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Abstract. We show that nonuniform Alfvén speed gradients across field lines
generally arise from the evolution of Alfvén waves. The evolution of a group of
nonlinear Alfvén waves with the same sign of parallel wavenumber generate small-
amplitude pressure-balanced structures (PBSs) which cause the speed variations.
This always causes refraction. In most cases, the Alfvén waves also couple to
magnetosonic waves and acquire a weak compressional component and can undergo
resonant absorption or transfer, wherein wave energy can propagate across field lines.
At large amplitudes the waves also generate imbedded rotational discontinuities
(RDs). Some of these RDs can be dissipated owing to resonant transfer. This
process could partly contribute to the observed decrease of solar wind RDs with
increasing distance from the Sun. Resonant transfer also triggers a cascade due
to steepening, which leads to sustained proton heating. The cascade produces
oblique and large wavenumber waves which travel in different directions and have
associated compressions. Protons interact with these by pitch angle scattering.
They gain energy from second-order Fermi acceleration and from Landau and
transit time damping. Oblique waves are inferred to be present in the dissipation
range of Alfvénic fluctuations at 1 AU. We argue that the process of proton heating
should proceed similarly to simulation results. We also propose a role for the wave
imbedded RD in coronal heating through its formation in the chromosphere and its

likely dissolution in the corona where wave amplitudes are very small.

1. Introduction

Locally, Alfvénic fluctuations in the solar wind tend
to have nearly constant magnetic intensity B, imbed-
ded abrupt rotations, called rotational discontinuities
(RDs), and a small compressional component which
tends to be anticorrelated with B. Vasquez and Holl-
weg [1996a, 1996b, 1998a, 1998b, 1999] have shown
that these properties can be partly explained from the
weakly nonlinear behavior of (shear) Alfvén waves us-
ing a small-amplitude expansion of the nonlinear MHD
equations. When all Alfvén waves have the same sign
of parallel wavenumber k), they generate second-order
driven waves with the speed of an Alfvén wave but the
polarization of a fast wave. To second-order, the sum of
the magnetic fields gives a constant B. Magnetosonic
waves are also generated to satisfy initial conditions but
can be damped in a warm plasma.

A more complete description of Alfvén wave and
imbedded RD evolution requires the inclusion of the
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effects of ion wave dispersion and kinetics, as well as
of large amplitude. This is accomplished using hybrid
numerical simulations with protons treated as parti-
cles and electrons as a fluid. Medvedev et al. [1997]
used numerical calculations of the kinetic nonlinear
Schroedinger equation and independently showed the
formation of RDs and the tendency toward constant B.

The imbedded RD is generated when an Alfvén wave
steepens. Its width is typically ~10 ion inertial lengths.
Wave steepening gives the most natural explanation of
why solar wind RDs are associated with Alfvénic fluctu-
ations [e.g., Riley et al., 1996]. The RD is not a separate
entity, such as a soliton, but rather it is the continuation
of the Alfvén wave down to scales where ion wave dis-
persion and kinetics determine the structure. As such,
the RD and wave are physically inseparable.

The widespread presence and frequent observation of
RDs in the solar wind are most readily explained if
they are stable against dispersion. Vasquez and Holl-
weg [1998b] demonstrated that the wave imbedded RD
is stable against dispersion, whereas previous studies
[e.g., Richter and Scholer, 1989; Vasquez and Cargill,
1993] showed that isolated RDs can be unstable for pa-
rameters relevant to the solar wind [e.g., Neugebauer,
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1989]. The principal difference between isolated and
imbedded RDs concerns the presence of critical points
in the former. A critical point occurs where all field
and plasma spatial derivatives vanish. Isolated RDs
have critical points in the upstream and downstream
states. Hau and Sonnerup [1991] show from a critical
point analysis of differential equations that waves can-
not phase stand at RDs for most parameters and so the
RDs are not stable. Waves with imbedded RDs have
no critical points because there is no point in the wave
where all derivatives vanish.

The presence of RDs in Alfvénic fluctuations can im-
pose constraints on the evolution of the fluctuations as a
whole. First, RDs provide a constraint on the role of the
ponderomotive force —V B? /8, which governs steepen-
ing in a compressible plasma. Cohen and Kulsrud [1974]
were the first to show that there is sufficient time for
Alfvén waves to steepen and form RDs near the Sun. If
solar wind RDs are produced by wave steepening, then
some phase coherence of the Alfvénic fluctuations must
have existed at some point closer to the Sun, despite
the overall phase incoherence which generally character-
izes the observed fluctuations. Second, we will show in
this paper that the evolution of RDs with distance from
the Sun is influenced by nonuniformities in the medium
through which they propagate. Thus their evolution
can provide information about this medium.

For Alfvén waves propagating in many different direc-
tions it is very likely that some will couple to produce
nonlinear forces in the perpendicular direction. Vasquez
and Hollweg [1999] showed that the driven MHD solu-
tions change in this direction because Alfvén waves do
not propagate. Instead, a driven second-order fluctua-
tion of the parallel magnetic field and density is gener-
ated. This causes the Alfvén speed to vary across field
lines. Its effects are the main focus of this paper.

Even when all Alfvén waves have the same sign of
k), surprisingly complicated dynamics result due to the
nonuniformities which are produced nonlinearly by the
waves themselves. We find that imbedded RDs can
evolve and dissipate. A cascade is initiated, which leads
to sustained proton heating. This provides insight to
the small-scale processes or microphysics which accom-
pany a cascade. This microphysics concerns the indi-
vidual motions of protons which ultimately dissipate
the energy of the cascade. We intend to use our simula-
tion results to explain some of the microphysics which
we believe would arise in the interplanetary dissipation
range based on corresponding properties of the simu-
lated cascade.

The cascade which is produced in our simulations is
rather special compared to others and has some prop-
erties with which the comparison to the interplanetary
Alfvénic fluctuations can be partly made. The simu-
lated cascade is a sustained one and has waves traveling
in different and oblique directions. These are all quali-
tative observed or inferred properties of interplanetary
Alfvénic fluctuations.
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A well-studied area with applicable results on the
microphysics associated with cascades concerns wave
decay instability. This instability has some of the re-
quired features in that the cascade is sustained and has
waves traveling in opposite directions (but along By)
le.g., Terasawa et al., 1986; Machida et al., 1987; In-
hester, 1990; Vasquez, 1995]. Terasawa et al. [1986]
and Machida et al. [1987] examined a number of in-
teractions between particles and large-amplitude waves
which are similar to ones which arise in our simulations.

Machida et al. [1987] also make a detailed study of
wave-particle interactions when wave trains are modula-
tionally unstable and compare results with calculations
using the derivative nonlinear Schréedinger (DNLS)
equation. The wave trains undergo steepening, and in
this sense, the results are applicable to our study. How-
ever, the cascade which develops involves waves travel-
ing mostly in one direction.

The study of Alfvén waves in smoothly varying fields
and plasma has been investigated numerically by many
authors [e.g., Sakurai et al., 1991; Goossens et al.,
1995; Murawski et al., 1996; Ofman and Davila, 1997,
Ghosh et al., 1998; Goldstein et al., 1999]. A difference
between this paper and the cited studies is that the
nonuniform plasma arises self-consistently from waves
and so 1s not included initially. Furthermore, the cited
studies treat one-fluid MHD which is not able to de-
scribe the internal structure of RDs and their interac-
tions with protons.

We will show from the expansion of the MHD equa-
tions to higher orders that the equations become sec-
ular due to the second-order pressure-balanced struc-
tures (PBSs), which are produced by the first-order
waves. These equations can be analyzed and reduced
to a form corresponding to those of Hollweg and Yang
[1988], which describes linear MHD wave evolution in a
nonuniform plasma. From this basis a number of results
can be applied which are well understood concerning
Alfvén waves in nonuniform plasma [e.g., Uberoi, 1972;
Hasegawa and Uberoi, 1982; Lee and Roberts, 1986] and
kinetic Alfvén waves (KAWSs) [e.g., Lysak and Lotko,
1996; Gekelman et al., 1997; Hollweg, 1999]. However,
when amplitudes are large, we will show that a num-
ber of significant departures from the small-amplitude
theory occur.

Our analysis justifies the important emphasis given
to nonuniformities in the sonic Mach number (ratio of
fluctuation velocity to sound speed) expansions under-
taken in Bhattacharjee et al. [1998, 1999]. They show
that nonuniformities can explain the linear dependence
of solar wind density fluctuations on the sonic Mach
number.

The outline of the paper is as follows: Section 2
presents a synopsis of an analysis of the MHD equations
extended to higher orders in wave amplitude. In sec-
tion 3, simulations of Alfvén waves and imbedded RDs
are presented. In one study, small-amplitude waves are
evolved in an imposed nonuniform background. In other
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studies, large-amplitude waves self-consistently gener-
ate a nonuniform background due to PBSs. In section
4, we discuss how generated PBSs might influence so-
lar wind RDs and proton heating. We also discuss how
RDs might form in the chromosphere and have a role
in coronal heating. Section 5 summarizes our findings
and gives our conclusions.

2. Higher-Order Analysis of the MHD
Equations

We have carried out an expansion of the MHD equa-
tions to beyond second order. The algebra becomes
lengthy, and so here we will cite the results and discuss
some solutions which clarify the physics. The details
are provided in Appendix A.

At zeroth order we take uniform background mag-
netic field By and density pg, where the subscript de-
notes the order. At first order we include obliquely
propagating linearly polarized Alfvén waves. Detailed
second-order solutions are given by Vasquez and Holl-
weg [1999] (their section 2.3) by (26)-(28). When all
the first-order Alfvén waves have the same sign of k|,
then their generalized Reynolds stresses to second-order
R, = (B; - V)B1 /47 — po(V1 - V)V vanish. The only
nonlinear force which governs evolution is —V B?/8,
and this enters the second-order equations as a known
driver. The second-order equations are linear partial
differential equations, and solutions can be expressed
as a linear combination of Fourier components of B?.
Each Fourier component is associated with a distinct
wave vector k. The driven part of the solution consists
of either (1) a propagating wave which cancels varia-
tions of B to second order when k is oblique but not
perpendicular (section 2.1) or (2) a second-order PBS
which varies in the perpendicular direction (section 2.2).
For nearly parallel propagation these solutions are not
accurate, and waves can steepen. Magnetosonic waves
are also produced as homogeneous solutions. Here we
will focus mostly on the driven solutions since these do
not damp away. In some instances the magnetosonic
waves are important, and those cases will be considered
in section 2.3.

2.1. Constant |B|

Higher-order interactions between Alfvén waves con-
tinue to have R = 0. (Note that at each order we
neglect any interactions between lower-order magne-
tosonic waves and Alfvén or driven waves.) The driving
force comes only from —V B?/8r, and the form and so-
lutions of the equations correspond to the ones obtained
at second order. The value of B? can be expanded out
to fourth order as

B> =B?

+ B?+2Bg-B,

+ 2B;-B3+2B;-Bj;

+ 2B; B3+ B2+2By-Byi+---.

