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Abstract. A current-core flux-rope model for interplanetary magnetic clouds is presented which
explains their average thermodynamic and magnetic properties. It is assumed that during a
magnetic cloud's evolution, its total magnetic helicity, flux and mass are conserved and that the
dynamics of a cloud is governed by the Lorentz self-force acting on its curved portions. Total
magnetic energy and current in a magnetic cloud decrease monotonically as it elongates. Part of
this magnetic energy is lost in overcoming solar gravity, part goes into the bulk kinetic energy,
and the rest can be assumed to go into heating the plasma inside the cloud. Due to this
dissipation of magnetic energy as heat, the temperature of an expanding cloud goes through a
maximum before the cloud leaves the corona. The temperature may reach 1.7 x 106 K. Asa
cloud expands into interplanetary space, the total plasma beta asymptotically approaches a
constant value between 0.39 and 0.52, irrespective of its initial value. Apart from explaining the
heating and expansion of magnetic clouds, this model also provides expressions (scaling laws) for
the magnetic field strength, temperature, radius, density, asymmetry of the magnetic field strength
profile, slope of the plasma velocity profile inside clouds, and plasma beta, as functions of
distance from the Sun. These theoretical results are compared with cloud data obtained between
0.3 and 4 AU from the Sun. The comparisons show a good agreement between observation and

theory.

1. Introduction

A spacecraft observing the solar wind often encounters
regions of enhanced magnetic field strength, called
interplanetary magnetic clouds (IMCs), which show large and
smooth variations in all field components [Burlaga et al.,
1981; Klein and Burlaga, 1982; Burlaga et al., 1984; Burlaga,
1988]. The observed magnetic configuration in the IMCs is of
a helical flux-rope and is reasonably consistent with
cylindrically symmetric constant-o force-free solutions
[Burlaga, 1988; Lepping et al., 1990]. Earlier force-free
models were considered by Goldstein [1983] and Marubashi
[1986]. Field lines in IMCs apparently remain connected to
the Sun, even beyond a few AUs, although clouds with links
severed from the Sun are certainly imaginable. Burlaga et al.
[1990] argue that a disconnected toroidal configuration
[Ivanov et al., 1989] is unlikely, however, since IMC
signatures are not observed in pairs. Farrugia et al. [1991,
1993] related the slope of the velocity profile and the
asymmetry of the magnetic strength profile inside clouds to
their expansion. Chen [1989, 1990], Chen and Garren
[1993], and Garren and Chen [1994] have modeled an IMC as a
toroidally symmetric current loop which expands due to a
Lorentz self-force acting on the curved portion of the loop.
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Osherovich et al . [1993a, 1993c, 1995] considered self-
similar evolution of cylindrically symmetric flux-ropes under
various conditions. The pressure and density obtained by a
passing spacecraft at various locations in a magnetic cloud
seem to be related by a polytropic relationship with an index
of ~0.5 for electrons and ~1.2 for protons [Osherovich et al.,
1993b]. Interplanetary shock waves are often caused by fast
moving IMCs, and their interaction with Earth's
magnetosphere causes some of the largest geomagnetic storms
observed.

Observations generally support the view that erupting
filaments are the sources of IMCs [Wilson and Hildner, 1984,
1986; Hundhausen, 1988; Rust, 1994]. Statistical studies of
coronal mass ejections (CMEs), of which IMCs form a subset,
show them to be most commonly associated with filament
eruptions [Hundhausen, 1988]. In a recent study, Feynman
and Hundhausen [1994] argue that CMEs are associated with
disturbances in magnetic structures in the solar atmosphere,
which can cause destabilizations that, in turn, may or may not
lead to flares or filament eruptions. Rust and Kumar [1994a]
suggested that IMCs should be associated with erupting
filaments, as they share a common helical flux-rope structure.

In this paper, we develop a current-core helical flux-rope
model for IMCs to understand their evolution from the time
they leave the Sun to the time, about 4 days later, that they
reach Earth. We emphasize the global rather than the local
aspects. We use globally conserved quantities to gain
information about the evolution of various other quantities of
interest. In this respect, our approach is complimentary to the
MHD approach taken by Osherovich et al. [1993a, 1995] and
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Chen [1989, 1990]. An important feature of our model is its
use of the principle of conservation of magnetic helicity.
This principle, first applied to explain the behavior of
laboratory plasmas [Taylor, 1974], provides a powerful
constraint on IMC models. In particular, conservation of
magnetic helicity suggests that the magnetic energy stored in
an expanding plasma should decrease with expansion. A
heuristic justification for this can be obtained by realizing
that, dimensionally, magnetic helicity is proportional to
magnetic energy times a length scale, i.e.,
H,, o(lengthscale)xU,,. Therefore as the length scales
increase due to expansion, the magnetic energy must decrease
to keep the magnetic helicity constant.

The plan of the paper is the following: We first develop the
concept of a current-core flux-rope and apply it to a torus-
shaped cloud. Next, we consider how an expanding flux-rope
would evolve under the constraints of conservation of mass,
magnetic flux, and magnetic helicity. We find that the
magnetic energy decreases monotonically during the
expansion and that 58% to 78% of this lost energy could
possibly go into heating the IMC. This would explain the
observed high temperatures of IMCs at 1 AU, which are
otherwise very difficult to explain.

After discussing the dynamics and thermodynamics of
IMCs, we consider other observable effects of expansion,
namely, the variation of radius with distance from the Sun,
asymmetry of the magnetic field, and the velocity profile
inside a cloud. Finally, we compare the derived observables
with data obtained from spacecraft between 0.3 and 4 AU from
the Sun and briefly consider the implications of helicity
conservation in flux-ropes in other astrophysical contexts.

2. Current-Core Flux-ropes

A magnetic cloud is usually modeled as a flux-rope with the
cylindrically symmetric force-free Lundquist solution [Burlaga
et al., 1988; Lundquist, 1950] given by

B=10+0ByJ,(a por) +2ByJ o (a 1gr) - (1)

Here o is the proportionality constant between current
density and magnetic field j=aB and J, and J; are Bessel
functions of first kind of order 0 and 1 respectively. The flux-
rope length scale given by (a,uo)_l, which is the
characteristic length scale for radial variations in the magnetic
field.

The Lundquist solution has been used to describe relaxed
states in laboratory pinch experiments [Taylor, 1974, 1986].
In these experiments, the plasma is necessarily confined
within a conducting boundary situated at some fixed radius, and
currents may be present right up to the boundary. The
conducting boundary condition leads to determination of a set
of discrete values for . Therefore, in such situations all the
relevant length scales, including the current confinement scale
and the scale associated with (o /,zo)”1 are dependent on the
fixed boundary. Flux-ropes in astrophysical settings do not
possess a fixed conducting boundary, and therefore the length
scales involved need not depend upon conditions external to
the flux-rope.

In the usual flux-rope models, the boundary of the flux-rope
is taken to be where the total ambient pressure (magnetic
pressure plus plasma pressure) balances the total pressure
inside the flux-rope. Hence the length scale associated with
the radial extent of the flux-rope again seems to depend upon
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conditions external to the flux-rope. However, strictly
speaking, this pressure balance condition is valid only in
those cases where the curvature of field lines can be neglected.
When the field lines are strongly curved, as in the case of
helical field lines (e.g., cylindrical force-free field) or in the
case of circular field lines (e.g., curl-free field outside a
cylindrical current-carrying region), then the magnetic
tension of the field lines must be taken into account along
with the magnetic pressure. In the particular cases mentioned
above of force-free and curl-free configurations, the centrifugal
force due to magnetic pressure of the field lines exactly
balances the centripetal force due to tension in the inward
curved field lines.

Helical flux-ropes are necessarily current carrying. One
would expect that the currents flowing along a helical flux-
rope must be confined within some finite radius beyond which
a curl-free field with circular field lines would be present. We
will specify this radius and other intrinsic length scales.

Consider a twisted flux-rope that locally looks like a
cylindrical flux-rope and in which the magnetic field depends
upon radius 7 only through the combination Ar. Here A7} is
the characteristic length scale for radial variations in the
magnetic field. A second length scale of interest is the radius
rp within which the axial current is confined, because twisted
flux-ropes are necessarily current-carrying. The core current
creates a surrounding curl-free field that drops steadily as one
moves away from the flux-rope axis.

We can also consider a radius r >r,, where environmental
influences become prominent. Changes in environmental
conditions would influence the magnetic field, for example,
outside 7, but A1, rp and [ where [ is the length of the flux-
rope, would remain relatively unaffected.

Now we introduce the concept of a current-core flux-rope, in
which the three length scales A ry, and [, representing
radial variations in magnetic field, current confinement, and
length of the flux-rope, respectively, are insensitive to
changes in the environment and therefore are called intrinsic
scales. We will show that, for a current-core flux-rope
undergoing a quasi-static change in length while flux and
magnetic helicity are conserved, the three length scales
change in proportion:

Al erg~1. 2)

In other words, a current-core flux-rope evolves self-similarly.
During quasi-static evolution, the parameters 4,7, , and axial
magnetic field strength By, will depend on [, but the
functional form of the fields will be invariant .

