obvious that the parallel ac-
celeration Rj; = R; - By and the mean heating rate
Q; = K; — RjUj) can be expressed by the dielectric
tensor, yet this is not true anymore for the parallel and
perpendicular heating rates individually, @, and Q;,
which require not just the components of the current
density but also higher-order moments, related to the
pressure perturbations, to be calculated.

7. Rates in Terms of the Magnetic Field
Spectrum

It is, for plasma waves at frequencies near the ion
gyrofrequency (2; and below, more convenient to work
with the magnetic field spectral density instead of elec-
tric field. Using (7), we find

B (k)-<L>2(1_,1;.8 (k) P)Em(k). (32)
M=\ o (k) M MR

We can also make use of the relation p;Q% = w?V3/c?
and then rewrite the rates as

Bt Jll
gtVJ”
BtVJ.L
1 /+°° 3 X Qj.s 1
= B> Byk) (-1 —m0 o
(27m)% J ; k71— k-em(k) |2
+00 k'”
x Y Rjk,s) 2k||w6(k,s) , (33)
§=-00 S j

where we have introduced the spectrum B w (k), which
is normalized to the background magnetic field density,
B2 /8n. Equation (33) is the main result of this paper.
It expresses the general parallel acceleration rate and

perpendicular and parallel heating rates in terms of a
weighted spectral average and the sums over the mode
number M and resonance-order number s for resonant
wave-particle interactions and gyrotropic velocity dis-
tribution functions. These rates can be evaluated once
the VDF, f;(w.,wy), and the PSD, By (ky, k), are
known explicitly. In the solar wind literature, often a
simple power law form of the spectrum was assumed,
such as in the early studies by Isenberg and Hollweg
(1983] or recently by Cranmer et al. [1999a, 1999b] for
coronal hole heating. However, as already Marsch et al.
[1982a] and recently Marsch [1999] and Tu and Marsch
[1999; submitted manuscript, 2000], have shown, this
approximation is not sufficient, and therefore they used
the quasi-linear equation (8) to calculate the spectrum
self-consistently.

8. Resonance Function for a Drifting
bi-Maxwellian

Observationally, it is found in interplanetary space
[Marsch et al., 1982b, 1982c] that the prominent fea-
tures of the ion velocity distribution functions are a
core temperature anisotropy and a secondary proton
beam or heavy ion component, i.e., an ion beam stream-
ing along By at a speed of 1-1.5 times the local Alfvén
speed. These features can be modeled by a VDF which
is composed of one (or several) relatively drifting bi-
Maxwellian, which is given by

()= L (o —Up)®  (v1)?
f]( )_ (271.)3/2%”‘/]2—’- exp (— 2V2] — 2‘/]%- .

Jll
(34)

With this VDF the heating and acceleration rates
can be calculated largely analytically from (19), (21),
and (22). We do not restrict the waves to any propaga-
tion direction but include oblique propagation as well
(leading, e.g., to electrostatic ion cyclotron waves, ki-
netic Alfvén waves, which have recently been revisted
by Hollweg [1999a], or magnetosonic and ion acoustic
waves). In coronal holes the waves propagate mainly
away from the solar surface into interplanetary space.
The corresponding normalized magnetic field spectra
are denoted by the symbol Bys. The rates are given in
section 7.

For the model VDF of a drifting bi-Maxwellian (equa-
tion (34)) the resonance function can be evaluated an-
alytically and reads

1 w,
R, k’s / dw w, ex |: ]
J( )= LWL EXP 2(V]¢)
. 2
x |el k) V '(k V5'8) Loy =w; () 40y,

< im

T;.
) <§]( )THJF kn‘%u)

exp {— £, s>}
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with the normalized real part of the resonant speed be-
ing defined by ;(k,s) = w;(k,s)/V;;. The perpen-
dicular integration can also be carried out, if the ma-
trix element is further evaluated. This requires some
straightforward but lengthy calculations. We use the
defining equation (12) and introduce the new polariza-
tion vectors

et (k) = T [enrs (k) +ieny (k)] , (36)
in which the gyrophase angle 9 of k has been absorbed
in the exponential phase factor, and we can then simply
write the squared matrix element as

* v -
| ey V; ]2::| T-L(Js—le;\} + Js+1eM) + anseMz |2 .
(37)

Here we omitted, to ease the notation, the arguments
for a moment. For k; = 0 one has J5(0) = 65y,
and the vector ef,, corresponds to left- and right-hand
polarization. Then the matrix element factorizes into
the three independent contributions from ion cyclotron
waves, magnetosonic waves, and the field-aligned lon-
gitudinal slow-mode wave. Otherwise, there are also
mixed terms involving all products of the three compo-
nents of epr(k). Using the Bessel function relation,

Jor () = ~Ju(@) F Ji(a) (33)
we can also write the matrix element, evaluated at the
resonance, wy = wj(k, s), as follows:

s

2 [nases

ehr (k) - Vi(k;vis) I3 _u )40y, = kj

wr (k) — s ?