(1)
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From second order and higher the rightmost term on
each line of (1) is a homogeneous term involving the
parallel component of B to the given order. The other
terms are drivers which are products of two lower-order
values of B, and their sum at an order 7 is denoted as
D,. The nature of the driven solutions is to make B
constant. The solution which does this can be imme-
diately obtained from (1) by having the homogeneous
term for order n cancel the part of D, which varies in
space. This gives

(2

for n > 2 where (D)) is the space average of D,. The
other components of B, are obtained from V - B, = 0.
The velocity fluctuations are the same as required for
an Alfvén wave, and there are no density fluctuations.
Thus these wave interactions lead to a truly constant-
B Alfvén waveform when the magnetosonic waves are
damped. For a single Alfvén wave our series solution
agrees with an exact constant-B solution obtained by
Barnes and Hollweg [1974] (see Appendix A for details).

In the parallel or nearly parallel direction, small-
amplitude behavior changes and the underlying equa-
tions become secular. This is due to the steepening of
the wave. Simulations of Vasquez and Hollweg [1998b]
show that this wave steepening generates field-aligned
or nearly field-aligned RDs. A constant B and steady
waveform results generally for waves with initial polar-
izatlons tending toward arc or spherical.

By = —(Dy = (Dy))/2By,

2.2. PBSs and Waves

Vasquez and Hollweg [1999] showed that second-order
PBSs develop in directions perpendicular to By. These
have variations By /Bo = p2/po, and total pressure bal-
ance is satisfied to second order when B? /87 is included.

Equilibria beyond second order are prevented when
interactions involve a PBS and a propagating wave.
Equations describing this interaction are given by (A8)-
(A10). First, we take the simpler case in which only re-
fraction results. This occurs when the wave vectors of
the first-order Alfvén waves are confined to a plane con-
taining By and variations due to PBSs. We assume that
By is in the z direction and that a second-order PBS
is generated with gradients in the y direction. Alfvén
waves confined to the zy plane are then polarized along
the z axis. From (A8)-(A10), one can show that mag-
netic and velocity fluctuations in the z direction become
decoupled from components in the zy plane. To third
order, they are given by

aV3z _ BO:c aBSz B2x aBlz . 8V1z (3)
po ot 4r Oz 4n Oz P2 ot ’

8332 8V3z . aVlz

o e T P @

The left-hand sides of (3) and (4) describe the Alfvén
wave; driver terms appear on the right-hand sides.
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Figure 1. Schematic shows how a generated pressure-balanced structure (PBS) causes refraction
of a wave with its normal initially along the (left) magnetic field and (right) oblique. Solid
horizontal lines represent the time constant magnetic field in the z direction. Thicker lines
correspond to stronger fields. On the right-hand side is a plot of the change in B, and p due to
the PBS along the y direction. These quantities are correlated and so are variations of the Alfvén
speed. Lines across the magnetic field represent lines of constant phase for a wave. Adjacent solid
and straight lines represent a plane wave at two distinct phases which is at its starting position.
After some time, the wave moves to the left and is deformed by refraction. This is shown by
two dashed lines. The wave on stronger lines of magnetic field outruns itself on weaker lines.
Because of the sinusoidal variation of the speed in the y direction, the lines are distorted into an
approximate triangular form. The distance between the two lines remains a constant along the
magnetic field. As a result, the perpendicular wavenumber varies, but the parallel wavenumber

1s unchanged.

These contribute to the tension of the magnetic field
lines and so can alter the Alfvén speed. Equations (3)
and (4) can be combined into one for Bs,

0% Bs,
ot?

ng 02B3z _ BO:L‘BQIE 32Blz (5)
4rpy Ox2  4mpy  Ox?

Equation (5) shows that when a PBS and Alfvén wave
interact, the sum and difference of their k values and
wave frequencies w is another Alfvén wave since the
PBS has k; = 0 and w = 0. The homogeneous solution
of this equation gives the same frequency as that of the
driver. Therefore solutions to (5) become secular, and
the power series in wave amplitude will not converge
uniformly.

A multiple-timescale expansion can resolve the sec-
ularity. We have written (5) in a manner where this
can be applied without introducing new symbols for the
stretched coordinates in space and time, but we must
drop the subscript ordering in (5) and simply solve for
B,. Note in (5) that Ba, is independent of z and ¢,
and so a Fourier transform can be applied in these di-
mensions. This leaves us with an inhomogeneous linear
equation for B, whose dispersion relation can be shown
to be

w?/k; = Bi, (1 + Baz/Box)/ (47po). (6)

This is equivalent to the second-order variation of ¢
that one would obtain if ¢4 in the presence of a PBS
is calculated directly from ¢% = (Boy + Bag)?/(47(po +
p2)). Thus the wave must refract.

2.2.1. Effects of refraction. From (6) the Alfvén
wave propagates most rapidly along field lines where
By is a maximum (w/k = ¢4 maz) and slowest where
it is a minimum (w/k = ca min). Figure 1 illustrates
how a wave refracts with a normal starting along the z
axis (left side) and in an oblique direction (right side).
With time, lines of constant phase with normals initially
along the # axis turn more oblique between positions of
the relative maxima and minima of Bs,. The parallel
wavenumber remains unchanged, but the perpendicular
one grows larger. When the normal is initially oblique,
some become more aligned with the z axis. If we treat
the lines of phase as straight lines between each maxi-
mum and minimum of Bj,, then we can estimate how
the local k, evolves between relative extrema as

ky = kyo + kzAcat/L, (7

where kyo is the initial value of ky, Acy = ca(y2) —
ca(y1) is the difference between ¢4 on two adjacent field
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lines at positions y; and y2(> y1) where the cs is a
maximum or minimum, and L = y2 — y1. The quantity
Acy is positive when y; corresponds to a relative mini-
mum and negative when y; corresponds a relative max-
imum. From (7), |ky| decreases wherever k;Acq < 0
for kyo > 0 or kyAca > 0 for kyo < 0 until ¢ = T, the
time of closest approach (denoted by subscript ca) to
By, when ky, = 0 given by

Tea = —kyoL/ksAca (8)

and thereafter increases. Thus, for very large t we ex-
pect k to tend strongly to oblique directions, but at
intermediate times, k could be nearly field-aligned.

The outline of the phase lines in Figure 1 is very reg-
ular because only a single sinusoidal variation of By, is
present. In general, the outline would be very irregular,
if many Alfvén waves combine to generate PBSs.

Because the wave has a z polarization and is perpen-
dicular to variations along y, the wave does not linearly
couple with magnetosonic waves which are polarized in
the zy plane. Thus, while refracting, it remains a MHD
Alfvén wave. This would only change if k; approaches
the ion inertial scale ¢/wp; where the wave first becomes
compressional [Hollweg, 1999] and the gyroradius scale.
At these scales it becomes a kinetic Alfvén wave (KAW)
with a small wave frequency w ~ cskj. Because the
KAW is compressional, it has a parallel electric field
component and can undergo Landau and transit time
damping [e.g., Lysak and Lotko, 1996].

2.2.2. Resonant transfer. Generally, waves have
components of B; in the direction that Bs, and ps
varies. Refraction still takes place, but, the equations
are not as easily solved because Alfvén and magne-
tosonic waves become coupled. In Appendix A, we
show that the higher-order equations can be reordered
into a more compact set which matches at lowest or-
der the linear ones for a varying background plasma
and magnetic field solved by Hollweg and Yang [1988].
The initial value of the Alfvén wave’s frequency wg =
ke Bos/(47po)t/? would come to lie between a max-
imum wa mez = koCamar and minimum w4 min =
kzca min once a PBS is generated. In these situations
[e.g., Uberoi, 1972; Hasegawa and Uberoi, 1982; Lee and
Roberts, 1986], waves can transport energy across field
lines. Energy builds up along a resonant field line,
via the process called resonance absorption or trans-
fer. We will adopt the term resonant transfer to em-
phasize the propagation of energy. The resonant line
from generated PBSs occurs where By = p2 = 0 so
that the Alfvén wave frequency on this line equals wpg.
Energy would be transported most rapidly away from
lines where wy (B and p3) attain extrema. As the
energy increases on the resonant field line, k. grows
larger, and the resonant wave resembles a surface wave.
If this resonant wave reaches the perpendicular scales
of ¢/wpi or the gyroradius, it could become a KAW.

The rate at which energy is transferred to a reso-
nant field line can be estimated. Again, we take By in
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the z direction and a PBS which varies in the y direc-
tion. However, we now consider an Alfvén wave with
a component of polarization in the direction that the
PBS varies. Here we take the particular case in which
the initial Alfvén wave propagates in the zz plane and
is polarized along the y axis. A basic response of the
wave is to refract, and this can be modeled by letting
By, = Acos[kyz + k. z —w(y)t] and having its frequency
vary with y. (Note that since k, = 0 initially, we have
the situation shown on the left side of Figure 1 except
that the wave vector has a component outside the plane
of the figure.) This wave will couple with one in the zz
plane. With time, the dominant magnetic component
on resonant field lines will be in the z direction and per-
pendicular to Bg. The converted wave is only weakly
compressive and satisfies 9B, /0y+0B,/0z = 0 to lead-
ing order. We can then estimate B, to be
By dw

B, = % dyt' 9)
We can approximate the time T;; of resonant transfer
(denoted by subscript rt) from (9) to be when the mag-
netic energy in the z component averaged over space is
one half of that in the y component, which gives

k.|L
g L2l

N — 10
2|k‘xACA|, ( )

where dw/dy = |kz|Aca/L. The increase of k, for the
forming wave around a resonant field line can be calcu-
lated from (7).

If the above Alfvén wave initially has finite k, evo-
lution can be more complicated. In this case, the wave
has first-order magnetic components in both the y and
z directions. In regions where refraction causes the lo-
cal value of ky to increase, the wave will immediately
undergo the resonant transfer, as above. However, ad-
jacent regions where k, decreases initially will have the
wave energy increasing in the y component without any
transport of energy to the resonant field line. Transfer
will be delayed until ¢t = T¢,.

When resonant transfer occurs, one would expect to
see an asymptotic state where wave energy is concen-
trated on resonant field lines and in the z direction.
This result would be most clearly seen if there were only
one wave propagating in a nonuniform medium. How-
ever, it requires the interaction of two or more Alfvén
waves to produce the nonuniform medium, and this
complicates the resultant waveform. Evolution of the
waveform then is tied to the polarization directions of
the individual Alfvén waves. Those waves polarized in
the z direction would remain body waves with equal
wave energy on all field lines. Only those with polariza-
tions which include a y component could undergo mode
conversion.

2.3. Magnetosonic Waves

2.3.1. Slow waves. If forces produce fluctuations
which are almost but not exactly in the perpendicular
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direction, the waveform may still be modified by refrac-
tion. Here a slow wave is produced which would mimic
a PBS [e.g., Parent:i et al., 1997; Vasquez and Hollweg,
1999]. Because its frequency is very small, a long time
may pass before it is damped in a plasma. As a result,
Alfvén waves could be refracted until the slow wave is
damped.