Let us assume that the magnetic field and the vector
potential take the following form:

Forr<ry(l)

B(r;1) = By(Db™ (A7),
n_BoM) _in (3
A(r’l)__l(l) a " (AD)r),

where B,(l)=|B(0;])| and b™ and a™ are some dimensionless
vector functions that satisfy V, xa(x)=b(x). The curl is
taken with a dimensionless radial variable x=Ar. We have
also used the fact that the vector potential scales with length [
as By(l)/A(l). Similarly,

Forr2ry(l)
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B(r;1) = By (Db (A()7),

Bo() ;o “®

A= 20 ADn),

Conservation of axial flux v, gives

n(D
v, = _[ Bo()b (Ayr)2mrdr
r=0 (5)
_Byd

=20, 1R On®)=const.

Conservation of azimuthal flux yw, gives

) 1

vo= | [Bowbl(awr)draz
r=0 z=0 (6)
= Bzég s (AW 7o (D))= const.
Conservation of magnetic helicity H,, =§AOBdV gives
v
(Bo) 1
m = (AN (D))= t. ©)
(l(l))3 B(ADry (D)= cons

Where fi, f,and f; are some functions of A(/)ry(/) obtained
after the integrations. From (5), (6), and (7) we obtain

v, ve _ A(AORD)L(AORO®)

Hp, A0 (8)
= f4(A()ry (D)= const.

In general, f, is not a constant function of its argument,
therefore it can remain constant only if its argument remains
constant, i.e.,

A(Dry(D) = const. 9

From (5) and (9) we obtain

By~ (AD)* ~ (1) (10)

From (6), (9), and (10) we finally get what we set out to show

aw) "~ ~1, (11)

i.e.; the three relevant length scales are proportional to each
other; therefore a current-core flux-rope evolves self-
similarly. A cylindrically symmetric current-core flux-rope
model for solar filaments was presented by Rust and Kumar
[1994a]. Below we construct a toroidally symmetric current-
core flux-rope model of IMCs.

3. Magnetic Cloud as a Toroidal Flux-rope

Locally, IMCs appear cylindrically symmetric, but if they
connect back to the Sun, then globally, their structure should
be closer to a torus with tapering ends (Figure 1). Burlaga et
al. [1990], using data obtained on the same cloud from four
spacecraft, argued in favor of such a configuration. (Other
authors have advocated spheroidal or disconnected toroidal
geometries [Ivanov and Harshiladze, 1985; Ivanov et al.,
1989; Vandas et al., 1993].) The cylindrically symmetric
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Magnetic Cloud

Figure 1. Expected shape of a magnetic cloud.

model then is only a first-order description. For a second-
order description an IMC should be modeled as a large-aspect-
ratio toroidally symmetric current-core flux-rope that remains
connected to the Sun.

Chen [1989, 1990] and Chen and Garren [1993] developed
a dynamical model of IMCs as toroidal flux-ropes that remain
connected to the Sun. They included Lorentz stresses, pressure
gradient forces, and the drag of the ambient medium in their
force balance equation. They also assumed that no internal
current dissipation takes place and that the equation of state is
given by a polytropic law. With a polytropic index of 5/3
(adiabatic expansion), they obtained temperatures at 1 AU of a
few kelvins, while the observed temperatures are tens of
thousands of kelvins. Except for the temperature, most other
properties of IMCs computed with their model are in
reasonably good agreement with observations.

By assuming global conservation of magnetic helicity,
flux, and mass in IMCs, we find a good fit to IMC observables,
including temperature. We start with a model having as few
parameters as possible to explain the average observed
properties of IMCs. The use of global conservation laws will
allow us to express observable quantities in terms of the
distance of the apex of the flux-rope from the Sun. No
dynamical considerations are necessary to obtain these
scaling laws. In comparing derived physical quantities with
observations, we assume that an average over many clouds'
properties can be substituted for the properties of an average
cloud. This is necessary, since data on the behavior with time
of a single IMC are virtually nonexistent. Extant data describe
many IMCs observed by various spacecraft located at different
distances from the Sun. We assume these data correctly
describe the properties of an average IMC as a function of
distance from the Sun. Nevertheless, we do consider the
dynamics in section 5.

Note that global conservation of magnetic flux and mass
can also be incorporated in a theory in a local form by
converting the integral forms of conservation equations into
their differential forms. But the same cannot be done with
magnetic helicity, which is a truly global (topological)
quantity. This is evident from the explicit appearance of the
vector potential in the integral expression for magnetic
helicity, so that the helicity can be made gauge independent
only by ensuring the appropriate boundary conditions [Berger
and Field, 1984]. This dependence on boundary conditions is
what makes magnetic helicity a global topological quantity.

Magnetic helicity essentially measures the linkages of field
lines. Whether any two field lines are linked globally, or not,
can be determined unambiguously, but it is not possible to say
where the link is located. Thus helicity conservation can be
used unambiguously only in the global sense. For conditions
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under which a local magnetic helicity density can be defined,
see Berger and Field [1984].

We model an IMC as a large-aspect-ratio toroidally
symmetric current-core flux-rope with constant cross section.
We assume that it remains connected to the Sun and that,
inside, the current flows approximately parallel to the
magnetic field so that the Lundquist solution [Lundquist, 1950}
obtained from the condition j=aB is approximately
applicable. Use of the Lundquist solution does not mean that
clouds are "force-free" with vanishing Lorentz stresses jxB.
Lorentz stresses are needed to explain the expansion of clouds.
In section 5, on dynamics, we will show explicitly that an
angle of 3.4° between the currents and the fields inside a cloud
can provide the necessary force to drive a cloud's expansion.
However in the model, we assume that the currents and fields
are approximately parallel, and we use the Lundquist solution
even though the currents and fields are so large that even a
small angle between them is enough to drive the expansion of
the cloud.

Osherovich et al. [1993a] showed that a cylindrically
symmetric low-beta force-free flux-rope cannot expand
radially. It can only undergo radial oscillations. With a finite
beta, radial expansion becomes possible [Osherovich et al.,
1995], and if the flux-rope is curved, it experiences the so-
called Lorentz self-force [Chen, 1989; Chen and Garren, 1993;
Garren and Chen, 1994; Shafranov, 1966; Landau and Lifshitz,
1960].

Assume that currents flow approximately parallel to fields
inside the cloud and that a current-free solution holds outside:

j=—1—VXB=aB I'Sro, (12)
Ho

j=—1—VxB=0 r>rg, (13)
Ho

where we are using toroidally distorted cylindrical coordinates
(r,0,z) with z along the toroidal axis of the torus (Figure 2).
The curl-free field outside the boundary is similar to the field
due to a current-carrying ring, and it has no z component. In
the absence of current sheets at the boundary, the field
components are continuous, and we obtain a boundary
condition for the internal fields as B, =0 at the boundary. We
take the cylindrically symmetric Lundquist solution to be valid
in the interior, and for the exterior we use the solution for a
current-carrying ring. This simplification is valid only for
large-aspect-ratio torii (//ry >>1). Exact solutions for these

Figure 2. Magnetic cloud modeled as a torus.

KUMAR AND RUST: HELICITY CONSERVATION IN MAGNETIC CLOUDS

equations in toroidal geometries are not available. For a
second-order generalization of the Lundquist solution in
toroidal geometry, see Miller and Turner [1981].

3.1. Interior Solution

For r<r, we get

B= Bo(f'O+6H11(ay0r)+210(au0r)), (14)
where Jj and J; are Bessel functions of order 0 and 1
respectively and H = =1 determines the handedness (chirality)
of helical field lines. This is basically the Lundquist solution.
In the following we will assume H =+1 .

