Oh Nooo - Another Carrington event?

H. Hudson

SSL, UC Berkeley and U. of Glasgow

- History
- What is a Carrington Event?
- (What is any event?)
- Tree rings and stellar flares
- Will an extreme event smite us?
- How else could the Sun help things go dreadfully wrong?

Prepared for ward sci 5f 300m, Nov. 2, 2024

- Hamlet: "To be, or not to be..."
 - Optician: "To see, or not to see..."
 - Astronomer: "2D, or not 2D..."

Academic Background

- Rice (1961), UC Berkeley (1966)
- Kinsey Anderson (PhD Minnesota 1955)
- John Winckler (PhD Princeton 1946)
- Rudolph Ladenburg (PhD Munich 1906)
- Wilhelm Conrad Röntgen (PhD Zurich 1869)
- August A.E.E. Kundt (PhD Berlin 1864)
- Heinrich Gustav Magnus (PhD Berlin 1827)
- Miscellaneous German chemists...

SPD May 27, 2008

Science fiction background

- Teenage years: Avid reader 1950-1959 (Heinlein, Asimov, Bradbury; every issue of Amazing or Astounding
- College years: mostly science reading; disliked books by Tolkien and Ayn Rand
- Postdoc era acquaintances, 1966-1991 at UCSD: Vernor Vinge, David Brin, Greg Benford
- 1991, wrote "A Space Parasol as a Countermeasure Against the Greenhouse Effect" (JBIS 44, 139)

Who was Carrington?

Cliver & Keer 2013

• An English advanced amateur, independently wealthy (b. 1826)

• Probably a difficult man, but very productive for about 10 years

• The flagship journal of the Royal Astronomical Society had to swell to accommodate his data!

Who was Carrington Not?

- This is actually Lord Kelvin, our Glasgow patron saint, resting on a binnacle
- There was a Lord Carrington, but not related
- There is no known likeness of Carrington himself, even though photography existed then

Table 1Signatoriesof the round-robin letter

Including references to obituaries in *Monthly Notices*. (Fisher: Royal Society. Airy, De la Rue, Glaisher, Lee, Smyth: NPG. Main, Perigal, Pritchard: RAS/SPL. May: http://www.oasi.org.uk/ History/May.php)

George Airy 1801–92 Astronomer Royal 1835–81 *Turner (1892)*

Richard Carrington 1826–75 Discoverer of solar differential rotation; first to observe (with Hodgson) a solar flare *Anonymous (1876)*

Warren De la Rue 1815–89 Pioneer of solar photography *Knobel (1890)*

George Fisher 1794–1873 Astronomer on British expeditions to the Arctic in 1818 and 1821 Anonymous (1874)

James Glaisher 1809–1903 Meteorologist and pioneering balloonist *Ellis (1904)*

John Lee 1783–1866 Founder of Hartwell Observatory Anonymous (1867)

Robert Main 1808–78 First assistant at Greenwich; director of Radcliffe Observatory *Anonymous (1879)*

Charles May 1800–60 Manufacturer of instruments for Greenwich Observatory Anonymous (1861)

Henry Perigal, Jr 1801–98 A "paradoxer" who provided a dissectionbased proof of the Pythagorean theorem *Anonymous (1899)*

Charles Pritchard 1808–93 Savilian professor of astronomy at Oxford *Turner (1894)*

William Smyth 1788–1865 Naval officer, geographer, hydrographer, astronomer, antiquarian *Anonymous (1866)*

Cliver et al. 2021 7

Precise sunspot measurements

• Carrington made exact sketches via projection onto a screen of a "pale distemper of straw"

• He also used timing for precise definition of the geometry of spots and their motions

• On this huge spot group in 1859, he was making such measurements when the flare popped off

What is a flare?

- In 1859 this was totally unexpected, and of course inexplicable. The term "flare" arose much later
- There was a simultaneous perturbation of the Earth's magnetic field. Also unexpected and inexplicable!
- Solar "multimessenger astronomy" had already begun, but here was "space weather"

What is a flare?

Solar wind

A steady stream of charged particles such as electrons, protons and helium nuclei and magnetic fields from the sun.

Solar flare Intense, localized burst of radiation from the sun.

spot that fades over minutes to hours.

Coronal mass ejection

A large eruption of electrically charged gas and magnetic fields from the sun that is accelerated into space by the solar wind.

Geomagnetic storm

A major disturbance in Earth's magnetic field caused by a large influx of energy from the solar wind. The largest storms happen when a CME reaches Earth.

Earth's magnetic field

What is a flare?

- Briefly, a flare shows the sudden release of magnetic energy into other forms.
- A coronal mass ejection is similar, but involves launching a huge plasma mass into the void.
- Flares/CMEs may accelerate relativistic particles much like cosmic rays, except not so energetic.

"Space Weather"

- Briefly, a flare shows the sudden release of magnetic energy into other forms.
- A coronal mass ejection is similar, but involves launching a huge plasma mass into the void.
- Flares/CMEs may accelerate relativistic particles much like cosmic rays, except not so energetic.

The compass deflection

Balfour Stewart, 1860

A self-recording magnetograph

A modern crochet

Before Carrington

Nagoya 1770-09-17 (latitude < 30)

Glasgow 2024-10-05 (latitude 55)

My living-room window

Hayakawa et al 2017

A simple energy estimate

- Flare intensity: roughly double the quiet photosphere
- Flare area: 100 MSH (~0.01% of solar disk)
- Flare duration: 300 s

This compounds to 2.5 x 10³² erg

• ICME mass guessed at 10¹⁶ g: also 2.5 x 10³² erg (roughly the mass of a city the size of Tucson)

Total event energy 5 x 10³² erg

Carrington could have made this estimate, but the physics was far in the future. For example, the unit "erg" had not yet been invented (1873).

