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Motivations for this work

I Difficulties with the electron beam for energy transport

• Return current physics

• Number problem

• Self-field and stability issues

• Lack of evidence for directivity/albedo

II Observation of large-scale field deformations at the
photosphere

• Wang and others; Sudol-Harvey 2005

• Magnetic reconnection as a source of large-scale waves
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Demise of the thick-target model?

• Footpoint spatial scales have become very small and make
extreme requirements of energy transport by a beam:
- unstable particle distribution functions
- strong self-field (inductive) effects
- the “number problem”

• The “dentist’s mirror” of albedo shows no significant X-ray
directivity (Kontar & Brown, 2006)

• The occurrence distribution of >100 keV events shows no
significant directivity (Datlowe et al. 1974; Kasparova et al.
2007)
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Sudol & Harvey (2005), X10 flare of 2003 Oct. 29
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Flare of 2001 Aug. 25
GONG + TRACE 1600A 

Other examples, 
with GOES times

Figure 2. Flare-related photospheric field
changes. They are stepwise, of order
10% of the line-of-sight field, and
primarily occur at the impulsive 
phase of the flare (Sudol & Harvey 2005)
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Replacing the thick-target model
• Large-scale restructuring => flare energy

• Large Alfvén speed in the low corona

• Energy transport by Alfvén-mode waves, not electron
beams

Fletcher & Hudson 2007
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High Alfvén speeds

• The literature often underestimates active-region field
strengths and Alfvén speeds; vA ~ 0.1c must be considered
likely (500 G, 109 cm-3) at h = 109 cm

• The “magnetic scale height” in an AR is of order 109 cm
(Brosius & White, 2006)

• Wave propagation times are short enough for conjugacy
• The condition β < me/mp is also certainly possible, hence

“inertial” Alfvén waves
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Wave propagation time

Figure 4. The time required for wave propagation from a given height through a
hydrostatic coronal model grafted onto VAL-C. Dotted line marks the
VAL-C transition region, dashed line the temperature minimum.
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Possible mechanisms for
electron acceleration

• Parallel fields in inertial Alfven-wave energy transport

• Fermi acceleration between wave front and chromospheric
field

• Turbulent cascade development in reflected/mode-
converted waves
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What is an inertial
Alfvén wave?

• Inertial effects become important in Ohm’s law

• Electric field parallel to B develops

Figure 5. Simulations of electron distribution function(Kletzing, 1994) 
evolving with time as the wave passes a fixed point
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Figure 6. Ratio of propagation time to phase-mixing time, for various
combinations of horizontal wavelength and field strength.
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Figure 7. Perpendicular electric field of wave. 
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Figure 8. Ratio of parallel field to Dreicer field for
perpendicular wavelenths 0.5, 5, 5 km for density
109 cm-3 and temperature 106 K. 
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Figure 9. Ratio of Fermi to ion-viscosity damping times
in the chromosphere. It is greater than unity in the corona.
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Unknowns in the new scenario

• The partition of flare energy release into Alfvén mode and
fast mode is unknown

• The fast-mode energy probably is lost to the system, but
there is no consensus on the damping mechanism and no
clear observations in the impulsive phase

• There are mechanisms for diffuse electron acceleration, but
again no consensus in the literature

• The time-of-flight analysis of Aschwanden et al. may be in
conflict with this mechanism
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Conclusions

• We propose a variant of the standard thick-target model for
energy transport in the impulsive phase: large-scale Alfvén
waves

• Efficient and prompt energy transport requires a high
Alfvén speed in the low corona, which we find appropriate

• There are several possible avenues for electron
acceleration and we do not have a full theory