The condition that the z component of the field goes to zero
at the current confinement boundary gives

1s5)

This restricts the values of o ugry to be one of the zeroes of
jo, i.e.,

Jo(au0r0)=0.

ro = Xo (0 g) (16)

where x is a zero of J,. We find that 7, is linearly related to
the length scale (ocuo)'1 with a dimensionless multiplicative
constant xg. This is just (9) in a different form. In terms of
the dimensionless radial variable x=o uyr, we can write the
field as

B=Bo(£0+8J, (1) +2Jo(x)) x<x,. 17
The total axial flux of the flux-rope is given by
rD 2 B xu
v, =JBz(au0r)27zrdr= r 02 JJo(x)xdx. (18)
o (@po)” 5

If now the flux-rope were to undergo a quasi-static
homogeneous deformation, then By,ry,andec would change,
but the dimensionless number x,, being a zero of Jo, is not
going to change. Therefore the integral on the right-hand side
evaluates to a dimensionless constant kj,

27[Bo
(o pp)?
Similarly, the total z current is

] = 27$B0

z Otlloz

2z

ky. (19)

k. (20)

The vector potential inside the boundary can be taken as
A=-B_ (1)
oy

3.2. Exterior Solution

The field outside the boundary is curl-free. It is due to a ring
current flowing along the torus. The vector potential for this
external field can be written as

. B ~ B -
A=p—L 168 +®(4, -q). 22
apy  ap (40 -4) @2

Here spherical coordinates (p,®,®) are being used with the
geometry shown in Figure 2, and all quantities depend upon p
and © only. We have
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_2Boky a [(2 KK (k)- 2E(k)]

- (23)
apy K «/a +p? +2apsin®
where
k2 = 2apsin® 24)
a‘+p“+2apsin®@
and
q=-ﬁ—[1n(§‘i)-2}. (25)
a U b

K(k) and E(k) are complete elliptic integrals of the first and
second kind, respectively, and & is the dimensionless
constant encountered earlier. The magnetic field is

Isin@Ag) o1 dpAy)
20 p dp

=(‘ 1 +<i>o]. (26)
psin®@

It can be shown that in the limiting case of a large-aspect-ratio
toroidal flux-rope, the components of the magnetic field and
the vector potential are continuous across the boundary. The
continuity holds only in the limit of large aspect ratio. To
facilitate the algebra it is helpful to use Landen's
transformation [Lamb, 1993], pp. 237-240] to change
variables from (p,®) to (r,r;) ( see Figure 3). For a large-
aspect-ratio torus, the boundary of the torus is approached for
ry >>rj, and the variable r; takes up the role of radius in the
toroidally curved cylindrical coordinates used to describe fields

within the boundary.
The total magnetic energy of the flux-rope is given by

nlBo & (1 (Saj 1} n
#o o

where k; is a dimensionless constant described earlier and
I=2na is the length of the torus. The magnetic helicity of
the toroidal current-core flux-rope is given by

H, = jA-BdV = alu;lelde =%U,,, .

T Blav=2

(28a)

These formulas for magnetic energy and helicity are
approximate and are valid only in the limit of large aspect
ratio. Using (16) we can write the last equality in (28a) as:

H, =[&)r0 U (28b)
X0
i.e.,
H, <nU (28¢)

@ ='constant' plane

Figure 3. Geometry of Landen's transformation.
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where xq =2.405 is the first zero of Jy. (28b) and (28c) give,
within a constant factor, the magnetic helicity of the toroidal
flux-rope in terms of the radius of the flux-rope and its
magnetic energy. This is a concrete example of the point
made in the introduction that magnetic helicity is
proportional to the product of a length scale and the magnetic
energy, viz., H,, o (lengthscale)x Uy Therefore, as the flux-
rope expands, its magnetic energy must decrease to keep the
magnetic helicity constant. Later we will argue that part of
this lost magnetic energy goes into internal heating.

Using (28), (27), (19) and (16), we can write the magnetic

helicity as
2 1 l
'm *<W¥,~—| In| — [+constant |.
o i}

Conservation of axial flux and helicity during a quasi-static
change in length / of the flux-rope implies that the ratios I/r,
and afry, do not depend upon /. Inclusion of conservation of
azimuthal flux gives a condition similar to Equation (9).
Therefore, we will not use conservation of azimuthal flux for
the following. Then, energy and magnetic helicity can be
written as

(29)

2
Uy =20, (30)
a® 1y
and
_2mIB} b 31
™ (app)’

Equations (16), (19), (20), (30), and (31) are the main
results we will use in this paper. We will treat k; and kj,
which are dimensionless constants for current-core flux-ropes,
as unchanging with time.

4. Expanding Current-Core Flux-rope

The current-core flux-rope described in the previous section
has only three independent magnetic parameters: strength of
the axial field B, the parameter «, and the length I. The
cross-sectional radius, ry, of the current carrying part is given
in terms of o as xg(a #o) , where x, is a zero of Bessel
function Jy. To determine the state of the flux-rope as a
function of its length, we need impose only conservation of
axial magnetic flux, conservation of total magnetic helicity,
and conservation of mass. Conservation of azimuthal flux
gives a relation similar to (9), which we already have in (16).
For the simple flux-rope model for the magnetic clouds
considered in this paper, o uyr, becomes equal to a zero of
Bessel function Jo due to continuity of the axial component.
This condition is more precise than the condition obtained
from including the azimuthal flux conservation which gives
the condition that o ugry be a constant during the evolution.

The model of Chen [1989] and Chen and Garren [1993] also
conserved axial and azimuthal flux. The scaling laws obtained
with these models would have same asymptotic form as ours if
one were to use just axial and azimuthal flux conservation or
axial flux conservation along with helicity conservation. In
the case of laboratory experiments on relaxation in toroidal
pinch plasmas, the two invariants most often chosen are
magnetic helicity and axial flux [Taylor, 1986]. When a
plasma is confined by a conducting surface, the magnetic
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helicity H,,of a toroidal pinch is given by the product of the
axial and azimuthal fluxes ¥, and Yy as H, ~V¥, Vg.
Therefore the conservation of any two of theses quantities
implies conservation of the third. This might seem to imply
that conservation of helicity does not give anything new. But
in the general case, magnetic helicity proves to be a better
invariant than the fluxes. Equation (28), showing that energy
decreases with expansion while helicity is conserved, remains
valid even in cases where flux conservation cannot be used.
For example, in a spherical volume only magnetic helicity
remains a good invariant (see the discussion following
equation (6.1) in the article by Taylor [1986]).

Since conservation of magnetic helicity can be used even in
cases where flux conservation cannot, we will focus on the
relationship linking magnetic energy and cloud size through
magnetic helicity, even though for the particular model
considered in this paper, we might as well have used fluxes.

4.1.

Large-scale magnetic fields in a plasma with high electrical
conductivity are said to be frozen-in. In our case, this means
that the magnetic flux along the axis of a cloud remains
constant over time. If the starting length of the toroidal flux-
rope is taken to be Iy, then using (19), the flux at a different
length [ is given by

27:30(1)

Conservation of Magnetic Flux

27730(10)

5k = const. (32)
(a(l)uo)  (atlo) o)
Therefore
Bo(l) 30(102)_ (33)
a()? a(lp)
4.2. Conservation of Magnetic Helicity

Elsasser [1956] and Woltjer [1958] showed that magnetic
helicity
H, = J' AeBav (34)
v

is conserved in ideal MHD. However, since field lines do not
reconnect in ideal MHD, infinitely many other invariants
related to the helicity of individual field lines are possible.
Taylor [1974, 1986] conjectured that in the presence of some
resistivity, out of all ideal MHD magnetic helicity invariants,
only the total magnetic helicity would remain approximately
constant, i.e. magnetic helicity is a robust invariant of MHD
[Ruzmaikin and Akhmetiev, 1994]. If field lines cross a
boundary of the system, then a more appropriate gauge-
invariant helicity integral must be used [Berger and Field,
1984; Jensen and Chu, 1984; Finn and Antonsen, 1985].
However in our model, the helicity integral is evaluated over
the whole torus, and (34) is sufficient.

Berger [1984], using Schwarz's inequality, obtained

rigorous limits on magnetic helicity dissipation. Equation
(25) of Berger's paper is written below in SI units.
AH <2p0,[7(UF -UF)as, (35)

where n=(/,to o)_ly o is conductivity, U stands for energy,
and subscripts i and f denote initial and final, respectively.
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At is the time interval during which energy and helicity
dissipation are considered. We take this interval to be 4 days.
Using H; =(2/a;)U; and noting that most IMCs ori mate in
filament eruptions, we take 0.006<q; <0.06 Am™ 1 for
filaments [Rust and Kumar, 1994a]. For conduct1v1ty we use
the SI form of the exgressmn glven by Sturrock [1994], which

gives o=6x 107 ohm™  m~ Assuming on average
T=10°K, we obtain
AH 001, (36)
H;

Therefore, less than one tenth of a percent of the magnetic
helicity is lost during a cloud's passage from the Sun to Earth.
We conclude that, in the absence of any exchanges with the
Sun, the magnetic helicity of a cloud remains constant to a
very good approximation. On the other hand, we will find that
the magnetic energy dissipates with time, probably due to
small-scale turbulence. We will conclude that, at small scales,
an anomalous turbulent conductivity much smaller than the
ideal conductivity might be present.

Anomalous conductivity could possibly change the
magnetic helicity spectrum in IMCs. Frisch et al. [1975],
Matthaeus and Goldstein [1982], Matthaeus et al. [1982] and
Matthaeus and Montgomery [1980] have argued that in the
presence of MHD turbulence, an inverse cascade of magnetic
helicity might exist: as magnetic energy is transferred to
smaller and smaller scales, where dissipation is much more
efficient, magnetic helicity might be transferred to larger and
larger scales, where dissipation is inefficient. For discussion
of magnetic helicity in MHD turbulence with or without a
mean magnetic field present, see Matthaeus and Goldstein
[1982], Stribling et al. [1994], and Ghosh et al. [1995]. We
conclude that magnetic helicity might be approximately
conserved even in the presence of turbulence while magnetic
energy is efficiently dissipated. We assume that the magnetic
helicity in IMCs is conserved to a high degree.

