Flare energy and fast electrons via Alfvén waves

H. S. Hudson & L. Fletcher SSL/Berkeley and Glasgow U.

Motivations for this work

- I Difficulties with the electron beam for energy transport
 - Return current physics
 - Number problem
 - Self-field and stability issues
 - Lack of evidence for directivity/albedo
- II Observation of large-scale field deformations at the photosphere
 - Wang and others; Sudol-Harvey 2005
 - Magnetic reconnection as a source of large-scale waves

Demise of the thick-target model?

- Footpoint spatial scales have become very small and make extreme requirements of energy transport by a beam:
 - unstable particle distribution functions
 - strong self-field (inductive) effects
 - the "number problem"
- The "dentist's mirror" of albedo shows no significant X-ray directivity (Kontar & Brown, 2006)
- The occurrence distribution of >100 keV events shows no significant directivity (Datlowe et al. 1974; Kasparova et al. 2007)

Flare of 2001 Aug. 25 GONG + TRACE 1600A

Figure 2. Flare-related photospheric field changes. They are stepwise, of order 10% of the line-of-sight field, and primarily occur at the impulsive phase of the flare (Sudol & Harvey 2005)

Other examples, with GOES times

Replacing the thick-target model

- Large-scale restructuring => flare energy
- Large Alfvén speed in the low corona
- Energy transport by Alfvén-mode waves, not electron beams

Fletcher & Hudson 2007

High Alfvén speeds

- The literature often underestimates active-region field strengths and Alfvén speeds; $v_A \sim 0.1c$ must be considered likely (500 G, 10⁹ cm⁻³) at h = 10⁹ cm
- The "magnetic scale height" in an AR is of order 10⁹ cm (Brosius & White, 2006)
- Wave propagation times are short enough for conjugacy
- The condition $\beta < m_e/m_p$ is also certainly possible, hence "inertial" Alfvén waves

Figure 4. The time required for wave propagation from a given height through a hydrostatic coronal model grafted onto VAL-C. Dotted line marks the VAL-C transition region, dashed line the temperature minimum.

Possible mechanisms for electron acceleration

- Parallel fields in inertial Alfven-wave energy transport
- Fermi acceleration between wave front and chromospheric field
- Turbulent cascade development in reflected/modeconverted waves

What is an inertial Alfvén wave?

- Inertial effects become important in Ohm's law
- Electric field parallel to B develops

Figure 5. Simulations of electron distribution function(Kletzing, 1994) evolving with time as the wave passes a fixed point

Figure 6. Ratio of propagation time to phase-mixing time, for various combinations of horizontal wavelength and field strength.

Figure 7. Perpendicular electric field of wave.

Figure 8. Ratio of parallel field to Dreicer field for perpendicular wavelenths 0.5, 5, 5 km for density 10^9 cm⁻³ and temperature 10^6 K.

Figure 9. Ratio of Fermi to ion-viscosity damping times in the chromosphere. It is greater than unity in the corona.

Unknowns in the new scenario

- The partition of flare energy release into Alfvén mode and fast mode is unknown
- The fast-mode energy probably is lost to the system, but there is no consensus on the damping mechanism and no clear observations in the impulsive phase
- There are mechanisms for diffuse electron acceleration, but again no consensus in the literature
- The time-of-flight analysis of Aschwanden et al. may be in conflict with this mechanism

Conclusions

- We propose a variant of the standard thick-target model for energy transport in the impulsive phase: large-scale Alfvén waves
- Efficient and prompt energy transport requires a high Alfvén speed in the low corona, which we find appropriate
- There are several possible avenues for electron acceleration and we do not have a full theory