2.3.2. Fast waves. In the work of Vasquez and
Hollweg [1999], fast magnetosonic waves are shown to
be produced in the perpendicular direction which can-
not be Landau or transit time damped away. However,
these are propagating waves, and the equations do not
become secular. Their fluctuations along any field line
would oscillate with time and would cancel out any net
displacement of the Alfvén wave as compared to other
field lines. Thus, in a time-average sense, no refraction
would occur.

3. Simulation Results

We will examine the influence of generated PBSs
on the evolution of Alfvén waves using 2%—D hybrid
simulations. The initial waves are given a wavelength
of ~251¢c/wp; (wavenumber kc/w,; = 0.025), although
Alfvénic fluctuations are actually 1-2 orders of magni-
tude longer. At this wavelength, waves are long enough
to be relatively dispersionless; as is true in the solar
wind, but small enough so that simulations can still
feasibly compute ion gyromotion over several wave pe-
riods. Initially, §B for each wave is linearly polarized,
and 6V = sign(k))cadB/ By is specified, as is appropri-
ate for a MHD Alfvén wave.

The simulation results to be shown are performed
on 128 x 128 grids in the zy plane with cell sizes of
1.96¢/wpi. Positions will be normalized to ¢/wp; and
wavenumbers to (c/wy;)~!. Eighty protons per cell are
distributed according to a drifting Maxwellian using a
drift velocity equal to V. Ton temperatures Ty = To.
with respect to By are expressed as energy densities
normalized to pgc. The ion beta (ratio of gas to mag-
netic pressure) is twice the value of the normalized tem-
perature. lon and electron temperatures are initially
equal, and the electrons are treated as a massless, quasi-
neutralizing fluid with a specific heat ratio of one. Time
steps are 0.05 proton gyrocycles or 0.05Q!. Time will
be normalized to Q1.

Section 3.1 examines evolution when By is in the
plane of the simulation, where only refraction is ex-
pected. We revisit a case of nonequilibrium which was
not properly explained by Vusquez and Hollweg [1998b].
In section 3.2, evolution when By is out of the plane is
examined where resonant transfer can occur.

3.1. By in the Simulation Plane

Most of the simulations undertaken in the work of
Vasquez and Hollweg [1998b] showed that nearly constant-
B waves evolved and appeared to represent equilibria
or steady propagating waveforms. However, they did
find particular cases, which independent of RD devel-
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(o) (b) t= 120

B

Figure 2. Evolution of a pair of Alfvén waves with
wave vectors situated on opposite sides of By = Byk
at equal oblique angles. Intensity plots are given as
functions of position for B, (top left), By, (top right),
B, (bottom left), and p (bottom right) at (a) ¢t = 0,
(b) t = 120, (c) t = 300, and (d) ¢ = 700. The
intensity range normalized to By for By is 0.85-1.15,
for By is —0.2-0.2, for B, is —1.0-1.0, and for p is
0.9-1.1 with light shades representing maximum val-
ues and dark shades minimum values. Coordinate axes
are shown only for the plot of B, at ¢ = 0 but apply
equally for all plots. The plotted quantities are shown
in a frame which moves to the left at the background
Alfvén speed.

opment, did not give an equilibrium. Nonequilibrium
occurred when a pair of Alfvén waves had wave vectors
symmetrically positioned to either side of B so that
k1= kyoand ky 1= —kip, where subscripts 1 and
2 refer to individual waves and k, is the perpendicular
wavenumber.

A simulation example is shown in Figures 2a-2d,
where the z axis is parallel to By = Bpy% and the y axis
is perpendicular. The Alfvén waves are polarized along
the z direction. The amplitude of each wave is 0.5By.
The superposition of these two waves gives a maximum
total amplitude of Bg. The initial ion temperature has
Ty = Tor = 0.33. Both waves have kj = —0.025, one
has k; = 0.025 and the other has k; = —0.025. Un-
like in the work of Vasquez and Hollweg [1998b, Figures
4a-4d], we do not include second-order fields initially
and instead allow them to develop on their own. The
second-order solution used in the perpendicular direc-
tion by Vasquez and Hollweg [1998b, p. 355] is incorrect
in that they did not specify a variation in p.

Figures 2a-2d show intensity plots of B) (top left),
B, (top right), B, (bottom left), and p (bottom right)
for (a) t =0, (b) ¢ = 120, (c) t = 300, and (d) ¢ = 700.
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Figure 3. Plot of the average values of B, and p in
the y direction at ¢ = 300.

The plot is made in a frame moving at the Alfvén speed
(based on Bo/(4mpo)'/?) to the left and parallel to Bo.

As a group, the initial Alfvén waveform propagates in
the —z direction and steepens significantly within ap-
proximately 502~ ! and begins to develop RD structure
with normals along @. The transverse extent of these
RDs reach a maximum by ¢ = 120. Individual RDs
can be seen lined up along vertical lines separated by
horizontal lines where B, = 0 at ¢ = 120 (Figure 2b).
These RDs generate ion cyclotron waves from their lay-
ers which cause dispersive spreading of the layers. This
is an additional source of nonequilibrium that Vasquez
and Hollweg [1998b] show is function of the initial wave
polarization.

With time, adjacent RDs continually turn their nor-
mals oblique, and neighboring RDs do this in opposite
senses (i.e., one toward +y and the other toward —y).
To maintain V - B = 0, the RD acquires a field com-
ponent in the z direction. Thus the diminishment of
the RD layers in plots of By, should not be taken as
a diminishment of the RD overall. The turning of the
normals 1s continuous, and no equilibrium is obtained.

The turning of normals is ultimately due to the differ-
ence of wave vectors which gives a Fourier component
of the ponderomotive force in the perpendicular direc-
tion. This leads to a PBS and perpendicular fast waves
of two cycles in the y direction. (In the work of Vasquez
and Hollweg [1998b], a true PBS does not develop be-
cause of the incorrect starting conditions which resulted
in a smaller gas pressure than needed to balanced the
imposed magnetic pressure.) Figure 3 shows the plot of
B, /By (solid line) and p/po (dashed line) as a function
of y averaged for all # and ¢. The time average removes
the perpendicular fast waves, so that the PBS alone is
plotted. Across y, this PBS has B, /By and p/pg nearly
equal with an amplitude of 0.05. Its shape differs only a
little from a sinusoid. The expected speed difference is
0.025 c4 based on (6). The actual amount of refraction
is greater due to the development of ion cyclotron waves
which disperse from RDs and fall behind owing to their
slower phase speeds. These waves have maximum am-
plitude along y = 0 and 125, where ¢4 is a minimum.
Thus the waveform along these y travels slower than
expected for a MHD Alfvén wave.

In these simulations, waves and RDs refract and as
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expected do not undergo resonant transfer. A quasi-
steady RD never develops from this initial state and un-
dergoes dispersive spreading due to ion cyclotron waves
from the time of its formation. Since we expect RDs
to be steady against dispersion, at least initially, in the
solar wind, we will not pursue this case further in this

paper.

3.2. By Out of the Simulation Plane

With hybrid simulations it is difficult to test directly
the small-amplitude theory with respect to generated
PBSs. For small-amplitude waves the gradients of wave
speed which develop are small and their effects require
long times to study. Hybrid simulations typically can-
not maintain sufficient accuracy to follow evolution to
the times needed. Moreover, small-amplitude PBSs can
also be overwhelmed by density perturbations induced
by particle noise.

This forces us to examine the evolution of large-
amplitude waves where small-amplitude theory need
not be valid. Indeed, we will find that there are very
important differences. To show this contrast better,
we first demonstrate that the simulations can recover
the linear effects of a varying background on a small-
amplitude wave by including a large background vari-
ation rather than attempting to generate one self con-
sistently. Evolution will be compatible with the one in
section 2.

Section 3.2.1 examines nearly linear wave evolution
toward a KAW in the presence of the large background
variation. Section 3.2.2 examines large-amplitude wave
evolution when the PBSs are generated self-consistently.

3.2.1. Small-amplitude wave in an initially
varying background. We consider the interaction of
a first-order purely magnetic structure and an Alfvén
wave using a 2%—D simulation when Ry # 0 and V; x
B; # 0. In this case, we do not explain the origin
of the structure, but by including it at an amplitude
comparable to that of the Alfvén wave, we will drive
this waveform through refraction quickly to a saturated
state. This state will ultimately consist of a KAW with
large k; but small k| and w. Dissipation occurs via
Landau and transit-time damping.

In the simulation, Bg lies at 45° to the simulation
plane zy so that all wave vectors in the simulation are
oblique wherein only the y axis 1s perpendicular to By.
The first-order structure has its wave vector in the y
direction, has magnetic but no kinetic energy, and has
its magnetic field B; = 0.25B¢cos(0.025y) (s means
structure and p perpendicular) along p = § x Bo. The
initial Alfvén wave has its wave vector in the —z direc-
tion and its magnetic field B, = 0.25B;cos(—0.025z)
along the y direction. Figures 4a-4d are intensity plots
of By (top left), By (top right), B, (bottom left), and
By = By — By (bottom right) for (a) t = 0, (b) ¢t = 500,
(c) t = 1000, and (d) ¢t = 1500. (Here w means the com-
ponent associated with the wave.) Initially, the fields of
the wave and structure are perpendicular to one another
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Figure 4. Simulation results of the interaction of a
first-order Alfvén wave and magnetic structure with
equal amplitudes of 0.25B;. Intensity plots are given as
functions of position for By (top left), By (top right),
By (bottom left), and By (bottom right) at (a) ¢ =0,
(b) ¢ = 500, (c) t = 1000, and (d) ¢ = 1500. The inten-
sity range normalized to By for By is 0.9-1.1, for By and
By is —0.25-0.25, and for By, is —0.25-0.25 at ¢ = 0,
—0.375-0.375 at ¢ = 500, and —0.5-0.5 at ¢ = 1000 and
1500. By lies outside the simulation plane so that the
generalized Reynolds stress R is nonzero. The wave is
initially polarized in the y direction, and the structure
is in the p direction. Both have equal magnetic energy,
but the structure has no kinetic energy. The wave re-
fracts and By increases on resonant field lines.

and so in Figure Ha are seen separately in plots of B,
and B,, respectively. The density is uniform initially,
and To“ = T0_|_ = 0.083.

In Figures 4b-4d, By is noticeably bowed to the left
because the Alfvén phase speed varies along the y axis,
due to the additional magnetic field of B,. The phase
speed can be shown to be

B;(y)

w/ky = ca(cos45° — sin 45° pBo ). (11)
As it refracts, the wave develops gradients in the y di-
rection and must satisfy 0B, /dy = —0B,/0z. At the
same time, the magnetic structure evolves second-order
variations in B) and p which cause it to develop into a
nearly time constant PBS. Since B, is nearly time con-
stant, the energy of the refracting wave ends up in By
and is concentrated at y = 64 and y = 180, which are
the resonant field lines (i.e., By = 0). By t = 1500 a
resonant wave develops with an unchanged ky = 0.025
but k; = 0.2 and width of 30¢/wpi. The perpendicular
scales will eventually become small enough that ion in-
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ertial length and gyroradius effects become significant,
and then the resonant wave will be a KAW.