4.3. Effect of Elongation: The Scaling Laws

With [; as the initial length of the flux-rope and [ as the
length at a subsequent time, using Equation (31), we get for
magnetic helicity

2 2
27530(1) 3lk - 27!.'80([0) ;0 k2 = const. (37)
(@) (et o)
Then, from (33) and (37), we get
Iy
By(h)= Bo(lo)[lT], (38)
and
a(l)=a(lo)(%)-) 39)
From (16) and (39) we obtain for the minor radius
n=r (10)[ ] (40)
)
and using
2ma(l)=1 41)
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we obtain for the major radius

a(l)=a(lo)[7l—}
0

For the total z current and total magnetic energy we use
(20), (30), (38) and (39) to obtain

(42)

LM=1, (10)(—’;!), 3)
and
U,()= Um(lo)( l%) (44)
Using conservation of mass we get
3
V=V 3] (45)
0
and
Iy
n(l)=n(ly) rak (46)

where V=7rr021 is the total volume and n is the number
density. Thermodynamic quantities are assumed to be averaged
over the volume of the flux-rope.

Many authors have given similar scaling laws, with
identical or different exponents, for the various quantities
discussed above. In particular, Osherovich et al. [1993c] used
a self-similar radial expansion for a cylindrically symmetric
MHD polytrope to obtain the field strength at the axis as
By ~ d™7 where d is the distance from the Sun and y is the
polytropic index. Osherovich et al. [1993a] argued that the
electron polytropic index, defined by them as the ratio of the
logarithm of the electron pressure to the logarithm of the
electron density measured at different points inside a cloud,
tends to be less than 1 inside the cloud and is typically close
to 1/2. For y=1/2 the scaling law of Osherovich et al.
[1993c] for axial field strength is identical to ours.

In section 2 it was shown that the three intrinsic length
scales associated with a flux-rope evolve in proportion. To
obtain this self-similar evolution, we used conservation of
axial flux, azimuthal flux, and magnetic helicity. In a flux-
rope model for which one of the three length scales is fixed a
priori (possibly in terms of the other two length scales), then
conservation of axial and azimuthal fluxes only might be
sufficient to define its evolution. However in the general case
one would need conservation of magnetic helicity. In our
model based on the Lundquist solution we argued that the
current confinement radius occurs at the first zero of the Bessel
function Jy. Actually, one does not require this to obtain the
scaling laws. Had we assumed that the current confinement
occurs within an arbitrary radius not necessarily equal to the
zero of Jy, we would still have obtained the same scaling
laws, provided that conservation of magnetic helicity and of
the fluxes were invoked. But conservation of flux alone does
not give enough constraints to obtain the scaling laws in this
more general case.
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4.4. Dissipation of Magnetic Energy

Total current 7, and total magnetic energy U, in our model
decrease inversely with length. Magnetic energy decrease in
solar filament eruptions has been discussed by Moore [1988].
We emphasize that the conservation of magnetic helicity
requires that the magnetic energy of an expanding flux-rope
must decrease with its expansion. Since, by assumption, no
energy is input from the Sun during the expansion, the lost
magnetic energy must appear in some other form. The
principle of helicity conservation does not tell us what forms
this lost energy might take. If magnetic forces are
responsible for driving the cloud's motion, then some of the
magnetic energy goes into overcoming solar gravity and some
goes into providing the bulk kinetic energy of motion. For
simplicity, we assume that other losses such as due to creation
shocks, accelerating particles, and drag of the ambient
medium, are negligible and that the rest of the available
magnetic energy goes into heating the plasma in the cloud.
This heating can be thought of as being due to an anomalous
resistivity. For the following development, we only need to
know that the magnetic energy decreases with increasing flux-
rope length. Knowledge of the exact mechanism of energy
dissipation is not necessary; nevertheless, a few comments on
the energy dissipation mechanism are in order.

Lepping et al. [1991] used the method of Matthaeus et al.
[1982] and Matthaeus and Goldstein [1982] to obtain power
spectra and helicity spectra of the magnetic field within a large
magnetic cloud [see also Burlaga et al. 1985]. They found that
all spectra show a strong wavenumber dependence of K—5/3,
especially toward the large wavenumber range, over more than
two decades. This is a characteristic of fully developed
inertial-range turbulence [Kolmogorov, 1941, 1962;
Kraichnan, 1965; Batchelor, 1970]. Even though the amount
of turbulence present at I AU is small, it might be a relic of
much stronger turbulence present during earlier phases of a
cloud's life as a violently erupting filament. Vainshtein et al.
[1993] mention that turbulent dissipation of the magnetic
field follows a chaotic arrangement of current sheets and
proceeds at a time-scale of several turnover times of a vortex.
The turnover time is the ratio of the size of the vortex to the
velocity. It is the shortest time-scale available. On the other
hand, laminar dissipation has a time-scale of the square root of
the magnetic Reynolds number times the turnover time, which
is much longer than the turbulent dissipation time-scale.
Therefore turbulent dissipation in IMCs must be much more
efficient than laminar dissipation.

Large-scale (small wavenumber) Fourier components of
magnetic fields in astronomical settings are preserved due to
low resistivity. However under continuous deformations that
maintain a quasi-static equilibrium, magnetic stresses will
spontaneously create small-scale (large wavenumber)
discontinuities in the field throughout the volume for almost
all field topologies [Parker, 1994]. Current sheets form with
these discontinuities, and rapid reconnections take place on
small scales. The large-scale quasi-static equilibrium
throughout the volume is not significantly disturbed.

In light of the above, we can say that even though the large-
scale structure of an IMC may be explained reasonably well
with a constant-o force-free model with no field
discontinuities or current sheets, at smaller scales
discontinuities and current sheets could cause magnetic energy
and net current to decrease with time. Their dissipation could
heat the cloud, as argued below.
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5. Dynamics

5.1. Lorentz Self-Force

Many authors have addressed the question of what propels
magnetic clouds (and the solar wind in general), but this
question has not yet been fully answered. In flux-ropes
carrying a net current, the so-called Lorentz self-force can act
on curved portions [Mouschovias and Poland, 1978; Anzer,
1978; Chen, 1989; Chen and Garren, 1993). Garren and Chen
[1994] studied the Lorentz self-force on a curved current loop
of arbitrary shape. They found that the self-force is strongest
where the radius of curvature is smallest and that the self-force
acting on a small portion of the flux-rope could be
approximated by the self-force on a torus-shaped current loop
with the condition that the major radius of the torus be equal to
the local radius of curvature. In the following, we will
consider the influence of the Lorentz self-force on the
dynamics of magnetic clouds in more detail.

From (20) and (27), the total magnetic energy stored in the
toroidal flux-rope described in the previous section is given
by

U, =212 a(ln[zsﬁ] - 1]. (47)
2 rO
Therefore, the effective self-inductance is
L=pg a[ln(g—aj— IJ. (48)
o

The Lorentz self-force per unit length acting radially outward
along the major radius is [see also Garren and Chen, 1994;
Shafranov , 1966; Landau and Lifshitz 19601)

2 2
fL=_zI ' OL _ Mo I~ ml 81112
4ma da 4m a Ty 2

Um
7ra2

(49)

where use has been made of the fact derived earlier that the
ratio of major radius to minor radius remains constant. Using
(44) and (49), we can write the self-force per unit length in
terms of initial magnetic energy U, and initial major radius
ap as

%

f1=Uno—%

50
2mwa G0

5.2. Lorentz Self-Force

Solution

and the Lundquist

To describe the magnetic field structure inside a cloud, we
relied on the Lundquist solution, for which all Lorentz stresses
vanish (jxB=0). But on the other hand, to describe the
dynamics of the magnetic cloud, we used the Lorentz self-
force. That implies that the Lorentz stresses do not vanish.
This apparent contradiction can be resolved by looking at the
conditions for approximate validity of the Lundquist solution.
The Lundquist solution was derived for the case in which the
current density is parallel to the magnetic field (j=aB),
which incidentally also implies the vanishing of the Lorentz
stresses. The Lundquist solution would still remain
approximately valid if the current density and the magnetic
field vectors were to make a small angle y with respect to
each other. However, if the current density and magnetic field
are both strong, then even a small angle between them can
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give rise to significant Lorentz stresses. In the case of solar
filaments, Rust and Kumar [1994a] showed that a y lying
between 0.36° degrees and 3.6° degrees is enough to support
the dense filament material against solar gravity. Therefore,
the Lundquist solution remains approximately valid even in
some non-force-free cases.

