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Hall magnetohydrodynamic reconnection:
The Geospace Environment Modeling challenge
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Abstract. Numerical results are presented on the Geospace Environment Modeling
(GEM) reconnection challenge (and its variants) from the Hall magnetohydrody-
namics (MHD) code developed at the University of Iowa (UI). Resistivity provides
the mechanism for breaking field lines in this study. It is shown that the peak
reconnection rate in the quasi-saturated regime is controlled dominantly by ions and
has a weak dependence on the resistivity. The reconnection rate is close to those
obtained from other particle-in-cell, hybrid, and Hall MHD codes. Some differences
between the results from the UI Hall MHD code and other codes are discussed.

1. Introduction

Collisionless magnetic reconnection can be studied
numerically in a number of complementary models:
fully electromagnetic particle-in-cell (PIC), hybrid (par-
ticle ions and electron fluid), and Hall magnetohydrody-
namics (MHD). The physical underpinnings as well as
the numerical methodologies of these models are quite
different, and they span a wide range of scales from
the microscopic to the macroscopic. The principle ob-
jective of the Geospace Environment Modeling (GEM)
reconnection challenge is to compare the predictions of
various computer codes based on widely different lev-
els of description for the same set of initial conditions.
Such a comparison study is useful not only because it
provides a way to benchmark existing computer codes
but more significantly because it helps delineate funda-
mental elements that are shared by the different physi-
cal models. This paper reports the results on the GEM
challenge (and its variants) obtained by the Hall MHD
code developed at the University of Towa (Ul) [Ma and
Bhattacharjee, 1996].

Hall MHD is a promising model for problems involv-
ing collisionless magnetic reconnection. One of the prin-
ciple points of distinction between resistive MHD and
Hall MHD lies in Ohm’s law. Whereas resistive MHD
relies on the collisional Ohm’s law,
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In (1) and (2), E is the electric field, B is the mag-
netic field, v is the plasma flow velocity, J is the cur-
rent density, p is the electron pressure (assumed to be
a scalar), n is the electron density, e is the magnitude
of the electron charge, D/Dt = §/0t+ v -V is the total
convective derivative, 7 is the plasma resistivity, and 7,
is the “hyperresistivity.” On the right of (2) the second
term is attributed to finite electron inertia, the third
is attributed to the electron pressure gradient, and the
fourth is attributed to the Hall current. As the thin
current sheet generated in the reconnection layer be-
comes more localized and intense and its width A falls
in the range d. = ¢/wp. K A < di = c/wp; (where Wpe
and wp; are the electron and ion plasma frequencies, re-
spectively), it is important to retain the effect of the
collisionless terms enclosed in parentheses (referred to
collectively as the Hall terms) in the generalized Ohm’s
law (2).

Unlike the resistivity n which multiplies J in the
first term on the right of (1), the last term involving
the hyperresistivity n, multiplies the second-order spa-
tial derivative of J and can help enhance the numer-
ical stability of a Hall MHD code. However, hyper-
resistivity is not merely a recipe for numerical stabil-
ity but can be shown to be generated physically by
small-scale tearing dynamics in a current layer [Bhat-
tacharjee and Hameirt, 1986; Strauss, 1986]. It should
be borne in mind that microturbulence in current lay-
ers does not necessarily generate anomalous resistivity.
For example, small-scale tearing turbulence that pre-
serves magnetic helicity but causes magnetic energy to
decay produces hyperresistivity but no anomalous resis-
tivity [Boozer, 1986; Bhattacharjee and Hameiri, 1986;
Biskamp, 1993]. Whistler instabilities of a thin current
layer have also been shown to produce hyperresistivity
[Drake et al., 1994]. Hyperresistivity can cause addi-
tional heating, diffuse near-singular currents, and play
an important role in controlling the small scales during
collisionless reconnection dynamics.
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The underlying physics of collisionless reconnection
involved in the GEM challenge is discussed in the ac-
companying overview paper by Birn ei al. [this issue]
and will not be repeated here. We will focus instead
on the methodology of Hall MHD and the numerical
results obtained from the UI code.