Figure ba plots the wave energy normalized to the
initial amplitude squared (0.252B%) in B, (solid line)
and Bp (dashed line) as a function of time. In the
simulation, energy is nearly exchanged between B, and
B} with an approximate 12% loss due mainly to the
development of compressions and to Laudau damping.
Energy saturates in By’ after ¢ = 600. In this state, the
wave magnetic field becomes more aligned in the p direc-
tion and in the same direction as the structure. Figure
5b plots the value of the Alfvén ratio (which is ratio of
fluctuation kinetic to magnetic energy) as a function of
time. The ratio oscillates around the initial value of 0.5
and then saturates near 0.5, for ¢ > 600. This shows
that only the excess magnetic energy in structures de-
termines how far the Alfvén ratio is reduced below one
in the saturated state. The developing KAW closely
approximates a MHD Alfvén wave.

The wave evolution in this case is consistent with
what is expected from our analysis. We believe it
is very likely that small-amplitude waves which self-
consistently generate PBSs will behave in a similar man-
ner and consistent with theory.

3.2.2. Large-amplitude wave evolution with
generated PBSs. We examine the evolution of a pair
Alfvén waves configured in the simulation plane as they
are in Figures 2a-2d. The direction of By is 22.5° out-
side the simulation plane and in the zz plane. The ini-
tial density is uniform, and Ty = To. = 0.083. The
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Figure 5. Plot of (a) the wave magnetic energy in
the y and p directions and (b) the Alfvén ratio r4 as a
function of time for the case given in Figure 4. At long
times, wave energy is nearly exchanged between the y
anld p components, and 74 returns nearly to its starting
value.
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Figure 6. Simulation results of the interaction of a
pair of first-order Alfvén waves with equal amplitudes of
0.5B,. Intensity plots are given as functions of position
for By (top left), By (top right), By (bottom left), and
p (bottom right) at (a) ¢ = 0, (b) ¢t =500, (c) ¢ = 1000,
and (d) ¢t = 1500. The intensity range normalized to Bo
for By is 0.75-1.25, for By is —0.3-0.3 at ¢ = 0 and 1500
and is —0.5-0.5 at ¢ = 500 and 1000, for B, is —0.9-0.9,
and for p is 0.6-1.4 By lies outside the simulation plane.
PBSs develop leading to refraction, resonant transfer,
and dissipation of waves and imbedded RDs.

Alfvén waves each have an amplitude of 0.5Bp, and
their vector addition gives a maximum total amplitude
of 0.93B,. For this case, Figures 6a-6d give intensity
plots of By (top left), By (top right), B, (bottom left),
and p (bottom right) for (a) ¢t = 0, (b) t = 500, (c)
t = 1000, and (d) ¢ = 1500. The plot is in a frame
moving to the left at 0.92c40.

As expected, the waves generate a PBS in the y di-
rection with two cycles. Along y = 0 and 125, By/Bo
and p/po attain minimum values (= 0.94) for the PBS
and along y = 63 and y = 188 have maximum values
(= 1.06). This causes refraction and resonant transfer.
Refraction can be seen in the turning of phase fronts to
more oblique angles beyond ¢ = 500. By ¢ = 1500 the
fronts have turned well into the perpendicular direction.
The simulation is approaching its limit of accuracy and
is halted.

Some wave energy is expected to be transferred across
field lines toward resonant ones at y = 31, 94, 157, and
220 where 6p = 6B = 0. The full effects of transfer
are delayed until after ¢t = Tc, = 500 when all wave
fronts turn oblique. The most affected regions occur
where the wave is mostly polarized in the y direction
which is along y = 63 and y = 176. Here the average
amplitude of B, decreases with time, while that of B,
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remains nearly constant. This is indicative of the effects
of resonant transfer.

Generation of the PBS and the resultant refraction
and resonant transfer are consistent with our expecta-
tions based on small-amplitudes theory. However, there
are differences, too. First, there are additional com-
pressions with substantial amplitude varying along field
lines. They are especially large along y = 0 and 125
with deep minima of p/pg = 0.7. These originate from
the coupling of Alfvén to magnetosonic waves. These
introduce additional variations of the Alfvén speed and
affect local wave vectors and normals.

Second, large-amplitude waves steepen and produce
RDs. At ¢t = 500 these can be seen as sharp changes
in between minimum and maximum values in plots of
B, along y = 63 and y = 176 and B, along y = 0
and 125. These have normals approximately in the —z
direction and occur two per wave cycle. Their widths
are 20 ¢/wp;.

Third, some RDs are dissipated while others remain
intact. When wave energy in the y direction is trans-
ferred away from waves and RDs along y = 63 and
y = 176, these RDs are removed. The RDs along y =0
and y = 125 and between resonant field lines are dis-
rupted but remain intact. They undergo continual re-
fraction and produce field and density fluctuations with
large-k) and -k along their entire length. These fluctu-
ations are mainly associated with fast waves and com-
pressions. RD widths diminish as they turn into the
perpendicular direction. However, they remain thicker
than expected based simply on refraction of their nor-
mals from (7). We conclude that dispersion keeps layers
relatively thick with widths of 10¢/wp; or more. (We
have also followed this evolution on a 256 by 256 grid
and find similar results to those shown in Figures 6a-
6d.)

Fourth, wave energy does not build up to large val-
ues on the resonant field lines and KAWs are not pro-
duced. Instead, dissipation and heating are widespread.
Figures 7a-7d shows intensity plots of TII (left) and T
(right) as functions of position for (a) t = 0, (b) t = 500,

a) t = 0 b =

(o) T, (b) t = 500 T
251 - S
125 — T, = 0.08 T, = 0.08

Y.
[0} T. T T
0 125 251
t = 1500

(¢) t = 1000 (d)

Figure 7. Intensity plots of (left) 7j; and (right) 7 as
functions of position and time. Intensities range from
0.08 to 0.25 where darker shading corresponds to lower
temperatures. Heating is widespread.
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Figure 8. Plot of 7j (solid line) and T (dashed line)
as functions of . Temperatures nearly double.

(c) t = 1000, and (d) t = 1500. The components of
temperature are calculated with respect to the local
magnetic field and the corresponding thermal energy
densities are normalized to poc = B2/4m. Heating is
mainly uniform and not confined to resonant field lines.
Heating is seen in regions where wave energy has been
mostly transferred away (y = 63 and 188). By ¢t = 1500,
protons are nearly 1.5 times hotter than initially and
more in T than 7j;. Around y = 0 and 125, even more
heating occurs because of the disruption of RDs. By
t = 1500, protons here are nearly 2.5 times hotter than
initially in both 7 and T,. Some particularly high
and low temperatures are seen along the resonant field
lines. Because of the large variations of p on these lines,
the variability is in part due to reversible compressional
heating. The widespread occurrence of heating is due
to the interaction of large-k waves which originate in
the vicinity of RDs and then spread away.

Figure 8 plots the average Tj (solid line) and T
(dashed line) in the simulation box as a function of ¢.
T}, is greater than T, for ¢ < 400. We believe this is a
result of compressions which accompany steepening as
the imbedded RDs are produced. Some heating from
resonant transfer also occurs during these times. Start-
ing around ¢ = 500, there is a distinct increase in the
rate of heating, when the full effects of resonant transfer
occur and continue through ¢ = 1500. Between ¢ = 500
and 1500, each component of temperature increases by
approximately 0.05 with corrections for the energy error
(2% increase) in the simulations.

The wave magnetic field power spectrum develops an
approximate k=2 spectrum. This develops by ¢t = 100.
The spectral index remains relatively unchanged there-
after, although the wave power becomes more focused
in oblique directions with time. We interpret this spec-
trum as a cascade due to wave steepening.

The simulation spectrum does not have the same
slope as the inertial subrange of interplanetary Alfvénic
fluctuations which on average has k=%/3. The steeper
form of the spectrum, especially because it involves
oblique waves, can serve for a study of possible wave-
particle behavior in the interplanetary dissipation range
which on average has k=3.

We conclude that the proton heating is sustained
by a cascade driven by the ponderomotive force which
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gives steepening and the k=2 spectrum. Resonantly
transferred wave energy added to preexisting and large-
amplitude waves causes gradients in the magnetic pres-
sure to form. In the absence of the nonlinear pondero-
motive force, waves simply become superposed on one
another. In contrast, large-amplitude waves steepen in
response to the total wave magnetic intensity which
builds up and varies spatially. Wave energy trans-
ferred (mostly in By ), as well as preexisting wave energy
(mostly in By), is then cascaded to large k. Waves with
large-k originate in the vicinity of RDs and then spread
away from RDs so as to affect a wide area. Ultimately,
dissipation occurs and heats protons.

From the cascade, waves with large-k travel in dif-
ferent oblique directions and have associated compres-
sions. As a result, protons cannot remain resonant or
correlated with a single wave for a long time. Follow-
ing the trajectories of individual protons, we find little
reflection or direct cyclotron acceleration. Instead, pro-
tons pitch angle scatter and diffuse in velocity space.

Protons gain energy first from second-order Fermi ac-
celeration as they interact with many waves [e.g., Tera-
sawa et al., 1986; Karimabadi et al., 1992]. A single
resonant wave heats 7, and tends to cool 7). In the
presence of additional waves moving in different direc-
tions, protons can random walk and so heat both 7|
and T'| because they can resonate with one wave af-
ter another. A second source of heat comes from Lan-
dau and transit time damping the wave compressions.
These interactions are likely to be aided by finite ampli-
tude resonance broadening which can occur at relatively
small amplitudes (§B/B > 1073 [e.g., Karimabadi et
al., 1992]).

3.2.3. Other cases. We have run the simulation
for a number of other parameters. Doubling all length
scales reduces the rate of resonant transfer by one half
and the heating of protons by about one half, as is ex-
pected.

At higher initial values of T we find that the variation
of Alfvén speed is nearly the same. This gives a similar
rate of resonant transfer. The rate of heating is de-
creased somewhat. At To = 0.33 we find a rate of 0.04
per 10009271, which is 80% of that at Toy = 0.08. This
decrease is probably due to enhanced Landau damp-
ing of fast waves and compressions, which limits their
amplitudes and so efficiency in transferring energy to
protons.

When By is 45° above the simulation plane, the PBS
has smaller amplitudes on average, and wave phase
speeds are also smaller. Evolution occurs more slowly
than in previous cases.

4. Discussion

In this section, we examine the possible influence of
generated PBSs on Alfvénic fluctuations and imbedded
RDs in the interplanetary medium. Their effects come
primarily from the cross-field gradients of the Alfvén
speed introduced by the PBSs which lead to refraction
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and resonant transfer. Another type of nonuniformity
is the velocity shear which is important in the solar
wind but is not investigated here. Refraction and res-
onant transfer can also occur from the velocity shear
[e.g., Yang and Hollweg, 1991; Ghosh et al., 1998], but
the shear can have additional effects concerning mode
coupling [e.g., Kaghashvili, 1999] and turbulence [e.g.,
Coleman, 1968; Goldstein et al., 1999].

