Variations of Substorm Recovery Time Scales

M. O. Fillingim¹ (matt@ssl.berkeley.edu), D. Chua², G. A. Germany³, and J. F. Spann⁴

¹Space Sciences Laboratory, University of California, Berkeley
²Space Science Division, Naval Research Laboratory
³Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville
⁴NASA, Marshall Space Flight Center, Huntsville, AL

Introduction and Previous Work

Quantitative description of auroral substorm development:

1) **Energetics:**
 - Hemispheric Power, $HP = \sum Q_i A_{ij}$
 where $Q_i = $ energy flux; $A_{ij} = $ area of pixel (i,j)

2) **Time scales:**
 - **Expansion time**
 - **Recovery time**

New results

- Our goal: extend the analysis of Chua et al. [2004] to include ~4000 substorms observed by IMAGE FUV compiled by Frey and Mende [2006]
- We start with (very) small subset: 12 substorms → 10 during winter, only 2 during summer
- Determine recovery time scale, τ, for each substorm

Total of all substorms:
- Average τ: 37.6 ± 19.7 minutes
- Median τ: 41.3 minutes

Winter substorms:
- Average τ: 38.9 ± 21.0 minutes
- Median τ: 46.2 minutes

Summer substorms:
- Average τ: 31.3 ± 14.1 minutes
- Median τ: 41.3 minutes

Interpretation, Summary, & Conclusions

- Our observed median winter substorm recovery time scale is 10 – 15 minutes longer than Chua et al.’s [2004]
 → Caveats: 1) small sample size: 10 vs. > 200 substorms
 2) differences in instruments/filter responses may lead to discrepancies (?)
- We find no significant seasonal variation in substorm recovery time scales in contrast to Chua et al. [2004]
 → However, we used a statistically insignificant data set (especially for summer substorms – only 2!)

Why should there be seasonal variations in substorm recovery time scales?

- Suppression of auroral in sunlight [e.g., Newell et al., 2001]:
 Increased solar EUV flux → increased cold plasma density & ionospheric conductivity
- Cold plasma effectively “shorts out” parallel electric fields
 (or, to put it another way.)
- Cold plasma density is sufficient to carry current driven by the magnetosphere without parallel potentials
- Intense auroral structures have shorter lifespans in sunlight
 → Conductivity can play a major role in substorm dynamics

Future Work

- Include (many) more IMAGE FUV substorms
- Investigate how differences in instruments/filter responses impact recovery time scales
- Simultaneous, conjugate substorm observations

Caveats:
- Implications for auroral conjugacy:
 - Statistically, auroral substorms last longer in darkness (winter) than in sunlight (summer)
 - More energy deposited in dark hemisphere