Cosmic-ray Issues in the Inner Heliosphere

Hugh Hudson

Space Sciences Laboratory, UC Berkeley, and the University of Glasgow

Academic Background

- Kinsey Anderson (PhD Minnesota 1955) ۰
- John Winckler (PhD Princeton 1946) \bullet
- Rudolph Ladenburg (PhD Munich 1906) ۰
- Wilhelm Conrad Röntgen (PhD Zurich 1869) ۰
- August A.E.E. Kundt (PhD Berlin 1864) ۰
- Heinrich Gustav Magnus (PhD Berlin 1827) ۰
- Miscellaneous German chemists... \bullet

Cosmic rays at Minnesota

There were many contributions to cosmic-ray physics at the University of Minnesota following WWII: Freier, Kellogg, McDonald, Ney, Waddington, Winckler…

Especially interesting technical things were detector development and the use of highaltitude research balloons.

Abdo et al. 2011

Abdo et al. 2011

Fermi detects two γ -ray sources from the quiet Sun above 500 MeV:

- A "disk" component, likely to be cosmic-ray secondary radiation

- A "halo" component due to Compton scattering of cosmic-ray electrons

Fermi/LAT flare, GLE No. 72

Cosmic-ray shadows

5-200 TeV Amenomori et al. 2018

Cosmic-ray shadows

- These images are from the Tibet-III air-shower array, but improved resolution and throughput will be coming, e.g. from HAWC.
- The solar shadow is different from the lunar shadow: it varies with time, across the solar cycle, and it significantly reflects the sector structure in the mean.

The shadow over the cycle

Amenomori et al. 2013

• Most of the refraction must be in closed fields – but why the sector dependence?

Abdo et al. 2011

How do we observe the coronal magnetic field at a few R_0 ?

- Eclipse morphology
- Faraday rotation
- Cosmic-ray shadowing
	- mean model parameters
	- Forbush decreases

Other high-energy signatures

- Forbush decreases, remote Forbush decreases, SEPs propagation mysteries, ENAs and direct detection of energetic solar neutrons, solar radiation belts…
- Solar "multi-messenger astrophysics"
- *See RHESSI Nuggets No. 157, 258, 268, 280, 300 etc.*

Historical footnote on GLEs

SEPs (~20 GeV) in GLE No. 5

These are original Forbush records from Huancayo on SOL1956-02-23, recovered from unpublished records found by Ken McCracken in 2016. They show 15-s time variability in 20 GeV solar cosmic rays.

Significance of relativistic ions

- At relativistic particle energies, the particles arrive as soon as photons do, plus the increment due to the magnetic connection.
- Forbush's observations show rapid variability, which must reflect small-scale structures in the source.
- The observed time scales do not seem consistent with shock acceleration, nor with diffusive transport

Cane et al., 1988

Limb showers

- The equivalent of extensive air showers will happen in other solar-system bodies, notably the Sun, Venus, and Jupiter.
- Escaping shower products will appear as an intense annulus slightly above the limb of the body.
- The γ-ray component is a pair/bremsstrahlung cascade, with a very hard spectrum.

Extensive air showers

Wikipedia

Extensive air showers

Wikipedia

The Venus test case

- We want to study the Sun via the limb showers, but it is very model-dependent theoretically.
- Venus has a thick, hot, high-Z atmosphere $(CO₂)$, and no intrinsic magnetic field.

Solar-system bodies

We can estimate a geometrical figure of merit for cosmic-ray detection via limb showers via

 $FOM =$ radius x scale height x modulation /distance²

Comments

- The limb shower idea is fairly new and not wellcharacterized yet.
- One should use GEANT4, for example, to handle the nuclear physics.
- Propagation (except for Venus) has major uncertainties, but that makes it very interesting.
- Radio detection (ALMA? JVLA?) might allow recording of individual shower events on Venus or Jupiter.

Conclusion

- High-energy radiations (hard X-rays, γ-rays, and other "messengers") play an important role in our understanding of heliospheric structure and of solar activity.
- We have new tools that may help to understand propagation in the inner heliosphere.
- The "limb shower" mechanism may provide essential clues.

