Recent Flare Observations
and Global Energetics:
How does reconnection fit?
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Thesis: Not enough attention is paid theoretically to
the observable global properties of the flare process.



The photosphere-corona interface region

* lon-neutral physics
* Transition of beta

* Collisionality horizon
 Optical depth unity
 Big temperature jJump
 Turbulence threshold
 Flare radiant energy

Inexplicably, this physics-laden domain
(the chromosphere/TR) is often taken as
a boundary for numerical simulations!



How does flare energy flow?
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Critique of standard models

« There is no self-consistency between the particle and
fluid pictures. Basically the paradigms ignore one
another.

* The existing models have difficulty with energy
conservation, and don’'t address momentum either.

» The pre-existing current sheet and the black box are
purely ad hoc.
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The Aly-Sturrock conjecture

A “least upper bound” for the excess of the magnetic free energy of a stellar
corona would be comparable to the energy of the fully open field (paraphrased
from Aly, 1984).

There may be ways around this (six lines of argument; see Forbes, 2000, or the

Shibata & Magara LRAA article). But — apologies to Shakespeare - “The theorist
doth protest too much, methinks!’

But it makes intuitive sense: field-aligned currents add magnetism and should
inflate the field geometrically as they store energy (Low & Lou, 1991; Georgoulis
et al., 2012).



Implosion Conjecture

 Flare energy-release time scales are much shorter
than the time scales for energy build-up

» The Alfven speed in the photosphere is low, so there
can be little real-time energy transfer

» The total magnetic energy increases if the scale
increases, as is seen in the Low & Lou exact solutions

« Within the volume of energy storage, a shrinkage of
the B2 level surfaces must occur in some parts of the
volume circumscribing the required energy E™:
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The Magnetic Implosion

Hudson, ApJ 531, L75 (2000)
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In this cartoon, the heavy dashed
lines show “magnetoisobars,” which
must collapse into a smaller structure
when the flare happens.

The observations show an inward tilt
of the photospheric vector field,
matching the time of energy release.
(e.g. Liu & Wang, 2009)




Recent observational results

(1) Flares observed in total irradiance and the
Impulsive phase

(2) White-light flare heights

(3) The implosion itself



Bolometric detection
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* Woods et al. (2003); Kretzschmar (2011)
* The impulsive phase is energetically dominant



Impulsive soft X-ray footpoints
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Impulsive soft X-ray footpoints

Normalized Irradiance

1.2 T T T T T T T T T T T T
- C
-l Hell

1.0 Fe XXIV :F

0.8

0.6

0.4

0.2
0.0 -
'02 [ 1 1 | 1 1 | 1 1 | A - e 1
02:06 02:07 02:08 02:09 02:10
UT 30 July 2011

SOL2011-07-30 (EVE and GOES)




Where does flare energy appear?
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Martinez Oliveros et al., ApJd 753, 26, 2012

A surprising result: the first absolute height determination of hard
X-ray and white-light emission shows them both to be near or at
their respective T = 1 heights. This is inconsistent with the thick-

target model! Flare SOL2011-02-24.



Favorite movie
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SOL2012-03-09 (Simées et al., 2013, ApJ 777, 152)

* The implosion commences in the AR core
* The excitation of large-scale wave structures proceeds outwards



Sun et al. 2012
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Implosion or reconnection?

» We have good evidence for implosions
coinciding with primary flare energy release.

* In my view, implosion is the basic flare
process. Reconnection happens as needed,
and may or may not be important.

* The cartoons currently favored do not provide
sound guidance for observers.



Conclusions

« The observational frontier of understanding is the
“interface region”.

* New tools for understanding the magnetic structure in
the low corona may soon expand our knowledge:

- Incorporating 3D geometry (Malanushenko)

- Imaging spectroscopy of gyroresonance (FASR)

« Wave energy transport in the flaring volume needs
improved understanding.



Thanks!



Trying to fit large-scale waves into
the global picture
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Carrington Flare energetics

« WL area ~ 200 MSH"
* Flare duration ~ 300 s
* Flare intensity 2x solar

Energy ~ 2 x 1032 erg

A reasonable modern interpretation of this
simple result is that the radiant energy in
the flare’s impulsive phase dominates the
flare energy — do modern data confirm this?



Compact sources of CMEs
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* See also “dimming”: Hudson & Webb, 1997; Harra & Sterling 2001
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Recent observational results

* The impulsive phase dominates the energy
release

» Implosion and oscillation (Simébes et al., 2013)

» Hard X-ray flare height (Martinez-Oliveros et
al., 2012)

« HMI observations of coronal sources

e Interior acoustic waves
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