The following is a layout of our paper. In section 2 we
present the system of equations underlying the UT Hall
MHD code and the geometry of the simulation domain.
In section 3 we present two benchmark tests of the code,
the first involving the Alfvén-whistler wave dispersion
relation, and the second involving the so-called Brio-Wu
shock problem [Brio and Wu, 1988; Huba and Lyon,
1999]. In section 4.1, we report the results of computer
runs with the same class of equilibrium profiles and pa-
rameters as the GEM challenge except for the density
profile, which is significantly broader (initial condition
1). In the context of these runs we discuss the effect
of numerical resistivity on the measured reconnection
rate and demonstrate that such effects are small in our
study. In section 4.2 we present numerical results for
the parameters of the GEM challenge (initial condition
2) which is nonstandard because the equilibrium density
profile has very strong spatial gradients with a charac-
teristic spatial scale of the order of d;. (This should
be contrasted with the profile discussed in section 4.1,
which is characterized by a spatial scale significantly
larger than d;.) We show that the strong density gradi-
ent in the GEM challenge equilibrium leads to the de-
velopment of some rapid physical transients, not seen
in the more canonical example discussed in section 4.1.
As these transients can eventually lead to the termi-
nation of the run owing to a numerical instability, we
damp them numerically. The peak reconnection rate
in the quasi-saturated state of the damped run is then
found to be close to that reported from the PIC and
hybrid codes. We conclude in section 5 with a few cau-
tionary remarks which place the GEM exercise in the
broader context of other possible initial/boundary con-
ditions and identify some of the remaining challenges.

2. Hall MHD: Equations and Geometry

The Hall MHD simulations reported in this paper are
carried out in a rectangular box —L,/2 < z < L;/2,
—L,/2 < z < L,/2. The coordinate y is assumed to
be ignorable; that is, we impose 0/0y = 0 for all times.
Then the magnetic field can be represented as

B =y xVi,50)+B,(s,2,07,  (3)
where ¥(z, 2,t) is a flux function.

At t = 0 the equilibrium magnetic field is given by

B, = Bptanh(z/Ap) , (4)

B,=0, B,=0,

with the mass density profile
(5)

In (4) and (5), Bo, AB, An, po, and py are positive con-
stants. When Ag = A,, we obtain the classical Harris

p(z) = posech®(2/X,) + poo .
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sheet solution with constant temperature, which is the
equilibrium solution used in the GEM challenge.
The compressible MHD equations are

p _

5 ==V -(pv), (6)
%(pv):—v [pvv+ (p+ %)I—BB} , (M
&=V () = (= 1V v (8)

In (3)-(8), I is the unit tensor, y(= 5/3) is the ratio
of the specific heats of the plasma, and the variables
x,v,t,B, p,p, and ¥ are nondimensionalized as follows:
B/Bo — B, X/d7 — X, t/TA — t, lﬁ — '(/)/B()d,j v —
v/va, p — p/po, and p — p/(BE/4r), where 74 =
d;i/va = di(47po)t/?/ By is the Alfvén time and py is a
constant mass density.

To complete (3) and (6)—(8), we need equations for
Y(z,z,t) and By(z,z,t). These equations can be ob-
tained by combining Faraday’s induction equation with
the generalized Ohm’s law (equation (2)). The equation
for By(z,z,t) is

0B 1
6_; = —v-(Byv+B'wy+§szy
J x B - Vpy\j
— V[V x ( ; )Jy
+ UhV4By , (9)
where S = 7gr/7a is the Lundquist number, 7 =

47d? /nc? is the resistive diffusion time, and the hyperre-
sistivity ny has been redefined to make it dimensionless.
If we combine Faraday’s equation with the y component
of (2), we obtain

1 d;
%_’t/’ = v VUt 5y + I X B)y ¥, . (10)
In writing (6)—(10) we assume that the ion pressure gra-
dient can be neglected. We also assume that the elec-
tron pressure is a scalar which is violated in many space
plasmas but is a common assumption in the Earth’s
magnetotail and the solar corona. The inclusion of ten-
sor pressure effects in fluid models is complicated by the
lack of rigorous closure relations for the off-diagonal el-
ements of the pressure tensor.