How dangerous can a flare be?

- Flares occur over a wide range of magnitudes, just like earthquakes
- A "power-law distribution" of occurrence is open-ended, and so a huge event might be possible: Carrington!

The power law updated

Crosby et al. 1993

Hudson et al. 2024

Power laws generally; Black Swans and Dragon-Kings

- These very commonly describe the occurrence distributions of natural phenomena
 - Earthquakes
 - Nile floods
 - City populations
 - Word frequencies in the Bible etc. etc.
- Based on this law, we can easily estimate the probability of a future Carrington-class event (e.g. Love 2012)

- But what if something else is possible? A "Dragon-King" may lurk in the dimly lit corner. This would not follow the same physics as the power-law events do

Black Swans and Dragon-Kings

Black Swan (Cygnus Atratus) Photo: Dave Key

Mute Swan (Cygnus Olor) Photo: Dave Key

Initial Conclusion

- We can define a Carrington Event as a flare/CME/storm at the top of the scale
- The archetype Carrington event itself was not superlative and a similar one would probably not be disastrous

State of the art in theory, Aulanier et al. 2013. In essence, "Give me a big enough sunspot, and I will give you a superflare!"

Two new discoveries about extreme events

- Three radionuclide events in the Holocene (Miyake et al. 2012, 2013; O'Hare et al. 2019), the first in ~775 AD
- *Kepler* observation of "superflares" on slowly-rotating "solartype" stars (Maehara et al. 2012)

Then (2012, not 775) graduate student Fusa Miyake

SEPs as event proxies

2 Nov. 2024

Threat assessment

- A Carrington event is like a 100-year flood, and the human race would easily survive one
- A thousand-year event? Or greater?
 - we have strong statistical hints that we've seen the worst already

Suppose we can't have a Carrington-event disaster?

- Rogue dMe star / EMP
- Orphan planet
- Buried black hole / interior accretion
- Sentient Sun

Kepler Stellar Photometry

Maehara et al. 2012

TSI Solar Photometry

Flariness vs Dippiness

Flariness vs. dippiness

The solar TSI exhibits low-level (of order 50 ppm per 2-min sample) fluctuations due to convection and p-mode oscillation, and pronounced dips due to one-off sunspot transits – dippiness. Flares only marginally exceed these fluctuations. The *Kepler* timeseries for most superflare stars do not show dips, but instead have persistent quasi-sinusoidal variability at large amplitude (percents), plus the striking flare excesses – flariness.

- The Kepler "solar type" stars are not at all like the Sun in this property
- Sunspot/facular dominance of activity properties varies across the stellar types

Kepler Observations Misunderstood?

What have we learned from the tree rings and the Kepler events?

- The tree-ring events appear to have had much greater SEPs fluences than even SOL1956-02-23
- The Kepler events don't suggest a reasonable basis for extrapolation to the solar case
- The meaning of "event" must be extended to compound events
- We should look to stellar CMEs to understand the tree-ring link better

TSI Solar Photometry

• These events together match the Carrington spot and flare magnitudes pretty well – the famous 2003 "Halloween events"

CME detection via EUV dimming

SDO/EVE spectroscopy readily detects solar mass ejections (Mason et al. 2016)

CMEs on stars

- There are many stars close enough to observe in the EUV.
- A dedicated stellar EUV instrument, doing what EVE does, would be very fruitful, for example just staring at Prox Cen
- The problem is SNR. Large aperture is needed to resolve event timescales. Veronig *et al*. (2021) provide some credible examples of stellar dimming events

Coupled oscillators "bubbling"

Sornette's Dragon-King hypothesis

Poincaré and the theory of dynamical systems

19th Century Natural Disasters

- The Carrington event: 10¹⁷ g in the heliosphere – a few singed beards
- The Tambora eruption: 10¹⁷ g in the stratosphere – countless fatalities

YouTube solar disaster movies

- CAT 8 (2013): My rating Awful 1/10
- Solar Flare (2008): Bad 3/10
- Solar Attack (2006): Bad 3/10
- Solar Impact (2019): Awful 1/10
- Solar Crisis (1990): Mediocre 5/10
- The End of the World (2018): Disaster 0/10

Books with solar disasters

 Currently reading Clarke & Baxter 2005, "Sunstorm"

Conclusions

- We can define a "Carrington event" as major flare/CME/storm of the greatest magnitude
- The archetype Carrington event(s) itself was not superlative and a similar occurrence would probably not be disastrous
- No new physics needed
- But... do the radioisotopes hint at a Dragon-King risk outside our extrapolations?
 - We must study these extreme events
 - We must be prudent about risk

Solar disaster menu

- Super-Carrington... this one we can do statistics for, and dismiss as a threat
- EMP from the solar impact of a (very small) magnetized star... note Ocean's 11. The conspiracy-theory trap; also, we can do the statistics
- Deep penetration by a dead-vertical orphan planet (huge hydro CME)... note Clarke-Baxter 2005 and the earlier parasol discussions
- Solar sentience (why is magnetoconvection not self-aware?)... duhh, too hot for stable currents; but could relatively cool filaments support magnetovores?
- A super-Miyake event, or any Dragon King
- Embedded black hole... the conspiracy-theory trap

An embedded solar black hole

- A tiny black hole forms the initial seed mass for solar accretion
- Further accretion, at an inclined rotation, envelops the black hole, which creates an interior cavity (think Pellucidar)
- As the bulk of the Sun evolves normally, accretion from the inner cavity boundary increases slowly, forming a powerful accretion disk hidden from view
- A jet (think M87) forms, blowing through the body of the Sun (think Alien), and blasting the Earth.