EVE Doppler Signatures in Major Flares

Hugh Hudson (Berkeley and Glasgow), Phil Chamberlin (NASA/GSFC), Alec MacKinnon (Glasgow) and Tom Woods (LASP)

Background: This poster describes SDO/EVE spectroscopy of the Sun as a star in the EUV (see Hudson et al., 2011 Woods et al. 2012, and Chamberlin, 2016 for details). In this presentation we discuss the behavior of the transition-region lines, aiming at an eventual "calibration" via AIA imagery of the phenomena we see in this novel way. Future stellar observations may thus recognize common paradigms.

Figure 1. Representative flare excess spectrum from EVE/MEGS showing the wealth of lines available. This represents one 10-s da against a 200-s integration prior to the SOL2011-07-30 (M9.7), tak

References

Chamberlin, P.C., Solar Phys. **291**, 1665 (2016) – EVE/MEGS Dere, K. et al. 1997, A&A Supp., **125**, 149 (1997) – CHIANTI Hudson, H. et al., Solar Phys. **273**, 69 (2011) – EVE spectral shifts Landi, E. et al., ApJ, **763**, 86 (2013) – CHIANTI Milligan, R.O. and Dennis, B.R., ApJ, 699, 968 (2007) - Flare Doppler patterns <u>Woods, T. et al., Solar Phys. **275**, 115 (2012) – EVE</u>

S-B, in linear and log versions,
ata integration differenced
ken at flare maximum time.

Table 1 . Major flares for which MEGS-B spectroscopy is available. The rise time is from GOES, the log derivative time.							
Flare	GOES	Location	Ne IV $\mu W/m^2$	$ au_{rise}$ s			
SOL2011-02-15T01	X2.2	S20W10	9.35 ± 0.15	378			
SOL2011-02-16T14	M1.6	S20W32	8.72 ± 0.13	152			
SOL2011-03-07T19	M3.7	N30W48	9.41 ± 0.15	1314			
SOL2011-07-30T02	M9.3	N15E35	8.78 ± 0.13	114			
SOL2011-08-04T03	M9.3	N19W36	$8.99 \pm \ 0.12$	295			
SOL2012-03-07T00	X5.4	N18E31	9.27 ± 0.12	628			
SOL2012-03-14T15	M2.8	N14E05	9.17 ± 0.11	290			
SOL2012-05-10T20	M1.7	N12E12	9.11 ± 0.14	373			
SOL2012-06-30T18	M1.6	N14E18	9.25 ± 0.13	119			
SOL2012-07-01T18	M2.8	N14E04	9.31 ± 0.13	191			
SOL2012-07-02T20	M3.8	S17W01	9.82 ± 0.12	451			
SOL2014-01-01T19	M9.9	S16W45	9.85 ± 0.14	286			
SOL2014-01-07T18	X1.2	S12W08	$9.46 \pm \ 0.12$	890			

Element	Ion	log(T) CHIANTI	EVE bin	Wavelength Å
Fe	XVI	6.8	1653	360.7590
Ne	VII	5.7	2176	465.2200
Si	XII	6.9	2346	499.4066
He	Ι	4.5	2428	515.6180
Si	XII	6.0	2453	520.6661
He	I	4.5	2462	522.2140
0	III	5.0	2479	525.7940
He	I	4.5	2535	537.0310
Ne	IV	5.2	2569	543.8860
Al	XI	6.9	2600	550.0318
0	IV	5.2	2622	554.1585^{a}
Ne	VI	5.6	2664	562.7030
Ne	V	5.4	2711	572.3360
He	Ι	4.5	2771	584.3350
0	III	4.9	2848	599.5900
Mg	Х	6.8	2974	624.9426
0	V	5.3	2999	629.7320
Ν	III	4.9	3279	685.8170
0	III	4.9	4026	835.2890
С	III	4.8	4736	977.0200
Ν	III	4.8	4808	991.5770
0	VI	5.4	5010	1031.9138
0	VI	5.4	5038	1037.6154

MEGS-B vs. MEGS-A

Our previous published work on EVE Doppler measurements (Hudson et al. 2011) used MEGS-A. This instrument observes high-excitation lines well, but has the technical problem that these lines do not form outside flare times, and so rest reference spectra are not easily found. This is important because of the wavelength/spectrum coupling (an optical design property; see Woods et al., 2012, and Chamberlin, 2016).

For MEGS-B these problems are unimportant. We can use pre-flare emission safely as a rest reference. Accordingly, the results presented here focus on transition-region lines with peak formation temperatures below 1 MK; such lines are always available in the spectra. In this analysis we use the line set in Table 2 here, omitting the He lines and two others upon close inspection. See Figures 2 and 3 for "blend maps" and line profiles in one flare event.

