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A flare/CME seen in EUV and X-rays

Red RHESSI 6-12 keV, blue 50-100 keV, gold images TRACE 195A
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Impulsive phase and gradual phase

Impulsive phase – primary energy release
• hard X-rays (10s of keV)
• white light, UV, µwaves - broad spectrum 
• duration < few  minutes
• intermittent and bursty time profile, 100ms

Gradual phase - response to input
• thermal emission (kT ~0.1-1 keV)
• rise time ~ minutes

Impulsive phase:
• > few tenths of the total flare energy released (up to 1032 ergs)
• Significant role for non-thermal electrons
• CME acceleration
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Impulsive Phase Spectrum
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X-Rays
X-rays observed by e.g. RHESSI are primarily electron-proton
bremsstrahlung from energetic electrons (>15 keV)

• Non-thermal bremsstrahlung: Ee >> kT and photon spectrum Ihν~(hν)−γ

   - not a significant energy loss: ~ 10-5 of the energy radiated as  X-rays
• Thermal bremsstrahlung: Ee ~ kT  and photon spectrum Ihν~ e-hν/kT

   - significant energy loss from electrons in a hot gas
• Free-free, free-bound, and bound-bound (line) transitions
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Gamma-rays

Nuclear de-excitation lines
caused by bombardment of
nuclei by 10-30 MeV protons;
also neutron emission

Production of nuclear de-excitation lines

 

Neutron capture line at 2.23 MeV - n(p,γ)D

- shows location of 10s of MeV protons

Hurford et al 2003

Π0 -> 2γ decay continuum shows ~100 MeV;

e+ annihilation line (511 kev) complicated
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Radio waves

Metric and decimetric Type III bursts are often plasma radiation produced
by electron beams (from Langmuir waves at fp ~ ne

0.5).

Upward and downward-going beams sometimes observed, occurring at
peak time of HXR emission. Spectrograms reveal the dynamics.

Basic opacity (hence emissivity) of the plasma is the
free-free process, which depends on ne ni, and Te.
Prominent in the flare gradual phase.

Fast electrons of the impulsive phase emit synchrotron emission. Depends
non-linearly on several parameters including B.
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Footpoints and Looptops

Usual behavior:

low energy X-rays with a
thermal spectrum are emitted
high in the corona (at the tops
of flaring coronal loops)

Higher energy X-rays with a
power-law spectrum are
emitted at the footpoints of
flare loops.

Krucker 2002
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Other Impulsive Phase Emission
UV/EUV, Hα and (sometimes) optical emission demonstrate excitation of
lower atmosphere

Optical/UV/EUV emission from heat
deposition / ionization / collisional /
radiative excitation

White-light luminosity can be directly
measured.

Yohkoh HXR contours on 195A emission

1600A broadband emission

White-light footpoints
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Role of ‘white light’ in total flare luminosity

Hudson 1972

Total Irradiance Monitor on SORCE

Substantial fraction of total flare
energy radiated in broadband UV-IR

In Oct-Nov 2003 flares, integrated
irradiance ~ 3 - 6 ×1032 erg

Spectral modelling ⇒ 40-50% of this at
λ ≥ 1900Å, ~ 100 times soft X-ray
irradiance

Woods et al. 2005
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The ‘standard’ 2D cartoon (for orientation)

Schmieder, Forbes et al. 1987

(http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons)
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Low-frequency radio
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Collisional thick-target model

(e.g. Kane & Anderson ‘69, Brown ’71, Hudson’72)

Collisional thick target model has dominated interpretations of flare non-
thermal emission for > 3 decades.

Assumes hard X-ray emission is primarily electron-proton bremsstrahlung
from electron beam, accelerated in the corona and stopped in chromosphere

Coronal accelerator

Coronal electron transport (generally, 1D
and no treatment of plasma collective
effects). Much unfinished work…

Bremsstrahlung HXRs and
heating/excitation in ‘thick target’
(single pass) in chromosphere

HXRs,
UV, WL

chromosphere

electron beam
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Orange=25-50keV

Blue=WL

Thick target energetics / beam fluxes

1 px = 0.5” ~ 350 km

White light footpoint area ~ 1017 cm2

In thick-target theory, can use HXR photon spectrum to calculate parent
electron spectrum in chromosphere (Brown 1971).

