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(Slightly revised) Thesis

Various measures of solar activity (“proxies”) guide
us to the behavior of the solar magnetic field. The
proxies have limited precision and — and maybe
less physical understanding - and conclusions are
elusive.

Outline

» How have the recent cycles developed?
* How good are the proxies?
» What are the proxies proxies of?



How have the recent cycles developed?
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» We see that a systematic change has occurred on solar-
cycle time scales: there is a “relative diminution” of F10.7
(Svalgaard, Tapping) of some 20%.

» The uncertainty bands in the ratio are at 3o (Clette &
Lefevre)



What is different about Cycles 22-247

* F10.7 began in 1947
» The space age began at the IGY, 1957

 Before this, our knowledge fades into
the increasingly mythological past...
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What is different about Cycles 22-247

* The 23/24 minimum was exceptional:
- Prolongation
- Penn-Livingston sunspots
- TSI decrease
- Cosmic-ray increase
- F10.7 diminution
- efc.
» But otherwise things seemed quite normal



How do we understand
the proxies?

* F10.7, SSN, Spot area, Ca K, K-index, GCR flux,
Ap, flare index, TSI, Spectral Irradiance, open flux,

« Each has a different and highly model-dependent
relationship with the magnetic observables in the
photosphere

* None has any physically understood relationship
with the field in the solar interior (the dynamo and/or
relic field)



Why do F10.7 and space research
matter, as regards proxy measures?
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Calibrating F10.7
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* “The F10.7 values are deemed to be accurate to one solar flux unit
or 1% of the flux value, whichever is the larger.” (K. Tapping, Space
Weather 11, 394, 2013)

» The aperture of the calibration horn is only reported at the 1% level



The F10.7 results

Adjusted Flux in Solar Flux Units
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F10.7 as a physical quantity
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* The Japanese program began a
few years after Covington

* Its leader, H. Tanaka, helped to
put the calibrations on a firmer
footing

* Its four (7) frequencies (1-9.4
GHz) span the S-component
gyroresonance peak



tal Solar Irradiance (Wm™)
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Courtesy PMOD, Davos Dorf

Notes:

* The TSI is a basic and very precise
proxy

« So far as we can tell, the low-
frequency variations are entirely due
to solar activity

* There is a difference of opinion
about minimum-to-minimum
variation

» The measurements are absolute,
and only empirically calibrated
between instruments

« SORCE, with the best TSI
measures, is not taking data now



Tetal Solar Irradiance (W/rm2)

The SORCE/TIM Record
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» Spots, faculae, and network contribute

* The “dips” differ systematically across 23/24
* The minimum is flat (convection dominates)
» Data residuals are expressed in ppm
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* Discrepancies of 0.04% per decade
* 1/KH time for convection zone 0.03%



TSI as a proxy

» TSI (and spectral irradiance) can be measured
quite precisely, relative to other proxies

» TSl is related to B in a highly non-linear and
model-dependent manner that is only understood
empirically.
- At solar maximum, faculae/network dominates
- In other stars it's the opposite — the spots
dominate

* Irradiance is not luminosity



What are the proxies
proxies of?

 The “Sun-as-a-star’” mean field

- The photospheric magnetic field
* The heliospheric open flux

* The plasma Poynting flux



Sun-as-a-star field
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Heliospheric open field
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Owens & Lockwood 2012

* The open flux must be eliminated by reconnection beneath
the Alfvenic critical point. The concept of “interchange
reconnection” as an explanation for variations suffers from
the standard 2D misconception

 Heliospheric open flux is not a fundamental property of
solar interior dynamics




What about the dynamo?

* It would be very nice to have a proxy-based tool that
could complement helioseismology in understanding
solar interior dynamics

* No predictive theory of the cycle exists, and likewise no
adequate theory of surface flux concentration (hence no
guidance for the proxies)

* Nevertheless, we learn a great deal qualitatively from
the statistical properties of stellar magnetic fields



A magnetic “k-w diagram”:
Eigenstates of the dynamo?

» Stenflo’s concept of a magnetic “k-w diagram” should
be the route to a tool for the use of magnetic proxies to
probe the solar interior

» Imaging data is much better for this purpose (it
incorporates “k”) but doesn’t extend so far in time (1/w)

» See Stenflo & Gudel (1988) for a discussion



A Magnetic “k-w Diagram”
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Flare occurrence as a proxy

212 )

The behavior of conjugacy in flare footpoints. Click the title to read more.
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http://sprg.ssl.berkeley.edu/~tohban/wiki/index.php/RHESSI_Science Nuggets



Flare occurrence as a proxy
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Flare occurrence as a proxy
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« RHESSI flares occur at “Hale Sector” boundaries
« It's a striking effect; ask Leif to explain



Flare occurrence as a proxy:
RHESSI flare longitudes
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Flare occurrence as a proxy:
Flare productivity
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Flare occurrence as a proxy:
The Poynting flux as an objective

* Active regions, and flares, appear where
“magnetic flux emergence” happens

* In physics language, this means “where
there are concentrations of plasma
Poynting flux”

 Flares can precisely locate the result of
the most intense of these concentrations



Conclusions

Some of the proxies are quite precise

All are related in complicated ways to the magnetic flux
at the solar surface, and in no case do we have
adequate physical understanding

The space-age data can, in principle, characterize the
magnetic k-w diagram usefully

The plasma Poynting flux may also be a useful target for
the interpretation of proxy data