We will treat an ideal situation in which the Alfvén
waves are purely outgoing. In the interplanetary
medium, most of the Alfvénic fluctuation flux is outgo-
ing in high-speed streams. An ingoing component does
evolve in the solar wind from partial reflection [e.g.,
Matthaeus et al., 1999b] and nonlinearities [e.g., Tera-
sawa et al., 1986; Machida et al., 1987]. This can gen-
erate quasi-2-D turbulence [e.g., Oughton et al., 1994,
Matthaeus et al., 1996; Spangler, 1999] which affects
many properties of the fluctuations. As such, our as-
sumption of purely outgoing waves is unable to explain
all features of Alfvénic fluctuations, especially with re-
gards to the Alfvén ratio [e.g., Goldstein et al., 1995]
and power spectra. Yet, with this assumption, our re-
sults isolate physical processes which can then be com-
pared to other situations in which the ingoing compo-
nent and its effects are also examined.

In section 4.1, we estimate the time for refraction due
to PBSs, and in section 4.2, the time of resonant trans-
fer. Section 4.3 examines how refraction and resonant
transfer can affect solar wind RDs, and section 4.4 dis-
cusses their influence on proton heating. In section 4.5,
we discuss the production of KAWs.

4.1. Refraction Time

The timescale on which refraction strongly modifies
a waveform can be estimated using (7). We define the
refraction time 7, as the time it takes for the plane
wave to turn from 0° to 45° (i.e., |6k /ky| = 1), which
is T, = L/|Acal.

At 1 AU the radial wavelength of Alfvénic fluctua-
tions is typically &~ 2 x 10° km. Assuming this is typ-
ical of the perpendicular wavelength, generated PBSs
would have L equal to a quarter of this wavelength
or L ~ 5 x 10° km. At 0.3 AU we would expect
L =~ 2 x 10° km based on spherical expansion. We
also take c4 = 150 km/s and dp/po & 0.01 so that Acy
is about 1.5 km/s. Then, T, »~ 37 hours at 0.3 AU.

The estimate of T, uses an average scale. Alfvenic
fluctuations exist over many scales, and we anticipate
that PBSs would be generated on all corresponding
scales in accord with the scale dependent and local av-
erage value of By. The power spectrum of fluctuations
in the energy containing range scales as k™!, and as
k=5/3 in the inertial subrange. We expect that Acyg
is proportional to the wave amplitude squared or wave
power, and that L is proportional to k~!. Then, T;
is proportional to a constant in the energy containing
range, so that these scales refract at the same rate, and
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proportional to k2/3 in the inertial range, so that the
larger scales with their larger amplitudes refract faster.

Refracting at the estimated rate, purely outgoing
Alfvén waves would be fairly steady over times small
compared to the solar wind convection time. Only over
the long convection times of transport from the Sun
would refraction due to these generated PBSs become
significant. In a solar wind moving at 500 km/s an out-
going wave propagating at 150 km/s would be trans-
ported a distance of 0.58 AU in 37 hours.

Spherical expansion would tend to align wave vec-
tors in the radial direction. Gradients across field lines
can oppose this. Wave vector directions cannot be ob-
tained using WKB theory because the generated PBSs
haves scales of order of the wavelength. Wave direc-
tions can be determined following the motion of planar
surfaces between field lines [e.g., Hollweg, 1975; Heine-
mann, 1980].

For a purely radial magnetic field, distances between
field lines vary as r. A wave surface at 0.3 AU aligned
in the radial direction turns by 21° away from the radial
direction due to perpendicular gradients when it reaches
1 AU. This assumes that the solar wind is moving at
500 km/s, average c4 = 150(0.3/r) with ¢4 in km/s and
7 in AU, and that the PBSs have L = 2 x 10° km at
r =0.3 AU and Acyg = 1.5 km/s between 0.3 and 1 AU.
(The value of Acy can be assumed constant between 0.3
and 1 AU because smaller ¢4 farther from the Sun is
compensated by larger §p/p.) The rate of turning is
about one half of that without expansion.

Starting at an oblique angle of 45°, expansion is faster
and turns the wave surface to about 32° by 1 AU when
the PBSs halts this motion. Greater amounts of refrac-
tion over expansion can be realized from perpendicular
gradients of c4 in the radial-azimuth plane when By
spirals outward. Moreover, expansion can aid in turn-
ing wave normals oblique to Bg. These effects arise
because the distance between field lines increases less
than 7 when the field spirals outward.

The estimated refraction time is based on a straight-
forward arrangement of PBSs which vary exactly per-
pendicular to field lines for all ». Our treatment of
the generation of PBSs among waves treats the initial
plasma as uniform so that it could only be applied to
a small region of the solar wind. Because the back-
ground varies with 7 and waves relative to it, new PBSs
could arise at larger » which are arranged differently.
Then PBSs would vary at least slowly in other direc-
tions. Additionally, large-amplitude waves can generate
compressions along field lines. Even in the simulations
of just two waves, some compressions occur along the
field lines. Additionally, compressions could also arise
from mixtures of forward and backward waves and from
magnetosonic waves.

In this new situation, wave vectors would fluctuate in
direction, in addition to their steadier refraction from
PBSs in the perpendicular direction. In this respect,
refraction into the perpendicular direction would be de-
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layed. However, they could also increase the rate of re-
fraction if the local value of L at greater r increases less
than expected for geometric expansion. In this case,
a planar surface at some r; would eventually be bro-
ken into smaller sections because it encounters PBSs
arranged closer together on field lines. If Acy remains
nearly the same, the smaller sections would be easier to
refract into the perpendicular direction.

In the solar wind a large number of waves propagate.
These could generate variations of ¢4 on so many scales
and directions that the solar wind might be described
as a random medium [e.g., Valley, 1974; Malara et al.,
1999]. A random walk of wave vectors would have them
slowly wander into the perpendicular direction and so
lengthen the refraction time. Valley [1974] has shown
that Alfvén waves can scatter and couple to magne-
tosonic waves and that plane waves can lose coherence
in random media.

4.2. Resonant-Transfer Time

Generally, Alfvén waves will have components of By
and V; in directions where generated PBSs vary. This
causes not only refraction but also resonant transfer.
The resonant transfer time T,; on which this occurs
can be estimated using (10). For some representative
parameters we let k, [k, ~ 1, L = 2x10°km, Acy = 1.5
km/s, and we find that 7,; = 19 hours. The change in
perpendicular wavenumber is given in (7) and evolves
as does T,.

The estimate is based on the time of turning from
when the wave vector 1s closest to Bg and has increas-
ing oblique angles. In section 4.1, expansion was found
to reduce the turning rate from exactly perpendicular
PBSs by about one half, and so a better estimate would
have T,; = 38 hours.

Not all waves will be turning more oblique at a given
r, and not all will be polarized in a direction of signifi-
cant variation. Thus resonant transfer cannot affect all
waves on the same timescale at the same r.

Finally, we noted in section 4.1 that refraction was
stronger in the radial-azimuthmal r-¢ plane due to the
spiraling of the interplanetary magnetic field. If res-
onant transfer also occurs, then there should be more
fluctuation power in the § direction which is perpendic-
ular to this plane and to Bg. Near 1 AU, and in the
ecliptic, magnetic fluctuation power anisotropies are ob-
served. For instance, Belcher and Davis [1971] observed
a 5:4 ratio between power in the x By and (£ x BO) x By
direction. This is consistent with transfer but is not a
large effect. So this could be evidence that transfer has
little influence or the difference in refraction rates be-
tween the r-¢ plane and other planes is small.

4.3. RD Evolution

Locally, Alfvénic fluctuations and imbedded RDs
would appear to be approximately steady propagat-
ing waveforms. Yet, it is well known that over large
distances in the solar wind, important changes occur
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le.g., Matthaeus and Goldstein, 1982; Bavassano et al.,
1982; Roberts et al., 1987a, 1987b]. One change is the
decrease in the occurrence frequency of RDs observed
with increasing distance r from the Sun [e.g., Behan-
non, 1978; Neubauer and Barnstoff, 1981; Mariani et
al., 1983; Lepping and Behannon, 1986].

Approximately, 3 RDs per hour are seen near 0.3 AU
and only 1 per hour near 1 AU. One least squares fit to
the number of discontinuities which rotate fields gave
a decreasing frequency proportional to #~128%0:35 [Be.
hannon, 1978], and most of this decrease is due to RDs.
More RDs are observed in high-speed solar wind [e.g.,
Neugebauer, 1992]. Beyond 1 AU, Tsurutani and Smith
[1979] and Tsurutani and Ho [1999] find that the ob-
served numbers of RDs per hour continue to decrease.

How is this decrease to be explained if RDs are sta-
ble against dispersion? Observations of RDs are always
conservative and so underestimate the actual number.
For instance, RDs with normals nearly perpendicular
to the spacecraft or field rotations less than a certain
amount are not counted. These selection effects proba-
bly occur equally at all 7. A selection effect which could
spuriously give a decrease of RDs with r can arise from
biases toward narrow RD widths [e.g., Tsurutani and
Smith, 1979; Tsurutani and Ho, 1999]. RD widths in-
crease with r and are proportional to the local thermal
proton gyroradius or ¢/wp;. However, within 1 AU, dis-
continuity widths are preferentially small [see Lepping
and Behannon, 1986, Figure 11] so that few RDs would
be lost in this way.

Through simulations, we have associated the evolu-
tion of RDs with propagation through a medium which
varies across field lines. Outside of reconnection, the
only other study of RDs in such nonuniform media is
given by Neubauer [1976]. He treats the nonuniform so-
lar wind as a set of uniform and contiguous flux tubes
le.g., Hollweg, 1982a]. The flux tubes are held in force
balance by tangential discontinuities (TDs), which are
static discontinuities with zero normal magnetic field.
The interaction of RDs with TDs was determined using
Reimann solutions of the MHD equations. The interac-
tions can cause RDs to radiate MHD wave modes from
where their edges are in contact with TDs. Over time,
this can diminish the extent of the RD and cause plasma
heating. Because this process is limited to the edges of
the RD, the effects appear to be small.

In high-speed streams, TDs do not occur as fre-
quently as RDs, especially near the Sun. Smooth and
continuous variations, even between TDs, are more of-
ten observed so that models confining all gradients to
discontinuities are not completely accurate.

Geometric effects in an expanding solar wind have
been cited as a possible cause of the decrease [e.g., Lep-
ping and Behannon, 1986]. We conclude that this is
not possible. In Appendix B, we show that the product
nrd0rd, Where n,.; number of RDs per unit volume and
orq 1s the average area of a RD projected in the radial
direction, must decrease with r to account for obser-
vations. Purely geometric effects give constant n,40vq4.
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Thus RDs dissipate entirely or lose part of their area, or
RDs undergo some time dependent process which ren-
ders them undetectable for increasing amounts of time
with increasing r. Dissipation is the simpler way to
explain a monotonic decrease in RD numbers.