Note that in writing (10) we have omitted the elec-
tron inertia term in (2). This is because even if we set 7
to zero in (10), numerical resistivity is still sufficiently
large in our code that it overwhelms the effect of elec-
tron inertia (for a realistic value of the electron mass).
For the simulation results reported in this paper this
means that resistivity, and not electron inertia, is the
mechanism that breaks field lines.

From (9) and (10) it is clear that the time dependence
of B, plays a important role when the Hall current and
electron pressure gradient terms are retained in the dy-
namical equations. Even if By is taken to be zero in
the initial state, as in the GEM challenge, it is spon-
taneously generated by the electron and ion dynamics
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in Hall MHD [Sonnerup, 1979; Terasawa, 1983; Mandt
et al., 1994; Krauss-Varban and Omidi, 1995; Ma and
Bhattacharjee, 1996; Biskamp et al., 1997; Shay and
Drake, 1998; Hesse et al., 1999]. The growth of By

from the initial state (equation (4)) can be calculated
by solving the coupled equations (9) and (10) along with

(6)-(8).
3. Tests of the Hall MHD Code

We begin by reporting the results of two numerical
tests, recommended by J. D. Huba (private communi-
cation, 1999), who also provided us with the test results
of the Hall MHD code developed at the Naval Research
Laboratory (NRL). Our code results on the tests are in
close agreement with the predictions of the NRL code.
All dissipation terms, including hyperresistivity, are set
to zero in the Ul code.

3.1. Test 1: The Alfvén-Whistler Dispersion
Relation

We consider the simple equilibrium

v=0, B,=1, By,=B,=0.
(11)
Linerarizing the Hall MHD equations about the equilib-
rium (equation (11)) and assuming plane wave solutions
of the form exp(ikz —iwt), we obtain the Alfvén-whistler

dispersion relation
(W? — k) = wk* (12)
where k = 2rm/L; (m = 1,2,3...). For the run re-

ported here we take L, = 0.88. This choice makes k
large even for small values of m and makes the solu-

p=1, p=1,
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Figure 1. Comparison of the exact analytic Alfvén-
whistler dispersion relation (solid line) with numerical
results (marked by the pluses) from the University of
Towa (UI) Hall MHD code.
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tions dominantly whistler-like. (In the limit k — 0 the
dispersion relation tends to the Alfvén root w/k — 1.)
Figure 1 shows the comparison of the phase speed de-
termined analytically from the dispersion equation (11)
and the numerical results from the Hall MHD code.
The top frame in Figure 2 represents the contours of
perturbed B, field in the space-time plane for mode
eight (m = 8), with maxima indicated by white and
minima indicated by dark. The numerical results show
the preservation of the plane waveform over a significant
space and time domain without distortion. The middle
and bottom frames show the amplitude of the B, field
at t = 10 and at ¢ = 0. The amplitude of the wave
is nearly the same in the middle and bottom frames,
which is evidence of the low level of numerical dissipa-
tion in the UI code. At larger values of m (of the order
of and greater than 20), when deviations from the ana-
lytical dispersion relation are significant (see Figure 1),
distortions of the waveform and amplitude attenuation
are more visible.

3.2. Test 2: The Brio-Wu Shock Problem

The Brio-Wu shock problem [Brio and Wu, 1988;
Huba and Lyon, 1999] is a Riemann problem which tests
whether the UI Hall MHD code can resolve and follow
dynamically sharp changes in density, magnetic field,
and velocity profiles accurately and without numerical
instability. The initial conditions in the plasma density,
magnetic By field, and v, are represented by the dashed
lines in Figure 3. With these initial conditions, as the
system evolves in time, it exhibits fast rarefaction waves
(FR), a slow compound wave (SM), a contact discon-
tinuity (CD), and a slow shock (SS). These results are
very similar to those produced by the NRL Hall MHD
code.