In a large-aspect-ratio toroidal flux-rope, even a small angle
X between the current density and the magnetic field is
sufficient to provide the needed Lorentz self-force. Using (50)
and (16) and |jxB|=|j||B|sin(x), we see that

sin(y)= ;7;—(%),

where xj =2.405 is the first zero of the Bessel function J,.
For a large-aspect-ratio torus we have (ry/l)<<l which
implies y <<1. For a typical magnetic cloud radius of 0.15
AU at 1 AU, we get x =3.6°, which is quite small.

(51)

5.3. Dynamical Model

An isolated toroidal current-carrying flux-rope will
experience a radially outward Lorentz self-force (Figure 4). If
any inward acting forces present are unable to balance the self-
force, then the loop will expand radially while the center of
mass remains stationary. In IMCs the center of mass
evidently experiences a force. Therefore the cloud dynamics is
more complicated than that in isolated toroidal current loops
in which the Lorentz self-force acts radially outward in all
directions.

Figure 5 shows a realistic geometry for an expanding flux-
rope near the Sun. Near the photospheric footprints, the field
lines are virtually straight. There is no Lorentz self-force
acting in this part. Also due to the high density and high
plasma beta of the photosphere, the submerged part of the
flux-rope can be assumed to be dynamically unaffected by the
Lorentz self-force. Therefore we need consider only the
Lorentz self-force acting on the upper portions of the flux-
rope.

In our dynamical flux-rope model (1) The global shape of
the flux-rope is still assumed to be approximately that of a
large-aspect-ratio torus, and (2) the total Lorentz self-force
acting on the center of mass is given by integrating the
vertical component of radially directed force f; over the top
portion of the flux-rope. The top portion can be described by
an effective toroidal angle 6, as shown in Figure 5. We get,
for the force acting on the center of mass,

Foym =2 fy, a sin(8,) (52)

\/

Figure 4. Lorentz self force on an isolated torus shaped flux-
rope acts radially outwards such that the net force on the center
of mass is zero.
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Figure 5. Lorentz self force on a solar flux-rope being
ejected from the Sun. The force is maximum on the leading
edge and is directed away from the Sun. Near the footpoints
attached to the Sun the flux-rope appears to be virtually
straight, which causes the Lorentz self force to vanish in the
lower parts of the flux-rope. In this case the center of mass
experiences a net force directed away from the Sun.

where a is the major radius. The case 6y =7 corresponds to
integrating over the whole flux-rope, and we see that Fey
vanishes in this case.

Now consider the motion of the center of mass M under the

influence of gravity and the Lorentz self-force. Newton's
second law gives
o a 20
ME(t) = (1=)Upo —25 = Ugo|—c5» (53)
m0 a(t)2 l Golz(t)2
where
=1-5000) 54
T
Consequently, the limits on s are
(l—iJSsSI (55)
b4
or
Smax =1 and sy =0.68. (56)
The initial gravitational potential energy is
MM
U GO0 = -G L (57)
20

and the distance of the center of mass from Sun center is
()= R, +a(r), (58)

where M; and R; are the mass and radius of the Sun,
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respectively. Using the identity (4)2 = 2J-’q' dq and the initial
condition Ugf‘o =0 we obtain the kineti¢ energy:

a Z
UXE - (1—s)U,,,0(1——:—J—|UG0|(1—7").

The speed of the center of mass becomes

1-s —R Z
Vem =Vescape\jﬂ_co(1_“zo__‘R—s]“( ‘70)» (60)
)

where Vegcape =2G M, [zg is the escape speed. The initial
gravitational beta Bgo =|Ugo|/Umo is the ratio of initial
gravitational energy and initial magnetic energy of the flux-
rope. Figure 6 shows the speed of the center of mass as a
function of the distance from the Sun for various values of
initial height. Consistent with observations, low-lying flux-
ropes accelerate faster and have larger final speeds. In
conjunction with equation (58), equation (53) can be thought
of as a differential equation for temporal evolution of the
major radius which can easily be solved numerically. Due to
the self-similar expansion, the minor radius evolves in
proportion to the major radius, and the time behavior of the
minor radius can be determined. Far from the Sun ( z(t) >> Ry),
Vem approaches a constant value and since z(f) =a(#) holds,
V.m also becomes equal to the rate of change of the major
radius with time. Therefore, far from the Sun the major radius
and the minor radius of the toroidal cloud both evolve linearly
with time. Closer to the Sun their evolution is more
complicated.

From (59) we see that the kinetic energy of a rope's center
of mass asymptotically reaches a constant value as distance
from the Sun increases. The final kinetic energy attained at
large distances from the Sun is

(39

UKE

cmf=(1_s)Um0_IUGOI' (61)

and the final center of mass speed is

--------- z /Rs=1 1
————— z,/R=1.6
— — -z, IR=3.0
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Figure 6. Speed of the center of mass of an erupting flux-
rope as a function of the distance from the Sun for various
values of the initial heights. Consistent with observations,
the low lying flux-ropes accelerate faster and have larger final
speeds.
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1-s
N =00 RS

Assuming the following typical values for the mass and
final kinetic energy for an ejected magnetic cloud

M=5x10g, (63)
Ugff =4x10% ergs 64)
we obtain
Ugo =9.5%10% ergs, (65)
n KE 424x10%
U,o= U +Ugg | = ——ergs, 66
mo Sin(eo)( cm f GO) sin(8y) g (66)
Bgo =0.224sin(8y), 67)
Vem ¢ =400 km/s, (68)
VrrontEdge f = 2 Vem ¢ = 800 km/s, (69
125 4. (70)
GO

Figure 6 shows a plot of V,,, versus distance from the Sun for
various values of z and with (1-5)/Bgo =1.42.

Coming back to (61), we see that ultimately a fraction (1-s)
of the magnetic energy goes into bulk kinetic energy of center
of mass and into overcoming solar gravity. With a little
algebra and using self-similarity of evolution, (all length
scales change in proportion), it can further be shown that the
kinetic energy of major radial expansion about the center of
mass is same as the kinetic energy of center of mass, while the
kinetic energy of the minor radial expansion is negligible for
a large aspect ratio toroidal cloud. Therefore the total kinetic
energy of a cloud is just twice its center of mass kinetic
energy.

The remaining fraction 4 of the available energy, which we
will call the deficit energy, can further be spent in accelerating
high energy particles, in shocks, in overcoming drag of the
ambient medium and in internal heating. It is difficult to
estimate the partition of energy into these various sinks.
However, taking into consideration the observed high
temperatures in the clouds along with the availability of
energy, it is hard to escape the conclusion that a significant
part of this deficit energy goes into internal heating. For
simplicity we will assume that all of the deficit energy goes
into internal heating.

Independent of dynamical considerations, conservation of
helicity gives us an expression for the magnetic energy
decrease as a function of flux-rope size (28b). Solving a
dynamical evolution equation with all the forces and
dissipation mechanisms that may be present should, in
principle, give the same result. However if one forgets to
include a particular force or dissipation mechanism in the
dynamical equations, then the equations are not going to
sound a warning bell. They will simply give a certain rate of
change in magnetic energy consistent with energy
conservation and the effects of the included forces. However
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this rate of change will not be the correct one. To determine
the correct rate of magnetic energy change short of knowing
all the forces and their effects, one has to use some external
criterion, which ordinarily would mean falling back on
observations. Use of helicity conservation gives us such an
external criterion.

In the magnetic cloud model by Chen [1989], mainly the
Lorentz forces (especially the Lorentz self-force discussed in
section 5) are responsible for acceleration. Therefore, in that
model, the magnetic energy goes into kinetic energy and into
losses due to the drag of ambient medium. Assuming, instead,
that the lost magnetic energy appears as gain in thermal
energy in the cloud along with gain in total kinetic energy and
gravitational potential energy, we can use energy
conservation to obtain the magnetic energy dissipated as heat

g,

0=dQ+dU,, +dUg +dUgg. 71)

Note that the total kinetic energy includes the kinetic energy
of the center of mass and the kinetic energy of major and
minor radial expansion. As mentioned earlier, this total
kinetic energy is approximately equal to twice the center of
mass Kkinetic energy for a large aspect ratio cloud.
Substituting for all the quantities we obtain

dQ =-(2s-1-BG)dU,, =~hdU,,, (722)

where h is the fraction of the lost magnetic energy appearing
as heat. For 0.68<s<1 and B; =0.22, we obtain

0.58<h<0.78. (72b)

Therefore at least 58% of lost magnetic energy is available for
heating.