The inferred requirement on electron number is - 1034-1036 electrons s-1

(ie coronal volume of 1027cm3, n = 109 e- cm-3 should be emptied in ~10s)

Beam density can be inferred using white-light footpoint areas as a proxy
for beam ‘area’.
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Beam power & number fluxes from HXR & WL

2.3 ×10181.2 ×10112.9×10351.6 ×10281.3  × 1017C4.807/24/04

1.6 ×10196.4 ×10111.6 ×10366.4 ×10281.0  × 1017M2.410/23/03

6.7 ×10173.5 ×10104.7 ×10342.0 ×10277.0 × 1016M1.210/05/02

6.6 ×10183.4 ×10116.6× 10353.4 ×10281.0  × 1017M4.010/04/02

1.2 ×10185.0  ×10104.7 ×10342.0 ×10274.0 × 1016M1.007/26/02

N/cm2

(e- cm-2 s-1)
P/cm2

(ergs cm-2 s-1)
N > 20keV
(e- s-1)

P > 20keV
(erg s-1)

WL area
(cm2)

classdate

Fletcher et al (2007)

At speed v ~ 0.5c, beam density is comparable to coronal density!

Theoretically, this beam cannot propagate stably through corona
(e.g. Brown & Melrose 1977, Petkaki et al. 03)
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‘Volumetric’ acceleration:

Wave-particle turbulence (e.g. Larosa et al, Miller et al)

Stochastic current sheets (e.g. Turkmani et al)

Betatron acceleration (Brown-Hoyng, Karlicky-Kosugi)

Diffusive shock or shock drift acceleration (e.g. Tsuneta &
Naito, Mann et al)

Reconnecting X-line or current-sheet acceleration

Multiple X-lines/islands (e.g. Kliem, Drake)

Single macroscopic current sheet (e.g. Litvinenko & 
Somov, Somov & Kosugi)

Acceleration in the corona requires a high fraction of a large
volume of electrons to be accelerated to high energies
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The ‘standard’ 2D cartoon (for orientation)

Schmieder, Forbes et al. 1987

(http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons)
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‘Volumetric’ acceleration:

Wave-particle turbulence (e.g. Larosa et al, Miller et al)

Stochastic current sheets (e.g. Turkmani et al)

Betatron acceleration (e.g. Brown & Hoyng, Karlicky et al)

Diffusive shock or shock drift acceleration (e.g. Tsuneta &
Naito, Mann et al)

Reconnecting X-line or current-sheet acceleration

Multiple X-lines/islands (e.g. Kliem, Drake)

Single macroscopic current sheet (e.g. Litvinenko & 
Somov, Somov & Kosugi)

High energy, low fraction, high volume

Acceleration in the corona requires a high fraction of a large
volume of electrons to be accelerated to high energies

Moderate energy, high fraction, moderate volume

High energy, high fraction, low volume
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Summary

 Impulsive phase emission requires 10-50% of flare magnetic energy.

 Emissions usually interpreted as bremsstrahlung, heating & excitation by
non-thermal electrons in the chromosphere.

 Thick-target hard X-rays imply more electrons accelerated than can be
easily supplied by corona.

 At inferred fluxes, a beam/return current system cannot propagate stably

 The acceleration process remains unknown.

Alternative scenarios?

♣  Much smaller number of electrons accelerated in corona and then 
‘reaccelerated’ locally in chromosphere (MacKinnon 06, Brown et al.)

 Flare energy transported by high-speed Alfvén waves to chromosphere
and dissipated there (Emslie & Sturrock 82, Fletcher & Hudson 08)

 …..etc?
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Fletcher & Hudson 2008

Understanding the impulsive phase
requires physics beyond ideal MHD

http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/
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Conclusions

 The impulsive phase of a flare (acceleration phase of
associated CME) is the most important energetically

 The physics is challenging because it intimately involves
both large scales and particles

 Flare physics (astrophysics) has much to learn from space
plasma physics
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A TRACE movie that shows everything
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Old-cycle region

New-cycle region



Microflares now, major flares soon

RHESSI microflare locations, 2002-2007