Addendum

• In case the bus has not left already, some comments about SEP behavior near the Sun… if there's any interest…

Solar radiation belts?

A single 83Bi test particle has circumnavigated the Sun!

(R, θ) map of successful test particles

Hudson, McKenzie, DeRosa, & Frewen (2009) showed conservation of all three invariants for high-energy particles – a hint regarding the Størmer problem.

Mid-coronal Disturbances associated with CMEs/flares

- Coronal HXR events, SOL1969-03-30 (Frost & Dennis, 1971; Enome et al. 1971)
- Long-duration γ-ray events, SOL1982-06-03 (Forrest et al, 1985)
- Meter-wave Type II/IV bursts (e.g., Kundu 1965)

I think these phenomena belong together, and with novel plasma dynamics we may be able to explain them

SOL1969-03-30 HXR

- Coronal origin (by occultation)
- Hard spectrum, $J_v \alpha$ (hv)⁻²
- Low peak microwave frequency
- Association with type II/IV burst
- Drifting cm-wave source
- SEPs
- Un-imageable scale (*RHESSI*)
- CME association

SOL1982-06-03 γ-ray

- Very high energies (GeV)
- Pion decay radiation
- Long duration, up to hours
- Association with type II/IV burst
- Neutrons
- SEPs
- Coronal origin (*Fermi*)
- CME association

Two big mysteries:

- What *are* these things? (Can't see them in AIA!)
- How can the GeV particles be related to the SEPs?

Frost-Dennis Events

- Early (pre-Fermi) history: Cliver et al. 1986
-

• Fermi-era occulted events: Pesce-Rollins et al. ICRC 2015 Share et al. preprint 2017

SOL2014-09-01 (a recent archetype)

- Ackermann et al. 2017 overview paper
- N14E126 "X2.4", Pesce-Rollins et al. 2015
- Height of sources $>$ R_{\odot}
- CME, II, IV, pions, HXR, LDGRF..., exactly on prototype morphology

The loss-cone problem for SEPs

- The SEPs presumably come from CME-driven shock waves.
	- On open fields at 3 R_{\odot} , the particles would just go away and never interact to produce pions and γ-rays.
	- On closed fields, e.g. at 3 R_{\odot} , the loss cone is negligible (of order 10^{-3} sr), so the 1st adiabatic invariant strongly prevents precipitation.
- These considerations do not readily fit the observations, interpreted as large fluxes of relativistic SEPs near the source active region on SGRE time scales

The "Lasso" model

The Lasso model just describes the LDGRF protons as those SEPS corralled by closed coronal field.

Cliver et al. (1993)

СM **SUN** GRL
hv **SEP** Е

Kong et al. 2017

Cliver et al. (1993) The Lasso tweak

The Lasso model

- Shock acceleration takes place in large closedfield structures ("loops") ✓
- These then retract, leading to further (betatron and Fermi) acceleration ✓
- The restructuring gives better loss-cone access, leading to the observed radiations ?

Large-scale coronal loop retractions

October 23, 2000 (pa = 258, $w = 25$)

Sheeley et al. 2004

SOL2011-06-07 LDGRF

Note the image evidence for retracting fields following this LDGRF (SGRE)

Ackermann et al. 2012

Lasso model concerns I

- Is the CME/shock geometry realistic?
- Are the trapping time scales OK?
- How in the world do we relate the electron signatures to the ions?
- Are the Lasso model's "predictions" observable?
	- is a shock observed in a good geometry?
	- can we detect the retracting structures?
	- do we see consistent γ-ray centroid motions?

Lasso model concerns II

• Can we solve the loss-cone problem?

- Extensive test-particle literature exists (Birn… Somov-Kosugi… Barta-Karlicky… *al. et* Neukirch)

- There is an interesting competition between betatron acceleration (v_{perp}) and Fermi acceleration (v_{parallel})
- Many other factors might intrude (MHD geometry, scattering, turbulence, non-thermal pressure)
- It seems possible that retraction can help with the losscone problem (Eradat Oskoui et al. 2014)

Microwaves and hard X-rays SOL2012-03-05