4. Simulation Results on Reconnection

The initial equilibrium state (equation (4)) is driven
by a large perturbation given by

¥(z,z) = o cos(2mz/Ly) cos(rz/L,) , (13)

where 1o = 0.1. This perturbation, which is largest at
the origin, has been chosen so that the system can attain
a nonlinear quasi-saturated state quickly. In what fol-
lows we choose L, = 25.6d;, L, = 12.8d;, Ag = 0.5d;,
and pe/po = 0.2. Simulations are carried out with
two sets of initial conditions: (1) a broad density pro-
file with A, = 3d; and (2) a narrow density profile with
An, = 0.5d;. Initial condition 2 is the GEM challenge. In
the simulations that follow we use 400 grid points with
uniform spacing along z and 600 grid points with vari-
able spacing along z. The smallest grid spacing along z
is 0.003.

4.1. Initial Condition 1: Broad Density Profile

We first report the numerical results for initial condi-
tion 1 with A, = 3d;. One of the principle consequences
of including the Hall current via the generalized Ohm’s
Jaw is the decoupling of the spatial scales of electron and
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(top) Wave fronts in the space-time domain for Alfvén-whistler waves with mode

number m = 8. Final (middle) and initial (bottom) amplitudes for a linear Alfvén-whistler wave.

ion dynamics, forbidden in resistive MHD. This leads
to a separation of scales between the parallel electric
field and current density. Whereas the spatial scale of
the parallel electric field transverse to the neutral line
1s of the order of d;, that of the parallel current den-
sity is determined by the resistivity. This separation of
spatial scales is illustrated in Plate 1, which gives the
parallel electric field and parallel current density in our
simulation at ¢ = 35.

The peak value of the reconnection electric field (or
equivalently, the reconnection rate) in the quasi-satu-
rated regime is weakly dependent on the resistivity if
the value of the resistivity is sufficiently small. For the
parameters of initial condition 1 we demonstrate this
trend by plotting in Figures 4a and 4b the reconnec-
tion rate for different values of S at ¢t = 35. (In these
runs, hyperresistivity is set to zero.) In Figure 4a the

reconnection rate is obtained by calculating nJ, at the
X point. In Figure 4b the same reconnection rate is ob-
tained from F, = di/dt = 0v/0t (because v - Vi) =0
at X point). The good quantitative agreement between
these two independent methods demonstrates that nu-
merical diffusion in the UI code is low. (If this were not
the case, the reconnection rate in Figure 4b would be
significantly higher than that in Figure 4a.)

In Table 1 we give the peak reconnection electric
field (or reconnection rate) for initial condition 1 runs
for different values of the Lundquist number, S =
100,200,250, 300, and 350. As S increases, the recon-
nection rate asymptotes to a constant, and the depen-
dence of S becomes weaker. In the regime of high S
(low 7n) the reconnection rate is seen to asymptote to
the constant value 0.046.

The ion flow can be calculated by setting v; &~ v. In
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Figure 3. Results for Brio-Wu shock problem from the UI Hall MHD code. The dashed lines
represent the initial conditions. SM, a slow compound wave; FR, a fast rarefaction wave; CD,

contact discontinuity; SS, slow shock.

the ideal (or outer) region, |z| > d;, the electrons and
ions move together, and v; & v.. The nonideal (or inner
region) is composed of two asymptotic regions. In the
region d; 2 |z| > A the electrons and ions are decou-
pled, and |v;| < |v¢|. In the innermost asymptotic re-
gion, |z] < A, v; & 0, and the current is carried almost
completely by electrons. In Plate 2a we plot the (color-
coded) contours of v, (z, z) in the two-dimensional plane
for initial condition 1 with S = 250 at ¢ = 35.

4.2. Initial Condition 2: Narrow Density Profile

We now discuss the numerical results for initial con-
dition 2 with A, = 0.5d;, which is the GEM challenge
We first report results from a run without any hy
perresistivity and numerical damping. Plate 2b show:
the (color-coded) contours of vz(z,z), in this case a
t = 20 for S = 200. Although the maxima and minim:
of the velocity field in the vicinity of the X point ir
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Figure 4. Reconnection electric field as a function of time calculated from (a) 7./, and (b) dy/dt
for initial condition 1 with § = 100, 200, 250, 300, and 350. The solid curve corresponds to
S = 100, followed by S =200 (- --), S =250 (---), S =300 (-—-), and S =350 (-----).

