Fe K line from the Quiet Sun

Hugh Hudson^{1,2}

¹Space Sciences Laboratory, UC Berkeley ²University of Glasgow

Hypothesis

- Coronal heating is the result of nanoflares
- These events derive their energy from nonthermal electrons, just like flares
- The electrons stop in a chromospheric thick target and all have energies of 7.12 keV

The calculation

 $F_{6.4} = PRAY\sigma/\varepsilon$;

R the range, $1.47\times 10^{-5}~{\rm g~cm^{-2}}$

A the relative Fe abundance, 3.2×10^{-5}

Y the flourescence yield = 0.31

 σ the K-shell ionization cross-section, $5\times 10^{-22}~{\rm cm^2}$

P the power available, erg/s

 $\varepsilon = 7.12 \text{ keV} = 1.15 \times 10^{-8} \text{ erg}$

The result

For the solar coronal power, $F \sim 6 \times 10^{-8} \text{ ph/cm}^2 \text{s}$

For the chromospheric power, $F \sim 6 \times 10^{-6} \text{ ph/cm}^2 \text{s}$

Slides and IDL script on http://www.ssl.berkeley.edu/~hhudson/presentations/

The observation

- This must be a "meta-analysis" of all solar data, differenced against a lot of non-solar background data
- The line fluxes are very small but the search should be made
- Even those of us who do not believe in nanoflares want to see this simple result
- My estimation code needs to be checked

SphinX results*

* There is a new paper covering this but I have not digested it yet; also there are to be Chandrayaan-2 and of course MinXss data as well.

SphinX results, 2008 minimum

Sylwester poster (Hvar, 2019)

• Miceli et al. (1997) found a hot component (7 MK) in the same dataset by "excluding resolved microflares". Neither paper mentions "background" but the rate above 3 keV is < 1 cps.

SphinX results, 2008 minimum

- Sylwester et al. conclude that yes, there is a hot component, but at 3.6 MK rather than 7. They also note that about half of the really faint events have symmetrical light curves (upper left).
- I conclude that there's no evidence for a diffuse coronal hot signature.