6. Thermodynamics

We can express many cloud properties as functions of the
length of the flux-rope. Setting /=27a and using the first
law of thermodynamics, we get

dQ=dW +dUy (73)

where

dUr =NCydT, dW =PdV. 74)

where dUr is the infinitesimal change in internal thermal
energy stored in the flux-rope, Cy is the specific heat at
constant volume, dW is the infinitesimal work done by the
expanding flux-rope, and dQ is the infinitesimal heat added to
the volume due to magnetic dissipation as the length of the
rope increases by dl. We can write

dQ=-hdU,, (75)

where # is the fraction of magnetic energy dissipated as heat.
If the cloud dynamics is governed by the Lorentz self-force,
then from (55) and (72), the value of h is expected to lie
between 0.58 and 0.78. For now we consider a general range
0<h<1. Here h=0 corresponds to adiabatic evolution with
no magnetic energy dissipation, while =1 corresponds to the
case when all of the available magnetic energy is dissipated as
heat. We also have

dl

AU () =~Un(lo)lo 77 (76)
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where dU,, is the infinitesimal change in magnetic energy
stored in the volume of the flux-rope as the length of the rope
increases by dl. We can write dW as a function of / as

W

dW(l)=PdV = P(l) =2 1%dl. a7

)

Using the ideal gas law PV = NkT, where N is total number
density of particles present (electrons plus ions) and k is the
Boltzmann constant, we can express dU; as a function of / as

dUr =(-CL) P() 3—‘?—12d1+v—‘;13 drQ) |. (78)
k Io Io

Substituting from (75), (76), (77), and (78) into (73) and using
Cp —Cy =k, we obtain a differential equation for P(l):

2 Vol? d
0=~hUp (o)L= +-L5( 3C,P()+Cyl—P() | (79)
2 ki dl

Using y=Cp/Cy and B=2uyP/B*> =NkT/U, , where P,
T, and B are volume averaged values, we get

B(ly) = NkT(lp)/Up () = PUlp)V(lp)/Un(p)  (80)
Equation (79) can now be written as
d(PWPU) _ _, (POIPGY) [, y=1)_1
= + = (81)
d(l/l) 0y Bo) ) (/1)
The solution of this differential equation is
P(l) 1 ( y-1 J(lo“)
P(ly)  Blo)\3y-4 )1
3\’ (82)
L[ x=t R
+[l hB(lo)(?ﬁ)'—‘J](l” ]
and using the gas law again we get the temperature:
) , 1 (y=-1)h
T(p) 'hﬁ(lo)kzy—o, T
(83)

- 3-0Y
opl (21 h
Blp)\3y-4)|( @D
The corresponding expressions for an adiabatic expansion

without any magnetic energy dissipation are obtained by
putting ~=0 as

PO (1
0.5 54
and
() (7D @5
T(y) \ PTD ) )
6.1. Heating the Magnetic Clouds

Adiabatic expansion of model magnetic clouds with
y=5/3 leads to cloud temperatures =3K at 1 AU, while
observed temperatures are =10*-10°K [Chen and Garren,
1993]. Here y is often made different from the adiabatic value
of 5/3 and closer to the isothermal value of 1 to make the
models agree with observations. It has been argued that y =1
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is appropriate, i.e., direct thermal conduction from the Sun
might account for the heating. However a typical cloud is at a
higher temperature than the photosphere. If the footpoints of
a magnetic cloud anchored in the photosphere are roughly at
the photospheric temperature (5800 K), then conduction can
hardly cause the heating. The second law of thermodynamics
forbids heat transfers that lead to a higher temperature in the
receiving system than in the source. If one were to say that
the conducted heat comes from the hot coronal part of the flux-
rope then the problem of the coronal heating mechanism
comes to the fore. Since conduction across the field lines is
small, we cannot explain the heating by conduction from the
external hot corona into the flux-rope. Either something
(Alfvén waves, energetic particles?) comes from the Sun along
the field lines to heat up the flux-rope or it is the local
magnetic energy dissipation that is responsible. There is no
widely accepted mechanism for this heating. It is conceivable
that some mechanism involving effects of Alfvén wave
dissipation or energetic particles might explain the coronal
heating. We suggest that the heating is caused by dissipation
of local magnetic energy due to small-scale current sheet
formation either in field deformations [Parker, 1994] or in
turbulence [Vainshtein et al., 1993]. Our model does not tell
us anything about the mechanism of magnetic energy
dissipation; it only tells us how much of the magnetic energy
must be lost into other forms as a flux-rope expands, a fraction
h of which goes into heating.

From (83) and (85) it is obvious that, for large /and y>1,
the first term in the expression for temperature is more
important than the adiabatic term. With ¥ =5/3, we geta i
temperature behavior for large /, instead of 1_2, as in the case
of adiabatic expansion. Also the temperature at large [/
depends inversely on the initial plasma beta, which means
that a flux-rope with low initial beta would be heated more
than one with high initial beta. This dependence on initial
plasma beta is not present in the adiabatic case. A log-log
plot of T()/T(ly) versus Ifl, for different initial values of
plasma beta S(Jy) and for the adiabatic case is shown in Figure
7, where T(lp) and Iy are initial temperature and initial length
of the flux-rope, respectively.

If the initial beta is less than (2/3)Ah, then the cloud
temperature goes through a maximum. The smaller the initial
beta, the higher the maximum temperature. The peak in the
temperature plot is due to two competing processes: heating
due to magnetic energy dissipation and cooling due to

- r R h=0.58
1000L — — — — _ _ -
=/ T T3 — — -B(i )=0.0001
100 é_, e 3 o----- B (1 )=0.01
~ 10E— e + B (1 )=001
N 3 3 — - -B(1)=01
= 1: T — . — - P 0
& . S~ o B(l)=1
0.1¢ -3 B(1)=10
- 2. ] Adi .
O-OI_F 5 iabatic
1 10

Figure 7. plot of temperature versus length of a flux-rope
for various values of starting plasma beta.
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expansion. Heating dominates in the early phases of a cloud's
evolution. For y =5/3, the maximum in T/T(ly) is given by
the formula

Tvax _ K
Tlp) 3BUp)[2h-3BUp)]

and the length of the flux-rope for which the maximum in
temperature occurs is

(86)

L =10(2——3ﬁ(l°))
h (87)

A log-log plot of Tyax/T(ly) attained versus the initial
plasma beta B(ly) for h=0.58 is shown in Figure 8. If the
initial plasma beta is small compared to (2/3)hA, as is the case
with chromospheric and coronal solar flux-ropes, we get
simpler formulae:

Tyax __h
T(lp) ~ 6BUy)’

(88)

and

L=2l (89)

For h=0.58 and f(lj)=0.0006, we see that a flux-rope
initially at temperature T'(l5)=8000 K can be heated to 161
times its initial temperature, bringing it up to a coronal
temperature of 13x10 K. For h=0.78, the same flux-rope
can be heated to 217 times its initial temperature, i.e. to
1.7x10% K. While the flux-rope attains its maximum
temperature, its length doubles. For a typical flux-rope length
of a few hundred thousand kilometers, this means the flux-rope
is still within the corona when it attains its maximum
temperature.

6.2.

The theoretical value for plasma beta as a function of flux-
rope length is

Plasma Beta in Magnetic Clouds

2 2 I
ﬁ(l)=§h+(ﬂ<lo)—§h)£.

) (90)

Irrespective of its starting value, beta asymptotically
approaches a constant value of (2/3)h. That is

T IIIIHII T IY‘Y[H] T T Trrrr

103 EL\ 'E

SN h=0.58 3

C . ]

N

~ 10F “. E

= F N 3

e L N J

N L N B

&~ 10 E N 3

e N 3

C N 3

- N _‘

- A -

100 LJJJIllll i IlIIlIll 1 L1t
10°* 107° 107 10"

B(i)

Figure 8. The maximum temperature attained by the flux-
rope versus the initial plasma beta.
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Figure 9. The plasma beta as a function of the length of the
flux-rope for various values of initial plasma beta.
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Figure 9 shows theoretical plots of plasma beta versus the
length of the flux-rope for various starting values of beta.
Most available data for beta in magnetic clouds are for protons
only, and the observed proton beta is 0.1-0.2 [Klein and
Burlaga, 1982). Montgomery et al. [1974] mention that, in
low-temperature regions following an interplanetary shock
wave associated with the passage of magnetic structures,
electron temperatures are 3 to 4 times the proton temperatures.
Therefore, the total plasma beta would be between 0.4 and 1.
Burlaga et al. [1981] find beta values ranging from 0.05 to 1 at
different points within a cloud. Osherovich et al. [1993b]
mention that the ratio of electron temperature to the proton
temperature varies across the cloud, remains always larger than
1, and attains values ~10 near the axis of the cloud. For the
cloud of March 19,1980, reported by Osherovich et al.
[1993b] and for an average density of Scm™, the average
ratio of temperatures is 7, /T, = 3.9, which is consistent with
what has been said above. Note that we are only concerned
with average total plasma beta in the cloud. Discussion of
variations of plasma beta within the cloud and any disparities
in electron and proton temperatures are beyond the scope of
this paper. However we do want to point out that dissipated
magnetic energy goes into heating the magnetic cloud in such
a way as to make the average plasma beta in the cloud
asymptotically approach a constant value of (2/3)h. When the
plasma beta in a cloud comes close to this asymptotic value,
its speed also approaches a constant. When the cloud speed
becomes more or less constant its evolution is similar to the
"free self-similar expansion" as described by Farrugia et al.
[1993] and Osherovich et al. [1993c]. This is also consistent
with the result of Osherovich et al. [1995] that a flux-rope can
undergo a "free self-similar expansion" only in the limit of
finite beta.