Plates 2a and 2b are quite comparable, there are sig-
nificant qualitative differences. Specifically, we point
to the development of localized regions of strong ve-
locity shear (or vorticity) away from the reconnection
layer in Plate 2b, not seen in Plate 2a. Intense cur-
rent sheets are also seen to develop in these regions of
strong velocity shear. In Plate 3 we plot the devia-
tion from the equilibrium plasma density, defined by
Ap(z,z,t) = p(z,z,t) — p(x,z,t = 0) for initial con-
dition 1 in the quasi-saturated regime (Plate 3a) and
initial condition 2 at ¢t = 20 (Plate 3b). The density
depression near the neutral line in Plate 3b occurs over
a significantly broader region and shows more struc-
ture than in Plate 3a. Density depletion layers have
also been reported in the Hall MHD simulations of the
GEM challenge by Birn and Hesse [this issue]; Hesse et
al. [this issue], and Shay et al. [this issue]. While the
formation of the depletion layer causes the run by Hesse
et al. to terminate owing to a numerical instability, the
run by Shay et al. is numerically stabilized by adding
second-order diffusion terms to the time evolution equa-
tions for the density and pressure. Such depletion layers
appear to be physically generated by the dynamics and
are not numerical artifacts. The spatial location and

time history of the depletion layers appear to vary from
code to code, and these differences might be, in part,
due to the differences in the generalized Ohm’s law used
in the various codes. Unless this tendency for depletion
is damped by numerical means, it is extremely diffi-
cult to carry the simulation to saturation. Numerical
damping in our time-stepping algorithm slows down the
tendency for density depletion in the early stage of our
run.

We now present the results of our damped runs. In
Figure 5 we plot the electron and ion flow vectors at
t = 25. By contrasting the electron and ion flow vec-
tors in Figure 5 we see the separation between electron
and ion flow channels that is a signature of Hall MHD
reconnection with the electron flow significantly larger
than the ion flow in the thin current sheet. In Plate 4
we present the contours of J,, By, and the parallel cur-
rent density and electric field at ¢ = 25. Note that the
B, contours exhibit clear quadrupolar symmetry, also
a signature of Hall MHD.

The reconnection rate, obtained by calculating nJy
at the X point, is shown as a function of time in Figure
6a. In Figure 6b the same reconnection rate is obtained
from E, = dy/dt = 0+ /0t. The hyperresistivity for
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Table 1. Maximum Reconnection Electric Field for
Initial Condition 1

COLLISIONLESS RECONNECTION

for consistency. The peak reconnection electric field ob-
tained from Figure 6b is approximately in agreement
with the (dimensionless) value of 0.2 reported from PIC,

S dip/dt nJy hybrid, and other Hall MHD codes [Birn et al., this is-

sue; Hesse et al., this issue; Kuznetsova et al., this is-
100 0.036 0.036 sue; Otlo, this issue; Prichett, this issue; Shay et al.,
200 0.040 0.038  this issue]. This agreement occurs despite the fact that
250 0.048 8812 the peak current density J, in our simulations is about
ggg gggg 0.04¢  one order of magnitude larger than the current density

this run is chosen to be 1, = 10~7. The numerical dif-
ference between these two computations is larger than
that seen in Figure 2 with initial condition 1. As the
thin current sheet with initial condition 2 is significantly
more intense than that with initial condition 1, the
effects of numerical diffusion and hyperresistivity are
more significant in condition 2. Since other Hall MHD
studies involved in the GEM challenge report the recon-
nection rate from computations 91/8¢, we do the same

reported by other Hall MHD simulations of the GEM
challenge [Birn and Hesse, this issue; Hesse et al., this
issue; Shay et al., this issue]. By comparing our results
with those of Birn and Hesse [this issue], we infer that
this is probably because the effect of numerical diffu-
sion is significantly smaller for the UI Hall MHD run.
Birn and Hesse point out that in their Hall MOD run
(shown in their Figure 8), reconnection is governed by
numerical dissipation rather than resistivity. Despite
the larger values of the peak current density J, in the
UI code, the reconnection rate, n.J,, predicted by the
code turns out to be close to the value obtained by Birn
and Hesse, because the magnitude of the total 7 (phys-
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Figure 5. Flow vectors for damped run with initial condition 2 at ¢ = 25 for

and (b) ion flow.