—%Jg(z) iehy | + - 1 J,(z)es, (39)
[l

Note that for z <« 1 the expansion of the Bessel func-
tion gives Js(z) = (z/s)®/s!, and then the normalized
matrix element can be written as

1 "
i Vi I o~ Jo(o) e
il
2
y ( s g st_,wM(k)—sQJ) (40)
kiVil' kiVi kyVis

This is a concise form but has the disadvantage that
the limit of vanishing k is not evident but requires an
expansion of the Bessel function. To calculate (35) fur-
ther without any expansion of the Bessel functions, one
has to write the squared matrix element as a quadratic
form in the components of epr(k) and then carry out
the integration in (35) over the perpendicular velocity
component. This procedure leads to three standard in-
tegrals over Bessel functions [see, e.g., Stiz, 1992] de-
fined as follows:
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® wf_ ’LU%_ JJE(?/( )
/0 d(QVjQL)eXp(_-QV?) m[;gx;)(x)sfx =
Is(Qj)
g5 [15(qj) — Is(g5)] exp(—g;), (41)

s%15(gj) — 2q12~ (13 (q5) — Is(g;)]

where we defined the new variable, q; = (k1V;1)*/Q3,
and made use of the modified Bessel function, Is(g;).
It is convenient to abbreviate the factor involving the
number of resonant particles and the pitch angle aniso-
tropy in (35) as N;(k, s); that is, we define

k
Myls) = 5 i exp [ -560.)]

T Qj
x{&(k,8) == +s—2—}.
T TRV

(42)
The remaining perpendicular integration can by help of
(41) be performed. After some lengthy but straightfor-
ward algebra we obtain the resonance function, or the
wave absorption (damping) or emission (growth) coef-
ficient, for any species j in the compact form

Rj(k,s) = Nj(k,s)2exp(—gj){a-Is-1(q;)

+a4Is11(gs) +aols(g)} - (43)

Such a separation is only possible for a gyrotropic distri-
bution, such as a bi-Maxwellian, in which the parallel
and perpendicular velocity distributions factorize into
two independent Gaussians. The coefficients a+ and ag
contain essentially the polarization vector components
and read as follows:

2
ao(k, s) = (M) | enss |2

kyVic
ki wM(k)—st
- 921 * = 2T
m{einy e }ku Q;
kL Vi \?
b2 (S e 7, (4
J
K, s) = £ |t |2
az(k,s) = =2 ey |
k_]_ wM(k)—sQ~
j: * :t P J
Re{eMzeM} | —Qj
kL V; X
(=57) Im{ehuyeir) - (45)
J

Note that these coefficients are well defined for both
cases, k1 = 0 and s = 0, and that they attain for par-

allel propagation a simple form. Parallel propagation
leads to
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R;(0,kyj, s) = Nj(0,ky, 8){0s1 | €37 I

wym (k
+53,—1 | e |2 +253,0 I €Mz |2 (M)Q} .
kyVie

(46)
At this point one needs the dispersion relation and the
polarization vectors explicitly in order to calculate the
detailed form of the resonance function. We do not
intend to present the general case here, because this is
not the purpose of our paper. A lucid treatment of the
full cold plasma wave polarization can be found in the
work of Melrose [1986, pp. 167 - 168]. The validity of
the MHD modes is restricted to small k, as compared to
the proton inertial length. Then the coefficients depend
only on k; and kj.

9. Summary and Conclusions

In this paper we have derived the acceleration and
heating rates (see equations (27) and (33)) for any parti-
cle species (electrons, protons, and heavier ions) accord-
ing to QLT in the limit of weak wave damping or growth
and under the weak turbulence assumption that the
waves can be adequately described as a random-phased
superposition of a broadband spectrum of the linear
normal modes existing in a multicomponent plasma.
These rates are functionals of the background particle
VDF and wave PSD, which both are assumed to be
gyrotropic. The rate equations derived here and the re-
lated more restricted or special equations decribed ear-
lier by Marsch [1998, 1999] can be incorporated in mul-
tifluid models of the solar corona and wind, thus com-
plementing and refining the models put forward recently
for the solar wind by Li et al. [1997, 1999], Czechowsksi
et al. [1998)], Hu et al. [1999], Hu and Habbal [1999],
and Cranmer et al. [1999a, 1999b].