We also show that refraction alone in a medium where
the Alfvén speed varies across field lines would actually
give increasing n,40,q after some intermediate travel
time from the Sun. Resonant transfer is a candiate to
explain the decrease since it can dissipate some RDs.
However, since it does not dissipate all of them, we find
that it has some disadvantages in explaining the con-
tinual and monotonic decrease of RD numbers with in-
creasing 7. Another possibility is that waves and imbed-
ded RDs propagate through a nearly random medium
where ¢4 varies in all directions. This random medium
may also be due to turbulent wave interactions. Travel
through this medium might continually “attentuate”
coherent structures, such as RDs.

Details of RD evolution can be found in Appendix B.

4.4. Proton Heating

Simulations show that resonant transfer among large-
amplitude waves containing imbedded RDs can heat
protons across large regions and not just on resonant
field lines. RDs disrupted by resonant transfer become
sources of large-k fluctuations which can pitch angle
scatter protons and heat them. This process is also ac-
companied by a cascade due to wave steepening which
provides more energy to the large-k fluctuations than
can be provided by the spontaneous dispersion of the
RDs at any one time. It is this cascade and the large
value of T,; in the solar wind which can sustain the
heating for a long period which makes this process of
interest.

In section 4.4.1, we briefly discuss the estimated
amount of proton heating which could occur between
0.3 and 1 AU if resonant transfer is operating relatively
efficiently. Section 4.4.2 examines how waves and par-
ticles are likely to interact when a cascade operates so
as to produce obliquely propagating waves. We obtain
an important inferrence about the nature of wave and
particle interactions in the solar wind. Section 4.4.3
discusses how RDs produced in the solar chromosphere
could deliver ion cyclotron waves to the corona which
could then provide ion heating.

4.4.1. Solar wind proton heating rate. In the
solar wind, protons show perpendicular heating which
increases the magnetic moment by a factor of 2 to 3
between 0.3 and 1 AU [e.g., Marsch et al., 1983]. Heat-
ing continues at larger distances [e.g., Matthaeus et al.,
1999a]. At 0.3 AU, core temperatures are particularly
anisotropic [e.g., Marsch et al., 1982]. This is often at-
tributed to cyclotron resonant heating.

Resonant transfer results in dissipation of wave en-
ergy and proton heating. In Appendix C, we estimate
the rate of heating from resonant transfer between 0.3
and 1 AU. We assume that there are purely outgoing
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Alfvén waves in a spherically expanding solar wind and
employ a WKB analysis for wave intensities alone. We
find that the magnetic moment could be increased by
10% by 1 AU. This is a significant increase but far
smaller than the observed 100-200% increases. This
shows that other sources of heating predominate.

4.4.2. Wave-particle interactions. The cascade
and dissipation of wave energy seen in simulations does
fit some observed properties of the high-frequency por-
tion of the power spectrum of Alfvénic fluctuations
where dissipation is expected to occur. It does not
match the observed spectral index because steepening
governs this cascade.

Leamon et al. [1998a, 1998b; 1999] have used Wind
magnetic field data in the high-frequency range and con-
cluded that waves propagate more oblique than parallel.
This matches our simulation results because resonant
transfer requires oblique wave interactions. Our sim-
ulations show that oblique waves at large-k result in
second-order Fermi acceleration because particles can
then interact with several waves at once. Protons can
also interact with the associated compressions of the
oblique wave through Landau and transit time damp-
ing. We expect these interactions to occur regardless
of the exact nature of the cascade whenever oblique
waves predominate in the dissipation range. These in-
teractions and the resultant heating differ substantially
from the direct cyclotron acceleration of protons due to
parallel propagating waves.

Heinemann [1999] proposed that solar wind ions are
heated by first-order Fermi acceleration, which is the re-
flection of ions from sources moving in opposite direc-
tions, near steepened Alfvénic wavefronts with thick-
nesses nearly equal to the proton gyroradius. In the
simulations this process is not of importance because
RDs do not attain such small scales nor do we have
Alfvén waves traveling in opposite directions to give
multiple reflections.

In addition to protons, alpha particles are an impor-
tant secondary constituent of the solar wind plasma.
These could also be heated in association with waves
and imbedded RDs and differently from protons de-
pending on how fast they stream along Bg. We are
currently studying their behavior and will not pursue
this here.

4.4.3. Heating in the corona and chromo-
sphere. The dissipation of imbedded RDs and waves
from resonant transfer is strongly dependent on the
presence of large-amplitude waves. This would make
this process irrelevant to the heating which occurs in
the corona near the Sun because wave amplitudes are
small and RDs should not be generated. However, there
is another possible role for the RD in the coronal heat-
ing which we outline below.

The chromosphere is a place where Alfvén waves
could generate imbedded RDs. In the chromosphere,
Alfvén waves can attain large wave amplitudes (~ By)
le.g., Hollweg, 1978, 1982b]. Hollweg [1982b] has consid-
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ered the propagation of linearly polarized Alfvén waves
along a vertical Bg and in a vertically stratified chromo-
sphere. These waves steepen into shocks and heat the
medium. Because of the wave polarization and prop-
agation parallel to By, RDs did not develop when the
waves steepened, and so dissipation of much of the wave
into heat was found.

In oblique directions, imbedded RDs would be ex-
pected to develop. Heating of ions would become dif-
ficult beyond an initial steepening period if these RDs
become stable against dispersion and do not dissipate
due to background variations in the chromosphere.

Some RDs may reach the corona intact. Under coro-
nal conditions the wave amplitude normalized to By
is very small. The ineffectiveness of wave steepening
for such small-amplitude waves might cause the RDs
to disperse and breakup at some point in the corona,
perhaps near its base. Some of these waves would be
ion cyclotron waves which would propagate until they
resonantly heat ions and dissipate.

The significant presence of ion cyclotron waves and
kinetic processes in the corona is inferred from recent
observations by the Solar and Heliospheric Observatory
(SOHO). In the corona, ions are often observed to be
much hotter than electrons and the heavy ions, and pos-
sibly the protons, have larger perpendicular than par-
allel temperatures [e.g., Kohl et al., 1998; Dodero et al.,
1998]. (An alternative proposal involving shock heating
has been offerred by Lee and Wu [2000].)

RDs might be a source of ion cyclotron waves in the
corona whose importance is not yet determined. Cur-
rently, the majority of ion cyclotron waves in the corona
are expected to come from local turbulent cascades [e.g.,
Hollweg, 1986, 2000b; Cramner, 1999], and from recon-
nection sites near the coronal base [e.g., Tu and Marsch,
1997; Ruzmaikin and Berger, 1998]

Since the RDs are likely to have oblique normals, the
dispersive spreading of RDs would yield ion cyclotron
waves which also propagate obliquely. These oblique
waves are compressional and would contribute to the
density spectrum detected by interplanetary scintilla-
tions [e.g., Hollweg, 2000a]. Faraday rotation would
also occur [e.g., Spangler and Mancuso, 2000]. These
observations could test whether the ion cyclotron waves
which are mainly repsonsible for coronal heating propa-
gate parallel or oblique. This would further support or

eliminate sources, such as RDs, which generate mostly
oblique waves.

4.5. Kinetic Alfvén Waves

Starting from the average wavenumbers of Alfvénic
fluctuations, it would take far too long to reach k; ~
¢/wp; via refraction. Instead, one must rely on inter-
actions to cascade wave power to these large wavenum-
bers. For instance, if we want to refract to ¢/wy; ~ 100
km at 1 AU where dk; = 0.0628 km™! over t = 10
hours, then using éc4 = 1.5 km/s and assuming that
ky =~ 2m/L, we find that L = 2324 km or about 23
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¢/wpi. Only by starting at such small wavelengths could
a conversion to a KAW be possible via refraction from
generated PBSs.

5. Summary and Conclusions

In a compressible plasma an expansion of the MHD
equations in wave amplitude shows that first-order
Alfvén waves with the same sign of k) can generate
second-order PBSs in the perpendicular direction. This
introduces variations in the Alfvén speed which can
lead at higher orders to wave refraction where k) re-
mains constant and & increases for long enough times.
When the first-order wave also has a magnetic fluctu-
ation component along the direction in which the PBS
varies, a resonant transfer of energy across field lines
can occur. This transfer is always possible when Bg
lies outside the plane of interaction between wave vec-
tors and is inherently a process which involves oblique
waves. It can produce KAWSs near resonant field lines.

As a result of the generated PBSs, no exact equi-
librium is generally possible even when all the Alfvén
waves have the same sign of k). (An equilibrium would
exist in an incompressible plasma because the second-
order PBS has zero amplitude and balance is main-
tained by a mechanical pressure.) The background
fields and plasma will generally vary on the scales of
the Alfvén waves.

Simulation results of large-amplitude Alfvén wave
evolution shows that they tend to steepen and gener-
ate imbedded RDs. They also generate PBSs, and so
refraction and resonant transfer occur. However, uniike
small-amplitude waves, KAWs do not form and wide
spread dissipation of wave energy occurs.

Through resonant transfer and refraction, some imbed-
ded RDs can be significantly dissipated and effectively
removed in regions where wave energy is mostly trans-
ported away. RDs on field lines where little transfer
occurs remain intact. As these RDs refract, they are
disrupted and emit dispersive and compressional fluctu-
ations which propagate obliquely. This dispersion coun-
teracts the tendency of refracting RDs to approach very
small widths.

Protons are heated by these processes through pitch
angle scattering from large-k waves moving in differ-
ent directions. This is second-order Fermi accelera-
tion. Additional heating comes from Landau and tran-
sit time damping of the wave compressional component.
Sustained heating of protons occurs because resonant
transfer initiates a cascade governed by wave steepen-
ing which drives energy into the large-k and -k fluc-
tuations which then scatter the protons.

Resonant transfer is a candidate for explaining why
RDs occur less frequently with increasing distance in
the solar wind. Essentially, it would significantly dissi-
pate those waves and imbedded RDs subjected to en-
ergy transport across field lines. This process dissipates
only some RDs. Thus it has the disadvantage that it
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may not be able to to account for the observed mono-
tonic decrease in RD numbers with increasing distance
from the Sun wherein all RDs must eventually be dis-
sipated. This disadvantage might be overcome if waves
and RDs propagate in a random medium.

We have estimated the amount of proton heating
which might occur in association with resonant transfer
due to generated PBSs. We find that it might account
for a marginally significant amount (5-10%) of the ob-
served heating between 0.3 and 1 AU.

The manner in which the protons are heated in the
simulations could occur in the solar wind. Leamon et
al. [1998a] find that waves are more obliquely propa-
gating than parallel in the range of wavenumbers where
dissipation is expected. Since oblique waves can travel
in different directions, we can surmise that heating from
second-order Fermi acceleration must occur regardless
of how the energy reached the dissipation range. These
waves also have associated compressions which can heat
protons through Landau and transit time damping.

There is a possible role for RDs in coronal heat-
ing. Imbedded RDs could be generated in the chromo-
sphere, where Alfvén waves can have large amplitudes
and propagate into the corona. In the corona, wave am-
plitudes are small, and the nonlinear processes seen in
simulations would not occur. Instead, the RDs might
simply disperse because nonlinear steepening is unable
to maintain balance. This could provide a source of ion
cyclotron waves which could then contribute heat to the
corona.

