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An eruptive flare adds free magnetic
energy to the corona. How can this result
from an instability?



Yohkoh and Shibata-sensei

* Yohkoh/SXT gave us our first comprehensive movie
descriptions of flare plasma dynamics in its natural X-

radiation

* During the decade of the 1990s, Shibata-sensei and |
frequently met at ISAS, and | learned a great deal

from him!
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The Hirayama
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Specific features confirmed:

Filament channel
Plasmoid

Coronal overpressure
Loop formation

Omissions TBD

e Plasma instability
e Particle acceleration

856 citations




Yohkoh-era flare cartoons
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https://www.astro.gla.ac.uk/cartoons/



Cartoon explanation

Magnetoisobars Field lines

* This cartoon does not describe local properties (“reconnection”);
it simply demonstrates conservation of energy
e Field lines shown in before/after steady states (solid, dotted)
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Simoes et al. 2013; Russell et al. 2015

e The Russell paper shows how all of these
phenomena fit nicely together




Cartoon conclusions

* The implosion is fundamental, because it
represents conservation of energy

* The Hirayama-Shibata-Moore (CSHKP) cartoon
describes the later flare development

* The implosion cannot always be detected
oecause it is in the (invisible) magnetic field

* Plasmoid eruption is a consequence, not a
cause



Cartoon conclusion:

The pressure reduction from the
implosion drives the plasmoid

Collapse restores
force balance

Support reduced
as magnetic field
reconfigures

Support by
magnetic
pressure
gradient
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New (old) evidence for
“tether-cutting”?

* |[sothermal interpretations of GOES soft X-ray
data invariably show “Hot Onset Precursor
Events” (HOPEs) - only recently described

* The basic plasma evolution of a flaring loop
does not predict this pattern

 The result is a pre-flare horizontal branch in
(T,EM) diagnostic plots



The (EM, T) diagnostic diagram
for a flaring loop
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The (T, EM) point moves around

B. Sylwester 1976 a loop, in the directions labeled
Jakimiec et al. 1992




Temperature, MK

The (EM, T) diagnostic diagram
for a flaring loop
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What the diagram shows:
e Neupert-like loop behavior
e Equilibrium decay
e Hot onset: EM increase at constant T
* Hot onset: dT/dt unresolved (red arrow)




Irradiance, W/m?

Excellent recent example
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e The HOPE (horizontal branch of [T, EM]) is almost
always present

e Temperature tends to be fixed at 10-15 MK

e Emission measure rises roughly linearly

e HOPE appears before the impulsive phase



Why are hot onsets important
for the global physics?

* The HOPE energy release is different from the standard flare
pattern. We do not know yet whether it is steady-state or
microflaring, but it is not “pre-heating” since dT/dt ~ 0

* Some AlA observations show that it may occur along the PIL
that is going to flare, though not at the flare site necessarily

* A Yohkoh view of a single event (SOL2001-09-24) is in Farnik et
al. 2003, and many other HOPE examples are elsewhere in the
literature



Conclusions

 What we have learned about solar flares depends a great deal
on Yohkoh and upon Shibata-sensei

e | think future work needs to focus on the lower atmosphere to

understand “tether-cutting” physics and to understand how
HOPE leads to eruption



Irradiance, W/m?

If there is time, the “Slow HOPE”
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Preflare active region
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Message: The HOPE phase may be quite remote from the
flare. It looks non-episodic here, but check out Farnik et al. 2003.
How does this development lead to the major instability?