The rates depend essentially on what was called here
the resonance function, R;, which describes the wave
absorption of a species j and is proportional to the
number of resonant particles through the pitch angle
gradient of f;(w) at the resonant speed for either cy-
clotron or Landau resonance. The wave dispersion and
polarization play an important role. A detailed study
of the resonance function, in terms of a surface over the
wave vector plane, for arbitrary wave propagation angle
with respect to the background magnetic field should be
carried out in the future in order to evaluate quantita-
tively the effects of wave polarization and dispersion
on the wave dissipation or absorption. For a proton-
alpha-particle plasma Li and Habbal [2000a, 2000b] have
recently performed an instructive parameter study on
the growth rates for the parallel ion cyclotron and fast-
magnetocoustic waves and their corresponding heating
rates, in particular, as a function of the ion differen-
tial speed. Their papers also summarize the relevant
literature within the solar wind context.
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The influence of resonant wave-particle interactions
on the dynamics of minor heavy ions in the outer solar
corona has been investigated recently again by Marsch
[1999] and Tu and Marsch [submitted manuscript, 2000],
whose papers describe successfully some basic charac-
teristics of observed proton and a-particle distributions
[Marsch et al., 1982b, 1982c] near 0.3 AU. It has been
shown that ion cyclotron waves propagating away from
the Sun along B are capable of accelerating heavy ions
through the proton bulk speed. These waves prefer-
entially heat the minor ions perpendicular to the field
and raise in this way their average temperature un-
til T; amounts to a considerable multiple, more than
Aj; times, of the proton temperature. Hollweg [1999b,
1999¢, 1999d] has recently approached this problem
from a different point of view, using coronal ions moving
as test particles in a potential well (arising from gravity,
electric field, and time-varying magnetic field), and he
comes to similar conclusions. Also, Cranmer [2000] has
calculated the summed effect of more than 2000 heavy
ion species in the corona on wave damping. Since the
requirements for the validity of QLT are fulfilled in the
corona and solar wind, we do not see any reason why
this theory should not be applied to all kinds of ions
with very low abundances.

The inhomogeneity of the expanding corona and wind
(note that V4 and Q, decrease with increasing solar
distance) has the effect that the fastest heavy ions in
the tails of the distributions move into increasingly
stronger resonance with right-handed polarized magne- -
tosonic waves. These waves now further accelerate the
heavy ions until their differential speed is about Vj4.
Also, the waves can preferentially heat the particles par-

allel to the field to the effect that finally their temper-
ature anisotropy shows the signature of fast-wave heat-

ing, with T > T, (a signature which can also arise as
the outcome of magnetic moment conservation for ions
expanding in a magnetic mirror) and that V;; > Vy is
accomplished. This relation between ion thermal speeds
is one of the striking observed characteristics of heavy
solar wind ions [Schmidt et al., 1980; Marsch et al.,
1982b, 1982c; won Steiger et al., 1995; Collier et al.,
1996; Cohen et al., 1996]. So far, only the papers by
Marsch et al. [1982a] and Marsch [1999] have explained
this as wave-friction-induced trapping of heavy ions at
the Alfvén speed. The present work provides the rates
in (27) and (33), which enable us to include in fluid
models oblique wave propagation and to incorporate the
Landau damping of obliquely propagating compressive
waves, effects that will become important for the per-
pendicular energy cascade of 2-D turbulence [Leamon
et al., 1998a, 1998b; Matthaeus et al., 1999].

The wave absorption coefficient described here by the
resonance function R; depends crucially upon the shape
of the VDF at the resonance. Commonly, a drifting bi-
Maxwellian VDF is assumed, for which we derived R;
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in (43). Indeed, the in situ observed VDF of protons
[Marsch et al., 1982b; Marsch and Goldstein, 1983] have
mostly a Gaussian shape as a function of v but devi-
ate considerably from it with a sizable skewness as a
function of vy. It is easy to generalize our rates to such
a situation, where we describe the VDF in terms of a
product of two reduced distribution functions [see, e.g.,
Dum et al., 1980; Marsch, 1998], in order to adjust the
rates for a larger class of VDF's. Yet it would be better
to evaluate and model the VDF seif-consistently. First
steps in this direction were done by Tam and Chang
[1999] and P.A. Isenberg et al. (A kinetic model of coro-
nal heating and acceleration by ion-cyclotron waves:
Preliminary results, submitted to Solar Physics, 2000).

Self-consistency of the PSD and VDFs is very im-
portant. The wave spectrum cannot be fixed, but its
radial evolution must be calculated as well, because
proton and ion damping or wave excitation can lead
to a dramatic reshaping of the originally injected wave
spectrum, or even to a complete erosion of the wave
power [Marsch et al., 1982a; Marsch, 1999; Tu and
Marsch (submitted manuscript, 2000]. Also Cranmer
[2000] deals specifically with the issue that damping
has to be considered for a specific ion species. Some
ions with extremely low abundance may not affect the
wave spectrum at all, while the most abundant ones
will lead to severe wave dissipation. Consequently, the
self-consistent relaxation times toward a dynamic equi-
librium between heavy ions and waves can be orders of
" magnitudes larger than the ones estimated on the ba-
sis of rigid wave spectra. On the other hand, an exact
evaluation of the wave spectra requires integrations to
be carried out on the kinetic scales of the ions, which
is not what one wants in an average fluid-like descrip-
tion of the expanding corona and wind (see again the
equations (1) — (4)). As a compromise or for the sake
of simplicity, one may rely on fixed wave spectra, such
as Cranmer et al. [1999a, 1999b], Hu et al. [1999, 2000]
and others did recently in their coronal hole models;
yet one must be aware of the serious limitations and
shortcomings of such an approach.
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