Carrington Events
H. Hudson

SSL, UC Berkeley and U. of Glasgow

e History

e What is a Carrington Event?

e (What is any event?)

e Tree rings and stellar flares

e Will an extreme event smite us?
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Who was Carrington?

Cliver & Keer 2013

e An English advanced amateur,
independently wealthy (b. 1826)

e He was not Lord Carrington, and
not related to him

e He left no picture we know of,
but his effects on MNRAS are clear



Precise su nsSpot measurements
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e Carrington made exact sketches
via projection onto a screen of
ol a “pale distemper of straw”

| e He also used timing for precise
| definition of the geometry

| @ On this huge spot group in
1859, he had just finished his
measurements when the flare
popped off

Prosser 2019



The Flare
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The Flare
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The Consequences
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VERTICAL FORCE

e The diurnal pattern
e The “crochet,” aka
“Solar Flare Effect”
e The storm sudden
commencement
e A superstorm:

- Dst -900 nT

- Aurora in Havana

Credit E. Loomis for
following up with
The terrestrial effects
(Shea & Smart 2006)




A self-recording magnetograph

13 May 2011



A modern crochet
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Laura Hayes?



How important?

The Carrington event was among the top few events, or perhaps top, in:
- Crochet (SFE) amplitude
- Storm magnitude (Dst)
- Auroral extent in latitude
- Sun -> Earth ICME travel brevity

So... how energetic was the flare itself?
- Carrington’s own sketch and description
- the crochet as a proxy



A simple energy estimate

e Flare intensity: roughly double the quiet photosphere
e Flare area: 100 MSH (~0.01% of solar disk)

e Flare duration: 300 s
This compounds to 2.5 x 103% erg
e |ICME mass guessed at 10%° g: also 2.5 x 1032 erg

Total event energy 5 x 1032 erg

Carrington could have made this estimate, but the physics was far in the

future. Also, the erg had not yet been invented (1873).



The power law

102 - e S M MM -
=3
-
a
T o
« 107
e n
Q
g
é 10
o
= - -
=

-4

@ 107+ 1980-1982
o N = 2878
w
o« P Slope = -1.59+ 0.01
3

10-6 PEPTPTTTY EEEPTPTTre BT T SRR TTrTY. P re | [w W

0.01 0.10 1.00 10.00 100.00 1000.00 10000.00

PEAK HARD X-RAY FLUX > 25 keV (photons cm®s™)

Crosby et al. 1993
13 May 2011

11



Power laws generally

e These very commonly describe the occurrence distributions
of natural phenomena
- Earthquakes
- Nile floods
- City populations
- Word frequencies in the Bible etc. etc.

e Based on this law, we can easily estimate the probability of
a future Carrington-class event (e.g. Love 2012)

- But what if something else is possible? A “Dragon-King”
may lurk in the dimly lit corner. This would not follow the same
physics as the power-law events do



The power law
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All considerations point to ~X45 for the
Carrington event (~5 x 1032 erg)

13 May 2011 13



Initial Conclusion

e We can define a Carrington Event as a
flare/CME/storm at the top of the scale
e The archetype Carrington event itself
was not superlative and a similar one
would probably not be disastrous

1032 erg
T 10% erg

o State of the art in theory,

103* erg
«©

Aulanier et al. 2013. In essence,
“Give me a big enough sunspot,

0% erg
1036 erg
' and | will give you a superflare!”




Two new discoveries about
extreme events

 Three radionuclide events in the Holocene (Miyake et al.
2012, 2013; O’Hare et al. 2019), the first in ~775 AD

* Kepler observation of “superflares” on slowly-rotating “solar-
type” stars (Maehara et al. 2012)

Then (2012, not 775)
graduate student
Fusa Miyake
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AD 775 Solar (?!) Event
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SEPs as event proxies
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The observed flare power law in
energy must have a break (Hudson 1991)
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Kepler Stellar Photometry
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TSI Solar Photometry
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Solar variability is facula-dominated
on solar-cycle time scales
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Flariness vs Dippiness

Flariness vs. dippiness

The solar TSI exhibits low-level (of order 50 ppm per 2-min sample) fluctuations due to convection and
p-mode oscillation, and pronounced dips due to one-off sunspot transits — dippiness. Flares only marginally
exceed these fluctuations. The Kepler timeseries for most superflare stars do not show dips, but instead
have persistent quasi-sinusoidal variability at large amplitude (percents), plus the striking flare excesses —

flariness.

e The Kepler “solar type” stars are not at
all like the Sun in this property

e Sunspot/facular dominance of activity
properties varies across the stellar types

13 May 2011 20



Kepler Observations Misunderstood?
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e Superflare occurrence depends
strongly on rotation period
¢ There are actually no statistics here!
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What have we learned from the tree
rings and the Kepler events?

The tree-ring events appear to have had much
greater SEPs fluences than even SOL1956-02-23

The Kepler events don’t suggest a reasonable basis
for extrapolation to the solar case

The meaning of “event” must be extended to
compound events

We should look to stellar CMEs to understand the
tree-ring link better
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TSI Solar Photometry
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¢ These events together match the Carrington
spot and flare magnitudes pretty well — the
famous 2003 “Halloween events” 73



CME detection via EUV dimming
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30

solar mass ejections (Mason et al. 2016)
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CMEs on stars

* There are many stars close enough to observe in the EUV.

* A dedicated stellar EUV instrument, doing what EVE does,
would be very fruitful, for example just staring at Prox Cen

 The problem is SNR. Large aperture is needed to resolve event
timescales. Veronig et al. (2021) provide some credible
examples of stellar dimming events



Coupled oscillators “bubbling”

Sornette’s Dragon-King
hypothesis

Poincaré and the theory
of dynamical systems : A

N

0.2 .
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13 May 2011
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19t Century Natural Disasters

* The Carrington event: 10!/ g in the
heliosphere — a few singed beards

 The Tambora eruption: 10/ g in the

stratosphere — countless fatalities



Conclusions

e We can define a “Carrington event” as major
flare/CME/storm of the greatest magnitude

e The archetype Carrington event(s) itself was not
superlative and a similar occurrence would probably
not be disastrous

e No new physics needed

e But... do the radioisotopes hint at a Dragon-King
risk outside our extrapolations?

- We must study these extreme events

- We must be prudent about risk