Appendix A: Small-Amplitude
Expansions and Solutions

The MHD equations are expanded to order n. The
magnetic field B, bulk velocity V,,, and density p, as
functions of time ¢ and position are given by

dpn -
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where these are the continuity, momentum, and in-
duction equations, respectively. We have adopted a
polytropic equation of state for the pressure P, where
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OP/dx = c29p/0x, c¢s = (yPo/po)'/? is the sound
speed, and v is the specific heat ratio. The back-
ground magnetic field By and pg are space constants
and Vy = 0. The first-order solutions are a set of Alfvén
waves with the same sign of &).

To show that the driven solutions give constant B in
oblique but not perpendicular directions, we work by in-
duction. First, p; = ps = 0. The generalized Reynolds
stress at third order is then (By - V)Bay/4m — po(V; -
V)Vs+ (Bs - V)By /47 — po(V2 - V)V, These mag-
netic and velocity stresses cancel, and the only remain-
ing driver comes from —VB?/8r. Partial differential
equations at third order can be derived which couple
p3 and Bg) for each Fourier component of the driver
D3 = 2B; - By. As for (23) and (24) in the work of
Vasquez and Hollweg [1999], we can write these equa-
tions in k space as

(92/)3 9 k2D3k BOk2BSI|
k2 - _
ot? AR 8m 4w (A4)
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S Tk By = ——=f = = (A5)
B Byg k‘iDg,k
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where Dgy, = (D3 — (Ds))k is the Fourier component of
the driver. (Note that ¢ and c% are the background val-
ues of the sound speed and Alfvén speed, respectively.)
Since these equations have an equivalent form with the
second-order ones, we know that the driven solution will
give B constant to third order and ps = 0. Repeating
this process at fourth order, we get equations of similar
form. By induction, p, = 0 for n > 1, and By is given
by (2).

A simplified solution is obtained if the first-order fluc-
tuations are polarized along a single axis. Then, Bj is
orthogonal to Bj, so that the driven term at third or-
der due to By - By vanishes, and so there are no driven
fluctuations at third order (i.e., Bs = 0). At succes-
sively higher orders, we find B; is always orthogonal
to higher-order magnetic fluctuations. This combined
with the vanishing of odd lower-order fluctuations leads
by induction to the conclusion that only even powers of
B,, for n > 2 are nonzero.

When there is a single Alfvén wave at first order,
our solutions predict a constant-B wave at all orders.
Barnes and Hollweg [1974] found an exact constant-
B solution for the case of a single first-order Alfvén
wave with a sinusoidal waveform. We let the first-
order Alfvén wave be polarized in the z direction, and
let B, = Acos¢, where ¢ = kyx + kyy — calks|t.
The driven magnetic field B, lies in the zy plane with
Bo = Bosx and is perpendicular to k so that B, =
Byx — ki By [kyy. The magnitude of B, can be written

as

=+/C?% — A2 cos? ¢ — By,
where Bop, = By - B,
netic intensity.

(A6)

/Bp and C' is a constant mag-
Since we always solve for the par-
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allel component B,, we can relate this to B, using
Bp = (1+k2/k2)=1/2B,. If (A6) is expanded in powers
of A, it is clearly an even power series, as is expected.
The value of C is unspecified, and Barnes and Hollweg
determined its value by root finding and numerical in-
tegration. Vasquez and Hollweg [1996a] expressed C' in
terms of an elliptical integral. A power series for C?
can be written using < D, > and gives

A? At

e

2 _ n2
=Bt 5+ 5amy

(A7)
Convergence is rapid for A/ By, < 1, and good accuracy
is achieved with only a few terms.

In the perpendicular direction, wave-wave or PBS-
PBS interactions continue to give driven structures which
satisfy pressure balance at higher orders.

At third order in (A1)-(A3) the interaction of a first-
order Alfvén wave and a second-order PBS which has
finite Bas(y, z) and pa(y, z) would give

0
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First, we consider the case where the PBS varies only
in the y direction and By lies along the z axis. If the
Alfvén wave is polarized along the z axis, then we can
derive (3)-(4). The equations are secular and can be
solved as given in section 2.2. The solution shows that
the Alfvén wave undergoes only refraction.

The general case has the PBS varying both in y and
z, and/or an Alfvén wave with at least one fluctuation
component in a direction of variation. One can take the
Fourier transform in space of (A8)-(A10) and then the
Laplace transform in time. Secularity can arise only at
the Alfvén pole of the Laplace transform (i.e., s? + w?,
where s? is the Laplace transform of §2/8t? for van-
ishing initial conditions and w? = cikﬁ). Secularity
is avoided at first by obtaining two coupled equations
for p3 and B3, = Bg||, using a procedure outlined by
Vasquez and Hollweg [1999] for second order. The trans-
formed quantities, denoted by p3 and Bg", satisfy

. R By - D
shy = —clkps = TR By + 5 (A1])
. B A .
By = ——pox c3kdps — c4k* By, (A12)
0

where D/(s? 4+ w?) is the Laplace and Fourier trans-
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form of the driver term (B; - V)Bg/4w. These equa-
tions can be solved individually for the different Fourier
components of the driver which come from the sum and
difference of the wave and PBS wave vectors. The ho-
mogeneous solutions belong to magnetosonic modes and
so are not secular with the driver. The driven solution
has the following form:

-1 D
p3 = —— Al13
ps cikﬁ s2 4+ w? (A13)
~ .B()wc2 f)
B = S - Al4
3| Pochkﬁ 82 +w2 ( )

The inverse transforms of (A13) and (A1l4) give a com-
pressive wave which propagates at the speed of an
Alfvén wave. The original incompressible Alfvén wave
has now acquired a weak compressive component in the
nonuniform medium. This third-order wave has the po-
larization of a magnetosonic wave, and the rest of its
field and velocity components can solved using this po-
larization [ Vasquez and Hollweg, 1999].

The drivers in (A9) and (A10) for Vay, Va,, Bsy, and
B3, are not satisfied by the solutions from the mag-
netosonic part. This leaves homogeneous Alfvén waves
and drivers with the same frequency. The secular part
of these equations can handled as in section 2.2. Equa-
tions can be reduced to two depending separately on
B3y, and Bs, which give refraction. Resonant transfer
must also arise in this situation. This can deduced as
in section 2.2.2 through the coupling between B, and
B, imposed by V-B = 0.

As n — oo, we would expect our analysis to lead
to an infinite number of Fourier components from the
interaction of a wave and a PBS. These are not new
Alfvén waves. Instead, they represent deviations from
the plane-wave solutions at first order due to refraction
and resonant transfer. The additional Fourier compo-
nents describe the rippling of the wave front and the
variation of amplitude along the front. Refraction and
resonant transfer are linear wave processes. This mo-
tivates finding a more compact presentation of this be-
havior which does not Fourier transform in the perpen-
dicular directions in which the PBSs vary.

The Laplace transform satisfies causality by means
of a step or Heaviside function which is zero for ¢t < 0
and unity for ¢ > 0. This function multiplies all so-
lutions of the transformed equations. As a result, the
driven and homogeneous solutions exist even at ¢ = 0.
Of course, the exact nonlinear solutions would have to
generate these over a period of time. However, for small
amplitudes the asymptotics is such that a good enough
solution can be developed with a sum of driven and ho-
mogeneous solutions existing for ¢t > 0. This shows that
we could generate a new expansion of the MHD equa-
tions by treating the PBS solutions as if they existed
initially and at zeroth order. We could similarly take
the exact constant-B wave solutions and promote them
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up to zeroth-order and examine how nonuniformity in-
fluences evolution. However, this situation has not been
examined in previous work. Instead, wave fluctuations
are expanded in wave amplitude. The first-order equa-
tions have been solved and analyzed.

We can generate a set of first-order equations simi-
lar to those analyzed by Hollweg and Yang [1988], who
examined PBSs varying in one direction only. For our
case, we have

dp
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Equations (A15)-(A17) are linear but have nonconstant
coefficients due to variations of pg and By, X in the y di-
rection. These equations possess solutions of the form
et(kemtk.2=wt) which can be used to transform the equa-
tions to a set of ordinary differential equations in y.
These will be equivalent to (8), (9), and (15) of Holl-
weg and Yang [1988], except that they use k, = 0 and
Bg, # 0. Following the analysis of Hollweg and Yang
[1988], the ordinary differential equations can be shown
to have singular points on resonant field lines. These are
true resonances. With increasing time the wave ampli-
tude will become infinite on these lines. Physics outside
of ideal MHD must be considered to understand the ul-
timate outcome of wave evolution along resonant field
lines.

The sonic Mach number expansions of Bhattacharjee
et al. [1998, 1999] study the role of nonuniformities on
nonlinear Alfvén waves. However, they start with two
assumptions which are not justified dynamically. First,
they include nonuniformities at zeroth order as an initial
condition which can be prescribed without reference to
waves. Second, they assume that ky < ky for all fluc-
tuations. Our analysis gives a dynamic justification for
these assumptions. First, we have shown that nonlinear
Alfvén waves in an initially uniform medium will gen-
erate a nonuniform one. Second, wave vectors evolve
such that k|| remains constant but k, increases without
limit at long times (i.e., t > T¢q).

Appendix B: RD Normals and
Occurrence Rates

In this appendix, we examine the theoretical princi-
ples which underlie the behavior of RD normals and
occurrence frequency in nonuniform solar wind. These
results should prove useful in further statistical studies
of solar wind RDs and in theoretical studies.
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B.1. RD Normals

For waves and imbedded RDs in a radially expanding
solar wind, the wave vectors and normals should tend
to the radial direction. The observed distribution of
RD normals near 1 AU shows that they are scattered
in nearly all directions around By [e.g., Smith, 1973].
This indicates refraction due to gradients of the Alfvén
speed across the magnetic field lines. Generated PBSs
can contribute to this effect.

Nearly field-aligned RD normals are as numerous as
ones in other directions. The lack of a strong clustering
of normals in the perpendicular direction suggests that
not many 7, periods have occurred since their forma-
tion, which is consistent with the value of 7} calculated
in section 4.1. Thus, near 1 AU, we have an intermedi-
ate situation, depicted in Figure 1, where some initially
oblique normals can become more field aligned. This in-
termediate situation can be prolonged if the wave speed
gradients are more random in distribution and not lim-
ited to the perpendicular direction.

B.2. Geometric Effects on RD Occurrence Rates

If RDs are isolated phase surfaces, one might expect
that the expanding solar wind would drive them further
apart. A single spacecraft may then have a lower prob-
ability of detecting RDs with increasing r. We call this
the fragmentation hypothesis.

We assume that there are RDs imbedded in an Alfvén
wave separated from one another by one half of the
wavelength of the Alfvén wave. They have continuous
phase surfaces at some distance near the Sun and span
a number of field lines. In a uniform solar wind their
surfaces would remain intact and always span the same
number of field lines. Without gaps in the phase sur-
faces we would expect that these RDs to have the high-
est probability of detection by a single spacecraft at all
7.