Using the limits on & from relations (72), we get the limits
on final beta:

0.39 < Brina < 0.52. (92)

These limits are consistent with the observations.

6.3. Polytropic Index of a Magnetic Cloud

Consider an observer who follows the particles in an
elemental volume of moving fluid and makes repeated
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measurements of pressure and number density. A polytropic
relationship is said to hold when these variables satisfy an
equation of the form P~n". The dimensionless constant I"
is called the polytropic index. In our current-core flux-rope
model, we see from (46) and (82) that for y=5/3 and for
Iflo >>1, pressure and number density are related as

2 Py } ()2,

— 93)
3B(0) (n(ly))"?

P()= [h

A polytropic relation indeed holds far from the Sun with
I' =4/3=1.33, which is smaller than the adiabatic value of
5/3. It simply means that due to magnetic heating, the cloud's
expansion is not adiabatic. For [/l >>1 the speed of the
cloud approaches a constant value. This situation is similar to
the self similar radial expansion described by Low [1982],
who also obtained a polytropic index of 4/3.

Here it is important to mention the results of Osherovich et
al. [1993b] that the pressure and density obtained at different
locations in a magnetic cloud by a passing spacecraft seem to
be related by a polytropic kind of relationship with an index
of ~0.5 for electrons and ~1.2 for protons. On the face of it
the indices obtained are not polytropic since the
measurements were not performed successively on the same
fluid element, but on different fluid elements with possibly
different thermal histories. Osherovich et al. provide a
theoretical justification to support their view that these
indices are indeed polytropic. Regardless of whether these
indices are polytropic or not, they are important
observational results which any detailed theory of magnetic
clouds must be able to explain.

7. Effects of Expansion
7.1, IMC Boundaries

Burlaga [1988] and Lepping et al. [1990] take the axial field
component B, in IMCs to be zero at the boundary
corresponding to the first zero of the Bessel function Jg,
similar to the current confinement boundary 7y in the model
presented in this paper. Also, no IMCs have features
corresponding to higher zeros of Jy, or as Farrugia et al.
[1991] put it, "no observational magnetic cloud signature has
more than one 'cycle' in its components." Observationally,
the determination of IMC boundaries is somewhat subjective
[Lepping et al., 1990], but we will assume that the
uncertainties are not very significant.

7.2.

Since magnetic plus plasma pressure inside IMCs is higher
than in the ambient solar wind, it has been argued that excess
pressure drives the radial expansion. We find this conclusion
unsatisfactory on two counts (1) observations show that the
radii of clouds increase approximately linearly with time
[Bothmer and Schwenn, 1994], i.e. the radial expansion
velocities are approximately constant. Any excess pressure
driving the expansion would instead give rise to an
acceleration which would cause the radial expansion velocity
to increase with time. (2) It does not take into account the
radial component of magnetic tension in the helically curved
field lines. In fact, in the case of the usual force-free model of
a magnetic cloud, the centrifugal force due to the magnetic
pressure is exactly balanced by the centripetal force due to

Expansion of the Minor Radius
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magnetic tension, so that in this case, magnetic pressure does
not play a role in the expansion of the magnetic cloud.

In our current-core flux-ropes, the minor radius (which is the
same as the current-confinement radius) is quite insensitive to
the conditions in the external environment. Changes in the
minor radius take place mainly due to changes in the internal
magnetic configuration. Conservation of magnetic helicity
and axial flux dictate the form of the radial expansion. If the
length of a flux-rope increases, conservation of helicity and
axial flux can be achieved only if the flux-rope also expands
laterally. For the toroidal flux-rope considered in this paper,
the same effect is obtained if one uses conservation of axial
and azimuthal flux.

This conclusion can be made more concrete by using (40) to
see that the aspect ratio of the cloud must remain constant,
i.e.,

lfry(1) = const. 94)

Therefore the length and minor radius of a cloud moving at
constant speed both evolve linearly with time. This result is
in agreement with observations of Bothmer and Schwenn
[1994] and theoretical results of Chen and Garren [1993].

7.3.
Clouds

The measured plasma velocity in IMCs shows a
characteristic profile, with the leading edge usually moving
faster and the trailing edge usually moving slower than the
ambient solar wind. Between these two extremes, the speed
decreases with a constant slope (see Figure 10). Sometimes
shocks affect the velocity profile, but the negative slope is
usually unmistakable. It is due to the expansion of the cloud
[Farrugia et al., 1993]. To describe it, we assume a toroidally
shaped cloud with major radius a, minor radius 7, length
l=2ma, and distance from the Sun d =2a (see Figure 2). If

Slope of the Plasma Velocity Profile in

the center of the cloud moves at a constant speed V.., then the
cloud expansion speed V., is given as
dro ro(lo) dl ro(lo) da ro(lo)
Vexp = ——= = 22— = nV., (95
CPdr dy dt et Iy ¢ ©3)

where we have used (40) for radius as a function of length, and
we have taken the cloud speed V, as the rate of change of the
distance d =2a from the Sun. Then, if V_ is constant in time,

Vexp @lso remains constant. We can also write
J I d
Vixp = ’°§ O)nVC = ’Ol( ) ny, = ’0‘(1 )VC. (96)
0

Assuming that during the cloud's passage across a spacecraft,
its speed V, and therefore V,,,, do not vary, then the leading
edge would appear to move at V. +V,, while the trailing edge
would appear to move at V, —Ve,,,. This gives the slope of the
velocity profile as

slope = (Vc *Vexp ) _ (VC - Vexp) _ 2Vexp
At Yo

o7

where At is the time interval of passage. It can readily be
shown that the slope of the velocity profile satisfies the
following relation:

V.2 ; 2
slope = —<—|1- -2) ,
ope== ( (d ]

(98)
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IMP-8 spacecraft data for the magnetic cloud of January 14, 1988. The cloud passed the

spacecraft between 0400 UT on the 14th and 1200 UT on the 15th. Note the smooth variation of the magnetic
field and the asymmetry of the magnetic strength profile. The slope of the proton velocity is approximately

constant through the cloud.

where all the quantities are expressed at a time when cloud
center is passing the spacecraft. The factor in the brackets is

close to2 unity (at d=1AU and for r)=0.14 AU,
1-(rp/d)” =0.98). Therefore we get
slope=V,2/d. 99)

All the quantities in (99) can be calculated from the available
cloud data, including the slope of the measured velocity
profile, the speed of the center of the cloud and the distance of
the cloud from the Sun. As an example consider the cloud of
January 13, 1988 (Figure 10). For this cloud, V, =638 kms",
d=1AU, and the measured value of the slope =2.83 m s‘2,
while the theoretical value of the slope is Vc2/d =271ms™2.

Figure 11 shows a plot of the theoretical slope Vc2 /d
versus the measured slope of the velocity profile for 24 clouds,
where V, is the speed of the center of the cloud. A straight
line fit gives

V.2 /d = 1.04 xmeasuredslope, (100)

which shows excellent agreement between theory and
observations.

7.4. Asymmetry of the Magnetic Field Strength
Profile

In cloud data where the magnetic field strength profile is not
corrupted by the presence of shocks or interaction regions,
one finds that the maximum magnetic field strength appears to
be displaced toward the leading end of the cloud (see Figure
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Figure 11. The theoretical velocity slope within the
magnetic cloud versus the measured velocity slope.
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10). This asymmetry is due to expansion of the clouds
[Farrugia et al., 1991] since the time that it takes for the center
of the cloud to arrive at the spacecraft after the front edge has
passed will be shorter than the time taken by the trailing end
to arrive after the center has passed, due to continual
expansion of the cloud. We can obtain a measure of the
asymmetry by taking the ratio of these two time intervals,

time interval between front and center
time interval between center and rear
A, VeV 1-1y/d
T At-At, V.4V, 1+ny/d

asymmetry =
(101)

Xp

where At is the time interval between arrival of the leading
edge and the center of the cloud. As an example consider the
cloud of January 14, 1988 (Figure 10). For this cloud,
rp=022AU and d=1AU. Therefore the theoretical
asymmetry is 0.64, while the measured asymmetry is 0.65.

