Sub-THz (or super-mm) observations of solar flares Hugh Hudson

Team Members

Säm Krucker (team leader), UC Berkeley, USA Hugh Hudson (team leader), UC Berkeley, USA T.S. Bastian, NRAO, USA C.G. Gimenez de Castro, CRAAE, Brazil G.D. Cristiani, IAFE, Argentina A.S. Hales, NRAO, USA Jana Kasparova, Ondrejov, Czech Republic Ludwig Klein, LESIA, France M. Kretzschmar, LPCEE Orleans, France T. Lüthi, Leica, Switzerland S. Pohjolainen, University of Turku, Finland Alec MacKinnon, U. of Glasgow, UK Gerard Trottet, LESIA, France Steven White, AFRL, USA

VAL-C Model Contribution Functions

Lindsey et al. 1995

Continuum pros and cons

- Opacity^{*} generally grows with wavelength and with frequency relative to 1.56µ, so both IR and UV let us see higher up in the solar atmosphere
- The IR/FIR/submm regions have especially simple physics (free-free opacity dominates)
- Flare effects in the deeper atmosphere (if present) relate to strong perturbations
- Towards the IR, angular resolution decreases according to λ/D
- In the UV/EUV the continuum opacity depends metals and there is complicated RT

*Recall Kirchoff's law, $\epsilon_v = \kappa_v B_v$?

The chromosphere as seen by BIMA at 3.5 mm

Fine structure at 3.5 mm

- size ~10" (<u>unresolved</u>)
- contrast ~30% of QS brightness

Brightness oscillations

in 30 min observational runs:

- periods: 120-700 s (1.5-8 mHz)
- RMS amplitudes: ≤ 150 K
- P(NW) > P(IN)
- IN : 3-min component
- No. of wave packets: 1-3
- No. of wave periods: 1-3

Loukitcheva et al 2008

Unknown Continuum Regions

> 4

First bolometric observation of a solar flare

Woods et al. 2004

Xu et al. observations at "opacity minimum"

Overview of flare microwaves

- The electron Larmor frequency at 1 kG is 2.8 GHz
- Processes include free-free (bremsstrahlung) and gyrosynchrotron mechanisms
- "Mildly relativistic" electrons, ~1 MeV, are numerous enough to produce synchrotron emission in the impulsive phase of a flare
- These electrons appear to be an extension of the HXR-emitting electrons at lower energies
- Usually gyrosynchrotron spectra decrease with frequency, f ~ v^{α} , α negative, above about 10 GHz

Historical mm-wave Flares

Kaufmann et al. 1985

5

Akabane et al. 1973

<1>

Ancient mm-wave history

Kaufmann et al. 1996

Ancient mm-wave history

Kaufmann et al. 1996

A more typical event

Bastian et al. 1998

The Super-mm (sub-THz) Event Catalog, 2009

Table 1: Flare events with positive slope above 200 GHz						
Date	GOES	Helio	Reference	P, I, G ^a	Comments	
22-Mar-00	X1.1	N14W57	Trottet et al. (2002)	G?	15.4, 212	
06-Apr-01	X5.6	S21E31	Kaufmann et al. (2002)	G?	OVRO, 212	
12-Apr-01	X2.0	S22W31	Lüthi et al. (2004a)	I?, G	Very long duration	
20-Dec-02	M6.8	S25W34	Cristiani et al. (2008)	I?	Marginal; GOES odd	
28-Oct-03	X17	S16E08	Lüthi et al. (2004b)	P, I, G	Size estimates	
					Very long duration	
02-Nov-03	X8.3	S14W56	Silva et al. (2007)	I, G	Difficult photometry	
04-Nov-03	>X28	S19W83	Kaufmann et al. (2004)	I, G	G off the limb?	
06-Dec-06	X6.5	S06E63	Kaufmann et al. (2009)	P, I, G?		
^a Pre-impulsive, Impulsive, Gradual						

Source Sizes (Lüthi), 28-Oct-03

Berkeley Nov. 18, 2009

7

Positions and Spectra

SST/BEMRAK Comparison

Interpretation

- Gyrosynchrotron electrons: it would have to be different populations of electrons at radically high fields and particle energies
- Gyrosynchrotron positrons: ruled out by 511 keV?
- Thermal: it seems impossible to explain the impulsive sources this way, but maybe OK for gradual ones
- Exotic: there are several ideas capable of positive slopes in principle:
 - Coherent emission(s)
 - Cherenkov radiation
 - other

Emission Mechanisms

Mechanism	PRO	CON	
free-free	known mechanism rising spectrum	Not viable for compact sources Fast time variations (?)	
Electron synchrotron	known mechanism rising spectrum (razin or absorption) fast time variations	'extreme' parameters needed to reproduce observations	
Positron synchrotron	time and space coincidence with γ- ray observations fast time variations	not enough positrons (as derived from gamma-ray observations)	
Vaxiloy-Cherenkov	rising spectrum large fluxes rapid variations	dielectric properties of chromosphere not known (i.e. refractive index could be smaller)	
Bunching	association with GHz emission	THz emission attributed to electron synchrotron (see above) setup of bunching is unclear coronal microwave sources difficult to explain	
Plasma emission	correlation with y-rays low number of particles needed	needs high densities and collisions should therefore be important not otherwise observed above 8 GHz	
Diffusive radiation	Rising spectrum	Origin of high levels of long- wavelength Langmuir waves	
Thermal Gyrosynchrotron	Rising spectrum	Extreme parameters Associated thermal hard X-ray emission not observed	
Synchrotron Maser	Low number of particles needed		
Transition radiation	Rising spectrum		
Inverse Compton	association with GHz emission	not enough primary photons	

Conclusions

- The ISSI team's goal is to take an impartial look at the body of "sub-THz" or "super-mm" observations
- Yes, the observations are credible, at least regards spectral distribution
- No, we do not know how to explain them yet
- ALMA will be good but needs scientific interest and participation
- Dedicated observing programs, such as that at El Leoncito, will also exist – will solar activity?