Now consider that these RDs span a number of flux
tubes bounded by TDs. Each flux tube is uniform
within but can differ from another tube. These RD
phase surfaces can be reduced to a number of isolated
fragments because the speed of convection V, by the
solar wind and/or speed of propagation c4 can vary be-
tween adjacent flux tubes or the flux tubes may have
different path lengths if they are not parallel to one an-
other. Once some space opens between the fragments,
a single spacecraft would have less chance of detecting
RDs.

This approach seems to justify the hypothesis that
geometric effects of solar wind expansion lead to lower
probabilities of detection. However, the hypothesis is
flawed. If one actually followed the progress of these
fragments, one could show that the probability of de-
tection actually fluctuates with increasing r and does
not decrease monotonically so as to match observed RD
behavior. In fact, it is possible that the fragments from
different initial phase surfaces could be combined into
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a phase surface at some r which has the same area as
one of the original RDs.

In order to do this correctly, one cannot start with
continuous phase surfaces. One should assume that the
RDs are a set of isolated fragments at the starting dis-
tance. Over a statistical ensemble we would expect that
as many RDs along the TD boundaries are approaching
one another as are receding. We can then determine the
occurrence frequency vrq as

Vrd = Nrg0rd(Vsw + caBg - 1). (B1)

In (Bl), n,q is the number of RDs per unit volume,
or4 1s the typical area of a RD projected into the radial
direction, and the terms in parenthesis are the mean
radial speed that the RDs pass the spacecraft assuming
that all RDs travel away from the Sun. This frequency
is calculated in the same manner as the collision fre-
quency of particles.

With increasing » the mean radial speed can decrease
because c4 decreases. However, cq4 < Vi for r > 0.3
AU, and this effect is small compared to the observed
decrease of v.4. Thus significant changes in v,4 must
come from the product n,q4o.4.

If we assume that RDs remain intact at all times,
then n,4 varies only with respect to a unit volume. In
the solar wind, expansion causes the occupied volume
of RDs to increase as r2. Hence nyq4 x r~2. Assuming
that the RD normals are isotropically distributed, as is
observed, 0,4  r?. This occurs because Alfvén waves
and imbedded RDs always span the same number of
field lines at all » within a uniform flux tube. The cross-
sectional area of a tube in the radial direction expands
as 72, and so it follows that RDs will behave similarly.
Thus n,40,4 does not vary with r.

In the solar wind we cannot simply assume that we
are losing RDs imbedded in Alfvén waves, as if they
were leaves scattered in a breeze. The actual geometric
effect of the expanding solar wind is to keep vy.q nearly
constant with r.

B.3.
Alone

Imbedded RDs Evolving By Refraction

Figure 1 shows the refraction of a phase front. With
increasing time, one can infer from Figure 1 that the
total length (say |£|) of the phase lines grows with time
everywhere when ¢ > T;,. The length is a constant only
in a direction along By (i.e., |€- Bgl).

We can relate the length of the phase lines in Figure
1 to the area o,q. After sufficient time (¢ > T.,), RD
normals begin refracting to more oblique directions, and
orq would increase in directions other than along By.
In the solar wind, observations are made in the radial
direction which differs from the direction of By at most
distances from the Sun. An increase of 0,4 with time
and so with distance from the Sun without the removal
of some RDs would increase the probability of a detec-
tion by a spacecraft. This is contrary to observations.

Refraction causes the width of a RD to decrease as
its normal turns oblique, due to increasing k,. Far
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from the Sun, one would expect to observe preferen-
tially thinner RDs with increasing distance, which is
not seen. Wave dispersion can be expected to oppose
this behavior, and simulation results show that it coun-
teracts this tendency.

B.4. Evolving by Resonant Transfer and Refrac-
tion

Because resonant transfer can dissipate RDs, it is a
candidate for-explaining the disappearance of RDs in
the solar wind. In the simulations, only some RDs can
be dissipated strongly. The remaining RDs refract into
oblique directions which in the solar wind would imply
an increasing occurrence rate. Moreover, simulation re-
sults do not rule out forming new RDs.

In order to recover the monotonical decrease v,4 with
increasing 7, two conditions must be satisfied. First,
waves and imbedded RDs which are stable or nearly
stable to resonant transfer at some distance r;, must
become significantly unstable at some 7o > 7. Second,
the dissipation rate of RDs must be greater than the
formation rate.

B.5. Evolution in a Random Medium

There is a potentially important aspect of RD behav-
ior not contained in our simulations. In the solar wind
a random medium could arise through which waves and
RDs must propagate. Wave speed variations would ex-
1st in all directions and not preferentially in the per-
perdicular direction. These variations could arise from
waves or from preexisting solar ones. Turbulence may
also account or contribute to a random medium.

In a random medium we could describe the evolu-
tion of RDs from the viewpoint of coherence. Close
to the Sun, steepening of Alfvénic fluctuations gives
rise to ordered structures, the RDs, which have coher-
ent phase surfaces with transverse dimensions far larger
than their widths. With increasing distance the prop-
agation through the random medium causes a loss of
coherence, and so RDs, and ultimately dissipation. A
decrease in wave coherence with » would also reduce the
chances that a new RD would form by wave steepen-
ing. We would expect this loss to obey a monotonically
decreasing function with distance traveled through the
random medium. As such, this gives an attractive but
unproven explanation for the observed behavior of v,4.

Appendix C: Estimate of Solar Wind
Proton Heating

In principle, we can say that the dissipation of any
RD should give heating to protons. The important but
difficult to answer question is how much heat would be
given to protons in the solar wind. This is difficult be-
cause the heating arises in a process dependent upon
the initial state. Our initial state of two interacting
Alfvén waves is certainly too simple for the solar wind.
Additionally, the compressions generated by the waves
are far larger than what is seen in the solar wind. Thus
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we will not use the heating rate determined from simu-
lations to estimate heating in the solar wind.

We will assume at all » that some wave energy is
subject to resonant transfer due to preexisting PBSs
which vary exactly in the perpendicular direction at all
7. On the basis of section 4.2 the rate of transfer is

taken to vary as r
Trt = Trto—, (Cl)
To
where T,:o = 19 hours = 68,400 s at r; = 0.3 AU.
We have derived (C1) using values from section 4.2 and
assuming that in (10) Acy4 is a space constant between
0.3 and 1 AU and L varies as 7/rg. Somewhat less
heating is obtained if T,; = 38 hours = 136,800 s is
taken to be a space constant.

We denote the sum of magnetic and kinetic wave en-
ergy by W. One half of the W is transferred in time
Tt. Assuming that the Alfvén waves and imbedded
RDs have a nearly isotropic distribution of wave vec-
tors, then nearly one half of the wave power is associ-
ated with a direction in which the Alfvén speed varies
across field lines. We further divide this by one half
to account for those waves which are not refracting to
larger angles with respect to Bg. Thus, at any given r,
only W/8 is involved in a transfer.

We assume that all transferred energy immediately
dissipates. The heating rate Q is then (W/8)/T,:. This
heating will be equipartitioned to all three temperature
components.

We will use the heating rate to compute the increase
of the proton magnetic moment pqq(= vtzhyl/QB) or
first adiabatic invariant between 0.3 and 1 AU. Assum-
ing bi-Maxwellian distributions, the magnetic moment
of a proton at the thermal speed vy, 1 = (2TJ_)1/2 nor-
malized to the Alfvén speed will be studied since it re-
lates directly to 7. Without heating, p,q = 7'./B
should be constant with r, and so it is a sensitive in-
dicator of heating processes in the solar wind. The av-
erage observed increase of j44 in the solar wind over
these distances is by factors of 2 or 3 [e.g., Marsch et
al., 1983].

At 0.3 AU the average perpendicular temperature is
105K, whereas the parallel temperature is one half of
this. The magnetic field intensity is near 48 n'T and the
proton number density is 50 cm™3. In dimensionless
units, 7 = 0.25, which means that the kinetic energy
is one half of the background magnetic energy at 0.3
AU, which is B2/2 = 0.5. We will assume a radial
background magnetic field B = Bo(r/ry)~2 and number
density n = ng(r/rg)~2. At ro = 0.3 AU we take By =
ng = 1 in our dimensionless units. If no heating occurs,
then Ty = 0.25(r/0.3)~2 with r given in AU. At 1 AU,
T, = 0.0225 in terms of the magnetic energy at 0.3 AU.
The value of p,q would be a constant equal to 0.25.

The addition of heating causes u to increase as

Q W3
24szTrto7°g ’

d/lad
dr = 3V,u,nB

(€2)
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where V,,, is the velocity of the solar wind in AU per
second and only one third of the total heating rate con-
tributes.

The variation of W with r is needed to solve (C2). As-
suming wavelengths are small compared to r and since
we neglect backward waves, we use a WKB analysis to
estimate W(r). For r > 0.3 AU, we can reasonably
take V,, to be a constant and neglect the contribu-
tion of the wave propagation speed to the energy flux
of Alfvén waves [e.g., Hollweg, 1981]. Then, at lowest
order, a WKB expansion shows that W can be found
from this energy flux equation

w__Q

dr = Vi r’

3W

(C3)

where the first term on the right-hand side is from the
total amount of wave energy dissipated due to proton
heating and the second term is the loss of wave energy
from the work they perform on the solar wind [e.g.,
Hollweg, 1981]. Without, dissipation W = Wy (r/rg)~3

At rg = 0.3 AU we assume that the Alfvén waves have
relative amplitudes of 0.5. Thus we take Wy = 0.25. We
take Vi = 500 km/s = 3.33 x 107% AU/s.

First, we solve for W from (C3) and find that W =
Wo(r/ro) (3+X) where x = 70/ (8VswTrio)- For the cho-
sen parameters, x = 0.165, and 18% of the energy dis-
sipates relative to =3 rate at 1 AU. Substituting the
solution for W into (C2) and integrating, we find
- ré X
1—

W()T’é( rl=X

24‘/8’£UT7‘t0

Had — Hadd = (04)
With pgq0 = 0.25 this gives p = 0.292 at » = 1, which
is a 17% increase.

The same amount of heat should occur in the parallel
direction. Heating of 7} is more complicated to study
due to heat fluxes. Marsch et al. [1983] report that the
second adiabatic invariant is approximately obeyed. In
a purely radial magnetic field, 7}, should then be con-
stant with » without dissipation. At 0.3 AU, T = 0.125
and the amount of heating estimated would change this
by 7% at r = 1.

In principle, purely outgoing Alfvén waves could heat
protons by a significant amount. We have attempted to
make assumptions so that the estimated heating is ap-
proximately the maximum expected. Since this heating
is far from the 100 to 200% increases of yg4 which are
observed, we conclude that resonant transfer from gen-
erated PBSs may only be marginally significant in the
solar wind. To increase its importance would require
having higher rates of refraction and resonant transfer
due to additional sources of nonuniformity in the solar
wind, which is possible.

The estimated heating also implicates that a process
of a different origin is the dominant heating mecha-
nism in the solar wind and is presumably due to a dif-
ferent type of cascade [e.g., Tu, 1988; Hollweg, 1986;
Matthaeus et al., 1999a).
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