(a) electron flow
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Figure 6. Reconnection electric field for intial condi-
tion 2 with S = 200 as a function of time calculated
from (a) nJ, and (b) 0v/0t.

ical plus numerical) is smaller in the UI code by nearly
an order of magnitude. Note also that in contrast with
Hesse et al. [this issue] and OUo [this issue], who use a
localized, enhanced or current-dependent resistivity, we
use a spatially uniform resistivity in all our runs.

5. Conclusions

The Hall MHD code developed at the University of
Iowa produces results similar to PIC, hybrid, and other
Hall MHD codes involved in the GEM challenge study.
Since these codes span widely different levels of physical
description ranging from the microscopic to the macro-
scopic, the quality of agreement gives us confidence that
the essential physics of collisionless reconnection under-
lying these models are similar. In particular, all the
GEM challenge studies reinforce the crucial role played
by the Hall current in producing a reconnection rate
that is weakly dependent on the mechanism that breaks
field lines (resistivity or electron inertia).

We caution that the GEM challenge is a special case
even within the restricted framework of two-dimensional
collisionless reconnection models. Cases not covered by
the GEM challenge are those in which (1) By # 0 in the
initial stage, (2) the electron pressure is a tensor, and
(3) reconnection is forced by boundary perturbations.
We make some brief remarks on these three cases.

In case 1, when B, > Bg in the equilibrium state
(equation (4)), Alfvén-whistler waves are replaced by
kinetic Alfvén waves. Under these circumstances the

s 0D BHATTACHARJEE: COLLISIONLESS RECONNECTION
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electron pressure term in the generalized Ohm’s law
(equation (2)) enters on an equal footing with the Hall
current term. A unified analytical treatment and nu-
merical simulations encompassing both cases (that is,
B, = 0 as well as s B, # 0) has been discussed else-
where [Wang et al., 2000].

In case 2, it is not necessary to invoke either resistiv-
ity or electron Inertia as a mechanism for breaking field
lines, because electron pressure tensor can support a
parallel electric field at the X point [Vasyliunas, 1975;
Lyons and Pridemore-Brown, 1990; Cai el al., 1994;
Krauss-Varban and Omadi, 1595; Lwn and Swift, 1996,
Scudder, 1997; Kuznetsova et al., 1998; Loitermoser et
al., 1998].

In case 3, boundary perturbations play a significant
rate in determining the time-history and magnitude of
the reconnection rate. In the GEM challenge, recon-
nection 1s induced by imposing the large perturbation
given by (11). This perturbation, which is largest at
the origin, has been deliberately chosen so that all the
codes attain a nonlinear quasi-saturated state quickly.
While this is a reasonable strategy for code comparison,
it 1s physically somewhat artificial. In many examples
of physical interest, such as a magnetotail driven by
a dawn-dusk electric field at the plasma sheet bound-
aries during the growth phase of a substorm [Lee et al.,
1985; Birn and Hesse, 1991; Ma et al., 1995; Pritchett
and Coroniti, 1995; Bhattacharjee et al., 1998; Ma and
Bhattacharjee, 1998], external perturbations are gener-
ally imposed at the boundaries of the system. The time
evolution of a perturbation as it penetrates inward to-
ward the separatrix and forces magnetic reconnection in
a stable plasma is a probiem of great physical interest
and has been treated elsewhere analytically as well as
numerically [Wang el al., 1996; Ma and Bhattacharjee,
1996, 1998]. In such cases the plasma has been shown
to exhibit multiple space scales and timescales during
reconnection dynamics, not studied in the GEM chal-
lenge. A closely related problem is the so-called fast
trigger problem [Bhattacharjee et al, 1999, and refer-
ences therein].

Thus the GEM challenge should be viewed as a first
step toward a more comprehensive picture even within
the restrictive domain of two-dimensional reconnection
phenomena. Furthermore, three-dimensional effects are
likely to introduce even more drastic changes in the ge-
ometry as well as dynamics of reconnection.
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