7.5. Effect of Variation in Direction of Motion
of Clouds

In deriving the formula for the slope of the velocity profile
within a cloud, we implicitly assumed that the distance from
the Sun of the observed portion was equal to twice the major
radius of the torus. However this will happen only in the case
of a head-on encounter. In the general case, if we know the
ecliptic latitude A and ecliptic longitude ¢ (measured
counterclockwise with ¢ =0 direction pointing toward the
Sun) of the axis of the cloud at the point of encounter, then the
relation between the major diameter 2aof the toroidal cloud
and the distance d from the Sun at the point of encounter is

d=2a|f(A,9) , (102)
where
fA,9) = \/1 —cos?(A)cos?(¢) . (103)

A head-on encounter corresponds to either cos(¢)=0 or
cos(4) =0, and in such cases f(4,¢) is a very slowly varying
function of A and ¢, and it remains close to 1. From a study
of 18 clouds at 1 AU, Lepping et al. [1990] found that, on
average, the direction of a cloud's axis satisfied IA|E42°,

=-15°, and ¢5102°. Substituting these values into the
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expression for f(A,4), we get f(42°,102°)50.988 and
f(15°,102°)50.980. We conclude that, on average, the
formula d=2a holds within 2% accuracy for the clouds
reported. In the following we use this formula without the
correction factor f(4,9).

8. Comparison with Observations

In this section we compare our model with published IMC
data. The data used here have been taken from Burlaga [1988],
Burlaga et al. [1981, 1982], Burlaga and Behannon [1987],
Burlaga and Behannon [1982], Klein and Burlaga [1982],
Lepping et al. [1990, 1991], Marubashi [1986], Zhang and
Burlaga [1988], Farrugia et al. [1991, 1993], Zhang [1991],
Montgomery et al. [1974], Gosling et al. [1987], Bothmer and
Schwenn [1991] and Vandas et al. [1991, 1993].

To compare with the observations, we have used the
following scaling laws from our model (see (38), (46), (40)
and (83)):

Magnetic field strength

1
By ~ -d—2, (104)
Number density
1
n~ 7 (105)
Radius
r~d, (106)
Temperature
1 1
T~=+0| = |, 107
2oz (107)

where d is the distance from the Sun and the length / of the
flux-rope is related to d as ! =mnd. We have also used y=5/3.
In our model, temperature is not a power law function of d, but
at the distances where cloud data are available, the first term in
the expression for temperature (see (83) and (107)),
dominates. Therefore, for purposes of comparison with data,
our theoretical model predicts an inverse distance dependence
for the temperature.

Table 1 shows the fit parameters for the data obtained from a
power law fit and also from a fit using the theoretical model. It

Table 1. Verification of Scaling Laws from Observations

. Fitbasedonthe TotalNumber Cloudsat Cloudsat
Observables Power Law Fit .
theoreticalmodel  of Clouds d<1AU d>1AU
By, nT 18.4/d'® 18.8/d 52 3 9
nem™ 7.2/d*® 5.8/d 25 3 4
19, AU 0.1484%7 0.155d 34 "3 4
T,,10*K 3.4/d%7 3.6/d 18 3 2

Fit parameters for the strength of the axial magnetic field B,, average proton

number density n, radius ro of the cloud, and proton temperature T ,.

d is the

distance from the Sun. From the power law fit, two parameters, the multiplicative

constant and the exponent, were determined.

In the case of fits based on the

theoretical model, the exponent was taken to be as given by the theory, and the
multiplicative constant was determined from the fits.
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Figure 12. The strength of the magnetic field B, at the axis
of a magnetic cloud versus the distance from the Sun.

also shows the total number of clouds used. In the case of
power law fit, the multiplicative constant and the exponent
were the two parameters determined from the fit. In the case of
the "theoretical" fit the exponent was taken to be given by the
theoretical scaling laws (see (104) through (107)), and only
the multiplicative constant was determined from the fit. We
see that the power law fit gives exponents that are close to the
exponents expected from the model.

Figures 12 through 15 show plots of axial magnetic field
strength, proton number density, radius, and temperature as
functions of distance d from the Sun. Empty circles represent
individual data points, while solid triangles represent mean
values obtained at each value of d. In each figure the solid line
shows the power law fit to the data, and the dashed line shows
the fit based on the theoretical model as given in Table 1.

As most clouds were observed at 1 AU, statistics for data at
that d value are better than for the others. However, the fits
listed in Table 1 and the figures show that the data from 0.3 to
4 AU are in good agreement with the model. More data on
clouds at different distances from the Sun could help to refine
the comparisons. Note that the fitted parameters obtained are
for an average IMC, and individual clouds may show
substantial variations. The variability in the observed clouds
is mainly due the variability in their parent structures on the
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Figure 13. The average proton number density within
magnetic clouds versus the distance from the Sun.
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Figure 14. The radius of the magnetic cloud versus the
distance from the Sun.

Sun (usually a solar filament). The differences in the parent
structure can, in turn, be due to differences in strength of
magnetic field, length, diameter, height above the solar
surface before ejection, footpoint separation. If injection of
helicity triggers the ejection of the parent structure [Rust and
Kumar, 1994b] , then differences in rate of helicity injection
(or for that matter, differences in any triggering mechanism)
would cause differences in the dynamical properties. However
the exchange of magnetic helicity (or any magnetic quantity)
with the Sun stops when the speed of the cloud becomes larger
than the speed of the Alfvén waves along the field lines.

9. Conclusions

We have presented a model for interplanetary magnetic
clouds as flux-ropes whose properties are determined
intrinsically by their initial values. The model explains
clouds' average magnetic and thermodynamic properties, as
well as their dimensional variations as a function of distance
from the Sun. With the assumption that magnetic clouds can
be approximated as large-aspect-ratio tori which remain
connected to the Sun, all quantities involved become functions
of the distance of the observed part of the cloud from the Sun.
This makes it possible to compare the predictions of the
model with data obtained from spacecraft located at various
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Figure 15. The average proton temperature in the clouds
versus the distance from the Sun.
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distances from the Sun. The results of comparisons between
the model and data on the magnetic field strength, density,
radius, and cloud temperature as functions of distance from the
Sun, are given in Table 1. Other observables considered were
asymmetry of the magnetic field strength profile, slope of the
plasma velocity profile inside clouds, and the plasma beta.

According to this model, a cloud's evolution is constrained
by conservation of three quantities: magnetic flux, magnetic
helicity and mass. Dimensionally, magnetic helicity is
proportional to magnetic energy times a length scale, i.e.
H,, o<(lengthscale)xU,,. Therefore, generally speaking,
under the constraint of conservation of magnetic helicity, the
magnetic energy stored in magnetized plasmas should decrease
with expansion. One expects that a part of this lost magnetic
energy would go into heating the plasma. Therefore,
conservation of magnetic helicity implies that expanding
magnetized plasmas could be heated by magnetic energy
dissipation. We believe that this idea can be applied not only
to interplanetary magnetic clouds but also to various
astrophysical phenomena, such as stellar and galactic winds,
stellar coronae, nebulae, and supernova remnants.

One of the more important results of our model, derived
from application of the above idea, is the explanation of the
high temperatures in magnetic clouds. Helicity conservation
leads to a simple expression for the decrease in magnetic
energy of a flux-rope as a function of its length (see (28)).
Therefore, during expansion, some magnetic energy stored in
the flux-rope is continuously being made available for
conversion into other forms. Assuming that the dynamics of
the clouds is governed by magnetic forces, some of this
decrease in the magnetic energy appears as bulk kinetic energy
and some acts against solar gravity. Even after accounting for
these losses, we found that 58% to 78% of the available
magnetic energy remains unaccounted for. Most likely, it is
converted into heat in small-scale turbulence, while the large-
scale structure remains intact. As a flux-rope expands, and
before it leaves the corona, its temperature increases sharply
to coronal values. The maximum temperature achieved
depends inversely upon the initial plasma beta. Above the
corona, cooling by expansion of the entrained plasma begins
to dominate, but the derived cloud temperature at 1 AU remains
large enough to be in agreement with the observations.

The mechanisms for heating the solar corona and solar wind
are not exactly known, but it is widely believed that the
energy is supplied by magnetic fields. Magnetic helicity
conservation has been used to determine the heating rates in
some coronal heating models [Heyvaerts and Priest, 1984].
They assumed that the buildup of free magnetic energy and
helicity in coronal loops is due to photospheric motions.
This buildup in general led to a nonlinear force-free magnetic
structure. Then the excess magnetic energy above the
corresponding Taylor relaxed state [Taylor, 1974, 1986] was
assumed to be released in a fast reconnection process.
Magnetic helicity was assumed to remain constant during the
relaxation process.

We briefly examined the dynamics of clouds with the
encouraging result that low-lying flux-ropes, i.e. those
starting at only 0.01 solar radii above the surface, accelerate
more rapidly and achieve a higher peak velocity than those at
0.10 solar radii. This result is in qualitative agreement with
observations of coronal mass ejections.

Interplanetary magnetic clouds originate on the Sun, and
most, if not all of them are associated with solar filament
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eruptions [Rust, 1994]. Parameters determined from the
magnetic cloud data, if extended back to the Sun may tell us
more about these solar structures. Since solar filaments and
IMCs both exhibit flux-rope structure, it should be possible to
strengthen the connection between them. It is also possible
that helicity conservation can be usefully applied to describe
the physics of other helical flux-ropes such as those in the
photosphere and in Venus' ionosphere.
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