Coronal Heating: overview of recent observations

H.S. Hudson Space Sciences Lab, UC Berkeley

Observational approaches to coronal heating

- Coronal morphology (large scale height)
- Emission ionization states (Edlén & Grotrian, 1930s)
- Radio brightness temperatures (Pawsey 1949)
- Imaging, spectroscopy, time-series analysis

SUMMARY OF THE SCALIN	ig Law	TABLE 5	r Models of Coronal Heati	NG
Model Characteristics	N ⁰	References	Scaling Law	Parameters
	Stre	essing Models (DC)	
Stochastic buildup	1	1	$B^2L^{-2}V^2\tau$	
Critical angle	2	2	$B^2L^{-1}V$ tan θ	
Critical twist	3	3	$B^2L^{-2}VR\phi$	
Reconnection $\propto v_{\perp}$	4	4	$BL^{-2}\rho^{1/2}V^{2}R$	
Reconnection $\propto v_{A1}$	5	5	$B^{3/2}L^{-3/2}\rho^{1/4}V^{3/2}R^{1/2}$	
Current layers	6	6	$B^2L^{-2}V^2\tau \log R_m$	
	7	7	$B^2 L^{-2} V^2 \tau S^{0.1}$	
	8	8	$B^2L^{-2}V^2\tau$	
Current sheets	9	9	$B^2 L^{-1} R^{-1} V_{-1}^2 \tau$	
Taylor relaxation	10	10	$B^2 L^{-2} V_{-1}^2 \tau$	
Turbulence with:				
Constant dissipation coefficients	11	11	$B^{3/2}L^{-3/2}o^{1/4}V^{3/2}R^{1/2}$	
Closure	12	12	$B^{5/3}L^{-4/3}\rho^{1/6}V^{4/3}R^{1/3}$	
Closure + spectrum	13	13	$B^{s+1}L^{-1-s}\rho^{(1-s)/2}V^{2-s}R^{s}$	s = 0.7, m = -1.
	14			s = 1.1, m = -2.5
	W	ave Models (A	.C)	
Resonance	15	14	$B^{1+m}L^{-3-m}\rho^{-(1+m)/2}$	m = -1.
	16			m=-2.
Resonant absorption	17	15	$B^{1+m}L^{-1-m}o^{-(1+m)/2}$	m = -1.
1	18		r	m = -2.
	19	16	$B^{1+m}L^{-m}\rho^{-(m-1)/2}$	m = -1.
	20		r	m = -2
Current layers	21	17	$BL^{-1}\rho^{1/2}V^2$	
Turbulence	22	18	$B^{5/3}L^{-4/3}R^{1/3}$	

From Mandrini et al. 2000

Synthetic image decomposition

Warren & Winebarger 2006

$$\epsilon_H \sim \bar{B}^{\alpha}/L^{\beta}$$

Warren & Winebarger 2006 cf Lorraine Lundquist's thesis But does this parametrization make theoretical sense?

- AR filling factor is small
- Plasma beta is low
- Adjacent flux tubes will have identical (B, L)

But does this parametrization make theoretical sense?

- AR filling factor is small
- Plasma beta is low
- Adjacent flux tubes will have identical (B, L)
- Simple B^αL^β models
 cannot have this filamentary
 structure

Wave heating (thanks to S. Cranmer's SOHO-15 presentation)

Coronal Alfvén waves?

Two movies from the CoMP coronagraph, @ 1074.7 nm, NSO. From Tomczyk et al., Science **317**, 1192 (2007)

The active-region corona

- Bright X-ray loops resulting from large pressures
- Much larger heating rate (in ergs/cm²sec)
- Intermittency in space and time
- Quiescent structures as well as flaring structures

Time-series analysis e.g., on GOES data

Distinctly different time series

Distinctly different spectra

RHESSI's 25,000 microflares*

Christe et al. 2008

*See Hannah poster

RHESSI's 25,000 microflares

RAS 11 January 2008

Frequency distributions ("logN/logS")

RHESSI microflare summary

- The microflares all exhibit high temperatures (Fe feature appears)
- All, where detectable, have non-thermal components
- All occur within active regions
- The standard flare-like distribution function persists
- Microflares are temporally and spatially incapable of "explaining" coronal heating

See Iain Hannah's poster

Microflare cooling/ nanoflare heating?

- A flare brightening represents a net energy loss from coronal magnetic storage
- This requires a reduction in the mean **B**².
- Empirically, we know that |**B**| correlates well with the appearance of heating.
- Therefore, flares serve to *reduce* the heating and to *cool* the corona, rather than heat it.
- Nanoflares must represent different physics.

Conclusions

- RHESSI observations now reject the hypothesis of "microflare heating"
- Nanoflares something different could still be involved
- The striking inhomogeneities of the active-region corona should lead us to question whether or not the concept of distributed coronal heating is realistic

Questions

- What is the minimum temperature/density/pressure in an active-region magnetic loop?
- What can we learn from time-series analysis of X-ray brightness (*cf* Hudson 1991)?
- What about the electrodynamics of the chromosphere (*cf* M. L. Goodman, ApJ 533, 501, 2000, plus recent work in Arber's group)?